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Liquid films flowing down the underside of inclined plates are subject to the interac-
tion between the hydrodynamic and the Rayleigh-Taylor (R-T) instabilities causing
a patterned and wavy topology at the free surface. The R-T instability results from
the denser liquid film being located above a less dense ambient gas, and deforming
into an array of droplets, which eventually drip if no saturation mechanism arises.
Such saturation mechanism can actually be provided by a fluid motion along the
inclined plate. Using a weighted integral boundary layer model, this study examines
the critical inclination angle, measured from the vertical, that separates regimes of
absolute and convective instability. If the instability is of absolute type, growing
perturbations stay localized in space potentially leading to dripping. If the instability
is of convective type, growing perturbations move downwards the inclined plate,
forming waves and eventually, but not necessarily, droplets. Remarkably, there is a
minimum value of the critical angle below which a regime of absolute instability
cannot exist. This minimum angle decreases with viscosity: it is about 85◦ for
water, about 70◦ for silicon oil 20 times more viscous than water, and reaches a
limiting value for liquid with a viscosity larger than about 1000 times the one of
water. It results that for any fluid, absolute dripping can only exist for inclination
angle (taken from the vertical) larger than 57.4◦. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4946827]

I. INTRODUCTION

Falling liquid films on vertical plates or on the upper side of inclined plates are present in many
technical applications involving heat and mass transfer, and as such they are well studied.1–3 Owing
to an inherent unstable flow above a critical inclination angle, falling films are characterized by a
wavy and distorted topology exhibiting different types of vortices in the trough4 and the crest5 of
the wave. These instabilities are always of convective type,3 such that surface perturbations grow
in space (in flow direction) and not locally in time, which is confirmed by experiments.6 For the
inverted case of a film flowing down the bottom side of an inclined plate, the flow should also
be of convective type if the inclination angle is close to the vertical. However, in the limiting
case of a horizontal plate, the Rayleigh-Taylor7 (R-T) instability deforms the surface. The entire
system is described by a balance between destabilizing gravitational forces and stabilizing surface
tension forces. The flow is thus of absolute type if the inclination angle is sufficiently close to
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the horizontal, meaning that perturbations grow locally and are not convected by the flow.8 As a
consequence, there should exist a critical (fluid and flow rate specific) angle at which the insta-
bility changes from absolute to convective type. This is what has recently been demonstrated by
Brun et al.9 in the limit of negligible inertia and viscous extensional stress strictly valid for low
Reynolds number flows. Extending their study to large Reynolds number flows is the aim of this
work, which will show non-monotonic absolute/convective transition contrarily to the previous
results.

It is well known that the R-T instability in a static and horizontal setup does not exhibit a
saturation mechanism,10 such that either droplet detachment or film rupture occurs within a finite
time period.11 Saturation of the R-T instability and consequently a suppression of dripping can be
achieved in different ways, such as applying oscillations in vertical12 or horizontal13 direction, an
electric field, temperature gradients,14–16 Marangoni effects,17 and curvature.18 In close relation to
falling films, Babchin et al.19 have demonstrated that a convective flow in horizontal direction (due
to a moving plate at a constant velocity) can result in saturation. This saturation is a result of a
non-linear flow-induced and surface-tension-assisted mechanism.

The formation of the three-dimensional R-T instability in an inverted film flow was studied by
Lin et al.20 using a model based on the lubrication approximation with neglected effects of inertia.
Contrarily to the film flow considered in this study, Lin et al. have a non-wetted plate as an initial
condition. Although the main focus of their study is on the development of finger-like patterns, they
also consider a film destabilized by a Rayleigh-Taylor type instability. They identify for low values
of the dimensionless inclination number a propagation front which breaks up into fingers. A further
characteristic of the flow is large droplet-like structures which move downwards the plate with a
wave speed much faster than the propagation speed of the fingers.

On conditions that the intensity of the saturation mechanism is not sufficiently strong, and,
e.g., in the case of an imposed flow rate, the boundary between the convective and absolute instabil-
ities will separate the regime of immediate dripping (see Fig. 1(c)), occurring already in the vicinity
of the inlet, from the regime where dripping eventually, but not necessarily, occurs after a suffi-
ciently long inlet length (see Fig. 1(b)). In a similar way the absolute/convective (A/C) boundary
separates the regimes of droplet formation in a viscous liquid jet,21,22 e.g., droplet formation at the
nozzle exit or downstream jet breakup, both owing to Plateau-Rayleigh instability.

In Section II, a set of low-dimensionality models based on the weighted integral boundary
layer approach will be proposed and hierarchized in terms of their degree of approximation. In
Section III, we will present the methodology to identify the A/C transition of a falling liquid film
on the underside of an inclined plate subject to R-T instability. A special characteristic of this flow
configuration is that both the R-T instability and the convective liquid transport along the inclined

FIG. 1. Sketch of an inverted falling film, a situation that is always unstable: (a) any perturbation around the unperturbed
flat film solution will grow in time and either be convected with the flow (b) or be localized in space (c), in the case of which
dripping already occurs in the vicinity of the inlet in absence of nonlinear saturation. Note that dripping can eventually, but
not necessarily, occur in convective instability as represented by the dashed droplet. The critical angle αc separates the two
regimes of instability.
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plate are driven by gravity. Thus, the cotangent of the inclination angle taken from the horizontal
determines the ratio between the two coupled mechanisms. In Section IV, and after having shown
the differences and specificities of the various models, the influence of two different conservation
conditions, e.g., imposed film thickness and imposed flow rate on the A/C transition, is examined.
Further, a minimum critical inclination angle for convective instability in falling films is presented.
In Section V, we discuss the relevancy of the A/C transition in light of time-dependent simulations
of wavepackets, whereas conclusions are given in Section VI.

II. MODELING

The geometry of an inverted falling film under the field of gravity g is sketched in Fig. 1(a)
where β is the inclination angle from the horizontal and α = β − π/2 is the inclination angle taken
from the vertical, the two angles being used in the paper. The unperturbed flat film thickness is
denoted hN , and qN is the specific volumetric flow rate (flow rate per unit width) at the inlet. For
the evolution of the film flow, the full second-order model obtained by Ruyer-Quil and Manneville23

is considered, whose derivation is briefly detailed in Appendix A. This model consists in four
coupled evolution equations for the local film thickness h(x, t), the local flow rate q(x, t), and two
corrections of the flow rate s1(x, t) and s2(x, t) accounting for the departure from the parabolic
velocity profile due to second-order inertia effects. The ordering refers to the classical gradient
expansion,3 such as second-order terms contain second-order derivatives in space (x). Using hN

as the scale for the thickness, and 3qN as the scale for the flow rate, the dimensionless equations
are

∂th = −∂xq, (1a)

δ∂tq =
5
6

h − 5
2

q
h2 −

5
6
ζh ∂xh +

5
6

h∂xxxh + δ∂ts1 + δ∂ts2

+ δ


−4
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3
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
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
4
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h2 (∂xh)2 − 9

2h
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q
h
∂xxh +

9
2
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
, (1b)
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1
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420
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140
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5
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420
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+ δ
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+
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
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where δ is the reduced Reynolds number, ζ is the reduced inclination number, and η is the viscous
extensional number, whose definitions are given in Sec. III (see Eq. (9)). The parameter δ > 0 scales
for the inertia effect, the parameter ζ < 0 for the R-T instability mechanism, and the parameter
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η > 0 for the viscous dissipation in the streamwise direction. As proposed by Ruyer-Quil and Man-
neville,23 an adiabatic elimination of the fields s1 = s2 = 0 in (1) leads to the following simplified
second-order model:

∂th = −∂xq, (2a)

δ∂tq =
5
6

h − 5
2

q
h2 − δ

17
7

q
h
∂xq +

(
δ

9
7

q2

h2 −
5
6
ζh

)
∂xh +

5
6

h∂xxxh

+ η


4

q
h2 (∂xh)2 − 9

2h
∂xq∂xh − 6

q
h
∂xxh +

9
2
∂xxq


. (2b)

It is worth mentioning that the terms in square brackets result from the so-called viscous exten-
sional stress, well known in models for thin viscous sheets24 for which the extensional term is
4∂x(h∂x(q/h)), where 4 is the so-called Trouton ratio. The only differences here stand in the coef-
ficients of each term (apart for the first one), which account for the integration of a parabolic
velocity profile, instead of a uniform velocity profile in the case of a free-standing film. If these
second-order viscous extensional terms are further neglected, i.e., taking η = 0, (2) reduces to the
first-order model, which therefore corresponds to (2a) and the first line of (2b). Finally, neglect-
ing also inertia effects, i.e., for δ = 0, the first-order model reduces, by eliminating q, to a single
long-wave equation for the film thickness,

∂th = −∂x


h3

3
(1 + ∂xxxh − ζ∂xh)


. (3)

This equation is identical to the one considered by Duprat et al.25 (except that their β parameter
equals −ζ here), even if another physics is involved since the authors considered a film flowing
along a fibre, where the absolute instability mode arises due to the Rayleigh-Plateau instability.
Equation (3) has also been recently analysed by Brun et al.,9 who have used another scaling that will
be explicated in Section IV B.

The hierarchy of models that have been introduced above is summarised in Figure 2. Most
of the results below are obtained with the full second-order model since it has been shown by
Ruyer-Quil and Manneville26 to contain all features needed to fit exact linear properties obtained
with the Orr–Sommerfeld equations — i.e., the perturbation equations directly obtained from the
Navier–Stokes equations. However, the differences between the full second-order model and the
three other ones will be first examined in Section IV, putting in evidence some important influ-
ences of the various effects considered, such as inertia at first- and second-order, and viscous
extensional stress.

FIG. 2. Hierarchy of averaged models with corresponding dependent variables in parentheses. Each arrow indicates the step
to reduce one model to another. The steps are additive.
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III. METHODOLOGY

With the aim to identify the linear absolute/convective (A/C) transition, the following normal
mode perturbations of the dimensionless flat film solution are considered:

h = 1 + a ei(k x−ωt), (4a)

q =
1
3
+ b ei(k x−ωt), (4b)

where k = kr + iki and ω = ωr + iωi are complex wavenumber and complex pulsation, respec-
tively, and a and b are complex amplitudes. For the sake of simplicity, the procedure is detailed
below with the simplified second-order model and then extended to the other models. Inserting (4)
into (2), and linearising for a,b ≪ 1, leads to the following dispersion relation:

k2
(
− δ

7
− 9iηω

2
+

5ζ
6

)
+ k

(
17δω

21
+

5i
2

)
− δω2 + 2iηk3 +

5k4

6
− 5iω

2
= 0. (5)

Following, for instance, Charru,27 the transition between convective and absolute instabilities is
defined by the marginal mode that is neither amplified nor damped, i.e., for ωi = 0, and located
at a fixed position in space. This mode corresponds to a zero group velocity defined as V = ∂kω.
Considering ω = ω(k) in (5), differentiating the equation with respect to k, and prescribing ∂kω = 0
lead to

2k
(
− δ

7
− 9

2
iηω +

5ζ
6

)
+

17
21

δω + 6iηk2 +
10k3

3
+

5i
2
= 0. (6)

For a given set of parameters (δ,η), the system of complex equations (5) and (6) can be solved for
the four real variables kr , ki, ωr , and ζ . Note that the choice of ζ as a variable (instead of δ or η)
is arbitrary but convenient. In the case of negligible viscous extensional effects, i.e., for η = 0, (2)
reduces to the first-order model and the system of equations to be solved for the A/C transition is
merely (5) and (6) in which η = 0. In the case of δ = η = 0 corresponding to the single long-wave
equation (3), system (5) and (6) reduces to

3iω = k4 + k2ζ + 3ik, (7a)

0 = 4k3 + 2kζ + 3i. (7b)

The non-trivial real solution of (7), with kr > 0, is

ζ
(0)
c = −

3 32/3

3


2
(
17 + 7

√
7
) ≈ −1.507, k (0)

r =
6


153
256
+

117
√

7
512

≈ 1.03, (8a)

k (0)
i = −

3


9 − 3
√

7

2 22/3 ≈ −0.32, and ω
(0)
r =

1
8

3√
3

6


10 037 + 3794
√

7 ≈ 0.94. (8b)

As anticipated, solution (8) is identical to the one obtained, not only by Brun et al. for the R-T
instability but also by Duprat et al. (2007) for the Rayleigh-Plateau instability in falling films along
fibers.

Solution of (5) and (6) that includes inertia and viscous extensional effects can now be tracked
by continuation with the software AUTO-07p, using (8) as starting solution. The same procedure
can also be applied to full second-order model (1) and the system of equations to be solved in this
case for the A/C transition is given in Appendix B.

The set of parameters (ζ , δ, η) used so far and referred to as the Shkadov scaling can be con-
verted to a set of more common parameters, namely (Ct, Re, We), corresponding to the inclination
number, the Reynolds number, and the Weber number, respectively. The two sets of parameters are
related by the following expressions:

ζ =
Ct

We1/3 , δ =
3Re

We1/3 , and η =
1

We2/3 , (9)
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whose parameters depend in turn on the physical quantities as follows:

Ct = cotβ, Re =
g sinβh3

N

3ν2 , and We =
γ

ρgh2
N sinβ

, (10)

where ν is the kinematic viscosity, γ is the surface tension, and ρ is the density of the liquid. The
range 0 < β < π/2, i.e., Ct > 0, corresponds to the situation for which the hydrostatic force sta-
bilises the flow, while the range π/2 < β < π, i.e., Ct < 0, corresponds to the situation considered in
this paper for which the hydrostatic force destabilizes the flow through the R-T mechanism.

IV. RESULTS

A. Shkadov scaling

Results for various values of η are plotted in Figure 3. The solid lines correspond to the
transition between absolute instability on the left of the curves and convective instability of the
right of the curves, as calculated with the full second-order model. The dotted lines are the same
transitions calculated with the simplified second-order model. The dotted-dashed curve corresponds
to the first-order model, i.e., the simplified model with η = 0, which slightly differs from the full
second-order model with η = 0 as the latter still accounts for second-order inertia effects.

FIG. 3. (Top) Convective/absolute transition for various values of η and for the different models considered in this paper. See
details in text for the bullet points. (Bottom) Corresponding values of the wavenumber kr calculated with the full second-order
model.
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Bullet points in Figure 3 indicate three particular values of ζ as follows:

• ζA ≈ −1.507 is solution (8b) obtained in the limit of no inertia and no viscous extensional
effects;

• ζB ≈ −1.453 is the limiting value below which the film is absolutely unstable for δ = 0 pro-
vided ηB ≥ 0.63;

• ζC ≈ −1.22 is the limiting value above which the film cannot be absolutely unstable, whatever
the values of δ and η.

The differences between the simplified and the full second-order models are negligible for
δ < 1 but increase with δ. As compared to the first-order model, viscous extensional stresses play an
important role in stabilizing the flow by displacing to lower values of ζ the A/C transition. Similarly,
comparing the first-order model with the single long-wave equation shows a crucial influence of
inertia effect, which is non-monotonous for η < ηB = 0.63, i.e., destabilizing for low δ and stabi-
lizing for large δ, whereas it is always stabilizing for η > ηB. In other words, the turning points in
some of the curves of Figure 3 indicate the presence of an absolutely unstable window in a range of
δ that depends on ζ and η but can only exist for 0 < η < ηB and ζB < ζ < ζC.

The bottom plot in Figure 3 shows the values of the wavenumber kr corresponding to the
A/C transition and calculated only with the full second-order model. For a practical point of view,
the dimensional wavelength can be calculated as λr = 2πWe1/3hN/kr , which is in general in the
millimetre range.

For an inclined plate with the liquid flowing on its underside, both the driving force entraining
the liquid to flow along the plate and the hydrostatic destabilising force are induced by gravity
and antagonistically depend on the inclination angle β. Additionally, the driving force can be
measured by two different ways, depending on the imposed conservation condition, namely, (i) the
imposed film thickness and (ii) the imposed flow rate. These conditions are separately examined in
Subsections IV B and IV C.

B. Imposed film thickness

The case of an imposed film thickness has recently been studied by Brun et al.,9 who poured
a layer of liquid on top of a glass plate and then, after a significantly long resting time, inverted
the plate up to a given angle. To be consistent with their study, the same set of independent param-
eters is adopted in this section, namely, α for the plate inclination taken from the vertical (see
Fig. 1) and the initial flat film thickness parameter h∗ = hN/ℓc, where ℓc =


γ/ρg is the capillary

length. Additionally, the Kapitza number is defined as Ka = (ℓc/ℓν)2, where ℓν = (ν2/g)1/3 is the
viscous/gravity length, hence Ka = γ/(ρg1/3ν4/3). Using the definitions provided in (9) and (10), as
well as β = α + π/2, yields the following relations:

ζ = −h2/3
∗ (cos α)1/3 tan α, δ = h11/3

∗ (cos α)4/3Ka3/2, and η = h4/3
∗ (cos α)2/3. (11)

The limit of no inertia and no viscous extensional stress, as considered by Brun et al.,9 is recovered
by rearranging the first relation in (11) and using the solution in (8),

tan α(0)
c


sin α(0)

c =

���ζ
(0)
c
���
3/2

h∗
≈ 1.8495

h∗
. (12)

To account for the effect of inertia, the value of the Kapitza number needs to be specified. Castor
oil, as measured by Brun et al.,9 has a capillary length of ℓc = 1.91 mm and a viscous length of
ℓν = 4.7 mm, with the kinematic viscosity of 0.001 m2/s at 20 ◦C. This yields a Kapitza number of
Ka = 0.17, which is in the lower range of common values for this number.

Figure 4 shows the critical angle for the A/C instability transition versus the dimensionless
thickness h∗ for various values of the Kapitza number. Obviously, and for any fixed value of h∗,
the film is absolutely unstable as the plate inclination tends to the horizontal, i.e., α → 90◦, while
there is always a critical angle αc below which the system becomes convectively unstable. This
critical angle does not vary monotonically with h∗, which constitutes one of the main findings of this
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FIG. 4. Critical inclination angle αc for convective/absolute transition for various values of Ka as obtained with the
full-second-order model (solid lines). The black dot indicates the position of the minimum in the case of Ka = 0. The curve
corresponding to castor oil is in dotted-dashed line and the one corresponding to (12) obtained with the single long-wave
equation, i.e., α(0)

c , is in dashed line.

work. For small values of h∗, i.e., on the left of the curve minimum, αc decreases with increasing
h∗ showing a “destabilizing” effect of the flow, in the sense that the region of absolute instability
is enlarged. For larger values of h∗, i.e., at the right of the curve minimum, αc increases with
h∗, which in turn shows a “stabilizing” effect of the flow, in the sense that the region of absolute
instability is reduced, even though this is less pronounced for the lowest values of the Kapitza
number.

The antagonist role of the flow can be understood, for instance, by fixing the inclination angle
and increasing h∗ from zero. Small thickness triggers small amplitude waves, which can prevent the
absolute instability to occur, whereas larger thickness triggers larger amplitude waves, which can
reinforce the R-T instability mechanism and bring the system into the absolute instability region.
As the thickness is still increased, the flow dominates the system again and brings it back into the
convective instability region.

Additionally, the critical angle strongly depends on the Kapitza number. Increasing the Kapitza
number decreases the region of absolute instability and sharpens the curves around their minima.
These minima are also shifted to lower values of the film thickness with increasing Kapitza num-
ber, especially evident for Ka = 1000, which is in the order of magnitude of low viscous fluids
and/or high surface tension, like water. Remarkably, in the limit of Ka → 0, this minimum critical
angle does not go below an angle of α = 57.3875◦ ≈ 57.4◦, which is indicated by the black dot
in Fig. 4. This result represents a fundamental difference with the results of Brun et al.9 in the
limit of no-inertia, which does not show any minimum (see dashed line in Fig. 4). In our scaling,
and as shown in (11), Ka = 0 indeed corresponds to no inertia effects since it cancels out the
reduced Reynolds number δ. Yet viscous extensional stress has already a strong influence in this
no-inertia limit, as it prevents alone the flow to be absolutely unstable below the curve minimum
(black dot).

The curve corresponding to castor oil is represented in dotted-dashed line in Fig. 4, showing
that the film cannot be absolutely unstable for an angle from the vertical below approximately 58◦,
which agrees with the experimental observations of Brun et al.9 The range of thickness covered
by the experiment of Brun et al. is 0.3 ≤ h∗ ≤ 1.2, in which (12) remains a fair approximation.
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However, and as already mentioned, for h∗ > 1.2 inertia and viscous extensional effects become
significant, which makes approximation (12) unusable in this range.

C. Imposed flow rate

For a film fed at a constant flow rate qN , the relevant parameter is the Reynolds number, defined
in (10) and equivalently equal to Re = qN/ν. Following the same procedure as in Sec. IV B, the
relations between the parameters become

ζ = − (3Re)2/9 sin α
Ka1/3(cos α)8/9 , δ =

(3Re)11/9(cos α)1/9

Ka1/3 , and η =
(3Re)4/9(cos α)2/9

Ka2/3 . (13)

The limit of no inertia and no viscous extensional stress corresponds to

(tanα(0)
c )4


sinα(0)

c =
���ζ

(0)
c
���
9/2 Ka3/2

3Re
≈ 2.1086

Ka3/2

Re
. (14)

Figure 5 shows the critical angle for the A/C instability transition versus the Reynolds number
Re for various values of Ka. The branches on the left of the minima for each curve (see black dots)
can fairly be approximated by (14) (not shown) but again the curve minimum and the right branches
are not captured by this approximation. At high Reynolds numbers, the convective transport domi-
nates the growth of the R-T instability for which the film flow is convectively unstable. In the high
Reynolds number regime, the Kapitza number (surface tension) has less significant influence, for
which the curves for the various values of Ka more or less converge. Decreasing the flow rate in this
range results also in a reduction of the propagation speed, owing to the strong correlation between
wave velocity and surface velocity. As a consequence, the convective transport of the R-T instability
is low. In order to remain in the regime of convective instability, the destabilizing component of
gravity g cos α needs to be reduced, decreasing the growth of R-T instability. Thus, the value of
the critical angle reduces with the decrease of the Reynolds number down to the minimum value

FIG. 5. Convective/absolute transition for various values of Ka as obtained with the full-second-order model. The thick solid
line for Ka = 1 is to exemplify that the convective instability region below the curve is dominated by surface tension on the
left and by inertia on the right, while the region above the curve corresponds to the absolute instability. These observations
apply to all other curves. The black dots indicate the position of αmin

c for each Ka, the locus of which is continued in Fig. 6(a).
The vertical dotted-dashed line indicates the transition for turbulence, which lies outside the range of validity of the present
theory.
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of the critical inclination angle. Below this value, surface tension is the main mechanism of flow
stabilization as seen by the significant influence of Kapitza number.

Based on these observations, and as exemplified in the case of Ka = 1 in Fig. 5 (thick solid
line), one can state that the region of convective instability on the left of the minimum value of the
critical angle is dominated by surface tension while the region of convective instability which lies
on the right of this minimum is dominated by inertia. The region of absolute instability in between is
dominated by the negative hydrostatic forces responsible for the R-T instability.

We have drawn in Fig. 5 a vertical dotted-dashed line that indicates the transition between
laminar and turbulent falling films,28 which is approximately considered to be at Re ≈ 300. Even
though we have plotted the A/C transition curve up to Re = 1000 in order to show that all curves
asymptotically tend to α = 90◦, these curves obviously lay outside the domain of validity of the
low-dimensional models that have been used in this work. This said, and as already mentioned,
comparisons of linear stability curves between the full second-order model and the Orr-Sommerfeld
equation show excellent agreement for Re = O(100),3,26 which justifies our computations up to
Reynolds numbers of the same order of magnitude.

D. Minimum critical angle

In Subsections IV B and IV C, Figs. 4 and 5 showed that for each value of the Kapitza number
a minimum critical angle αmin

c is given below which the falling film is always convectively un-
stable, independently of the conservation condition (constant flow rate or constant film thickness).
Figure 6(a) shows the locus of this minimum critical angle in the entire range of Kapitza numbers.
Now, above the minimum critical angle, the film can either be convectively or absolutely unstable,

FIG. 6. Minimum critical angle between absolute and convective instabilities, in function of the Kapitza number (a), along
which the corresponding values of the dimensionless film thickness (b) or alternatively the Reynolds number (c). In (c), thick
dotted lines are fitted power trends together with their expressions.
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depending on the flow parameters, i.e., h∗ or Re. What we have learned from Fig. 5 is that for
αc > αmin

c there is a region of absolute instability that separates a region of convective instability
dominated by surface tension and a region of convective instability dominated by inertia. Plotting in
Figs. 6(b) and 6(c) the positions hmin

∗ and Remin, respectively, corresponding to the minimum critical
angle allows to discriminate in the parameter space between these two regions.

In Fig. 6(a), the minimum critical angles are indicated by black dots for castor oil (Ka = 0.17),
silicon oil 20 times more viscous than water at 25 ◦C (Ka = 17.8), water at 25 ◦C (Ka = 3923), and
liquid helium at 5 K (Ka = 8.6 × 106). As already pointed out, the most salient feature is that there
is an angle αmin

c
�
Ka→0 = 57.3875◦ obtained in the limit of Ka → 0 corresponding to an infinitely

viscous fluid below which none of the liquid film systems can be absolutely unstable. For real
liquids of finite viscosity, such as for 20 cP silicon oil, this minimum critical angle is 69◦, for water
it is 84.5◦, and for liquid helium it is 89◦.

V. DISCUSSION

Our approach for computing the A/C instability transition curves has implicitly consisted in
tracking by continuation of the dominant saddle point in the complex plane (kr , ki), which is the
one having the highest growth rate,29 namely, the one satisfying the so-called “collision criterion”
established by Briggs.30 The starting saddle point for the tracking method was the one obtained
analytically in the limit of no inertia (δ → 0) and no viscous extensional stress (η → 0) as given by
(8). The symmetry properties of the dispersion relation for single long-wave equation (7a) ensure
the obtained saddle-point to be the only viable candidate. This is no longer true for the disper-
sion relations of the simplified and the full second-order models, i.e., (5) and (B1a), respectively.

FIG. 7. Verification of the current theory using direct numerical simulations of the impulse response computed with Gerris
for Ka = 100: (a) comparison to the transition curve obtained with the full second-order model, (b) spatio-temporal diagram
showing an absolute instability behaviour for α = 85◦, Re= 10, and (c) a convective instability behaviour for α = 70◦, Re= 10.
The dashed lines in (b) and (c) show the edges of the wavepacket (see text for details).
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There are other saddle points and we have therefore no guarantee that the one found by continu-
ation is effectively the dominant one in the entire parameter domain explored in this study. Some
examples in the literature indeed show that misleading or subdominant saddle points had to be
disregarded.31–34

Instead of looking at the structure of the spatial branches throughout the entire continuation
procedure, which represents a tedious task, we propose here another method to verify that the
A/C transition identified in this paper corresponds to the dominant saddle point. For that purpose,
we compute the system impulse response using direct numerical simulation. More specifically, we
employ Gerris which is an open-source software that uses the VOF method and adaptive refinement
of quadtree meshes.35 The initial state of our computations is a uniform film in a long periodic
domain with a small amplitude sharp Gaussian pulse situated at one forth of the domain length. We
adjust the pulse amplitude for each simulation in order to visualize the evolution of the wave packet.
Even though we cannot distinguish with this approach between the linear and the nonlinear impulse
responses of the flow, these properties coincide with each other most of the time,36 as it is assumed
to be the case here.

Figure 7(a) compares for a fixed Kapitza number the transition curve obtained with the full
second-order model to the impulse response behaviour of the flow computed with Gerris. The
agreement is convincing especially in the sense that it captures well the minimum of the A/C
transition curve, which is the main difference between our theory and the one by Brun et al.9 Very
close to the curve, it becomes difficult to conclude on the absolute/convective nature of the response
because the edges of the wavepacket oscillate (see Figures 7(b) and 7(c)). These oscillations are
simply due to the way the edges (dashed lines) are constructed, based on the following threshold
criterion: |h − 1| = A, with 5 × 10−3 < A < 5 × 10−2 adjusted for the different inclination angles
and Reynolds numbers. Notice that the analysis has been restricted to the range 1 < Re < 60. For
Re < 1, the instability growth rate is very low which means long computational time. On the con-
trary for Re > 60, the instability growth rate is very large and numerical noise is rapidly amplified.
Note that for Re < 1, the transition curve obtained with the full second-order model is very close to
the one obtained with the single long-wave equation,9 which is a proof by itself that the dominant
saddle-point is well captured in this range.

VI. CONCLUSIONS

This study examined the critical inclination angle for the transition from absolute to convective
instability of falling liquid films flowing on the underside of a plate. The results are based on the
weighted integral boundary layer models which has been proven by many studies to give reliable
results in the laminar regime of falling liquid films. The transition between the absolute and convec-
tive instabilities is obtained by tracking the marginal mode that is neither amplified nor damped and
located at a fixed position in space. Tracking the transition for the case of a constant film thickness,
a strong dependency on Kapitza number has been obtained. Furthermore, a significant “stabilizing”
effect of viscous extensional stress has been identified, especially for a dimensionless film thickness
larger than unity. If the flow rate is imposed as a conservation condition, the stabilizing mecha-
nism of surface tension (dependent on Kapitza number) becomes apparent for low values of the
Reynolds number. Contrarily, for high Reynolds number, the convective transport (hence inertia
effects) dominates such that surface tension is of minor importance.

The A/C transition has been found by continuation of the most dominant saddle point from the
limit of no inertia and no viscous extensional stress, i.e., by continuously increasing δ and η from
zero. The validity of this approach has been checked by computing the system impulse response
using direct numerical simulations. The agreement for the A/C transition is convincing over the
entire range of relevant Reynolds numbers.

Finally, a minimum critical angle depending on the Kapitza number has been identified which
is independent from the conservation condition (imposed flow rate or imposed film thickness).
Since the Kapitza number depends on the fluid properties and on gravity only, each fluid has its
own minimum critical angle on the earth. This minimum critical angle decreases with decreasing
Kapitza number, such that a higher gravitational force driving the flow is necessary for low Kapitza
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number fluids. Contrarily, high Kapitza number fluids such as Water (Ka = 3923 at 20 ◦C), where
surface tension stabilizes the flow, allow for high inclination angles of approximately 85◦ (from
the vertical) before the instability changes from convective to absolute. This might have a practical
interest in architectural applications as a condensed film forming on a ceiling would never be
absolutely unstable if the ceiling is inclined by an angle of about 5◦ (from the horizontal), whatever
the film thickness. This is the reason why the ceiling of hammams is always curved. The determi-
nation of the critical angle in falling films evaporators that often have some section with negative
hydrostatic forces could help in enhancing the design of these devices and avoid clogging.
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APPENDIX A: FULL SECOND-ORDER MODEL

Following the weighted residuals methodology detailed, e.g., in Kalliadasis et al.,3 and using
the two-dimensional system of reference as defined in Fig. 1(a), the streamwise velocity field is
projected onto the following polynomials:

F0 = ȳ − 1
2
ȳ2, (A1a)

F1 = ȳ − 17
6
ȳ2 +

7
3
ȳ3 − 7

12
ȳ4, (A1b)

F2 = ȳ − 13
2
ȳ2 +

57
4
ȳ3 − 111

8
ȳ4 +

99
16

ȳ5 − 33
32

ȳ6. (A1c)

The streamwise velocity distribution thus reads

u =
3
h
(q − s1 − s2) g0( ȳ) + 45

s1

h
g1( ȳ) + 210

s2

h
g2( ȳ), (A2)

where ȳ = y/h and the flow rate q(x, t) =  h(x)
0 u(x, y, t) dy appears with two corrections, namely,

s1 and s2.
Applying the Galerkin method, which consists of integrating the classical boundary-layer

equations across the film, substituting projections (A2) into the integrated equations, taking test
functions (A1) as weight functions, and using the no-slip boundary condition at the wall and the
stress-free condition at the interface yield the full second-order model given in (1). Note that (1b)
is different than the equation for q given in Ruyer-Quil and Manneville23 because the terms δ∂ts1
and δ∂ts2 have not been substituted here by (1c) and (1d), respectively, in order to enable the
straightforward adiabatic elimination of s1 and s2 leading to the simplified second-order model.

APPENDIX B: SYSTEM OF EQUATIONS FOR THE A/C TRANSITION WITH THE FULL
SECOND-ORDER MODEL

0 = 3iω +
18δω2
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