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Microfluidic devices involving gas–liquid two-phase flows 
in microchannels are widely encountered even though the 
gas–liquid mass exchange is scarcely addressed in pub-
lished works.

Gas–liquid two-phase flow patterns in microchannels 
were investigated by Cubaud and Ho (2004) and by Kim 
et al. (2011) in square and rectangular microchannels, 
respectively. In both works, five regimes were reported, 
depending on the gas and liquid superficial velocities in 
the microchannel, and named after Cubaud and Ho (2004) 
as bubbly, wedging, slug, annular and dry flows. Similar 
regimes were observed in circular channels of 1 mm diam-
eter by Triplett et al. (1999a, b) and in circular microchan-
nels of 100 μm diameter by Kawahara et al. (2002). How-
ever, in the experimental setup of Kawahara et al. (2002), 
the bubbly flow regime could not be observed.

In this paper, we exclusively investigate the bubbly flow 
regime in square and circular microchannels. The bubbly 
flow corresponds to discrete spherical bubbles, with diam-
eters smaller than the microchannel hydraulic diameter, 
moving in a continuous liquid phase. The transition from 
the slug flow to the bubbly flow was observed in the experi-
ments of Cubaud et al. (2012), when investigating the dis-
solution of CO2 bubbles in water in a nearly square micro-
channel of height hC = 100 μm and width wC = 87 μm. In 
the work of Cubaud et al. (2012), the bubble size dC (meas-
ured between the tips of the two end-caps of the bubble), its 
velocity VB and the total superficial velocity JA = QL+QG

hCwC
 

were evaluated along the microchannel, QL and QG being 
the liquid and gas volumetric flow rates. A correlation 
to express the ratio VB/JA as a function of dC/wC was 
proposed:

(1)

VB

JA
= 1+ 1.1 exp

[

−
(

dC

wC

)2
]

.

Abstract In this paper, the dynamics of bubbles and the 
mass transfer between bubbles and the surrounding liquid 
in square and circular microchannels are investigated, in 
the bubbly flow regime. For this purpose, a computational 
fluid dynamics analysis is used to carry out numerical simu-
lations of the liquid flow and the mass transport around a 
spherical bubble in a square or a circular microchannel, for 
a stress-free or a rigid gas–liquid interface. The correspond-
ing results are consolidated into correlations to calculate the 
bubble velocity and the interfacial rate of mass transfer as 
functions of the control parameters of the system. For each 
considered case, the flow structure, the concentration field 
around the bubble and the local interfacial rate of mass 
transfer are presented and shown to be intricately related.

Keywords Microfluidics · Absorption · Square 
microchannel  · Circular microchannel · Bubbles · 
Spherical bubbles · CFD

1 Introduction

Nowadays, microfluidic devices are increasingly used 
because they enable reaching higher yields than classical 
processes, having a deep control on the operating condi-
tions, employing continuous processes and lowering the 
risk due to the use of high quantity of hazardous materi-
als (Song et al. 2006; Pamme 2007; Kashid et al. 2011). 
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To the best of our knowledge, such a correlation to express 
VB/JA has never been challenged numerically, which is one 
of the aims of the present work.

The mass transfer between gas bubbles in a microchan-
nel and the surrounding liquid was studied in capillaries 
and in square and rectangular microchannels by Kashid 
et al. (2011), Sun and Cubaud (2011), Cubaud et al. (2012) 
and Shim et al. (2014). These works mainly focused on the 
slug flow regime. The transition from the slug flow to the 
bubbly flow was observed in the experiments of Cubaud 
et al. (2012), as mentioned above, but the mass transfer 
between the bubbles and the surrounding liquid has not 
been characterized in the bubbly flow regime.

Additionally, the presence of surface-active contami-
nants has a great influence on the dynamics and morphol-
ogy of a bubble in a microchannel, because they modify the 
boundary conditions at the bubble-liquid interface (Haber-
man and Morton 1953; Clift et al. 1978). Indeed, the pres-
ence of surface-active contaminants “rigidifies” the bubble-
liquid interface and can lead to a bubble behavior similar to 
a rigid body.

In this work, the dynamics of spherical bubbles in square 
and circular microchannels and the mass transfer between 
these bubbles and the surrounding liquid are investigated 
in the bubbly flow regime. As detailed hereafter, two kinds 
of boundary conditions are considered on the bubble–liq-
uid interface (stress-free and no-slip boundary conditions). 
In Sect. 2, the problem is presented in terms of the geom-
etry, the modeling assumptions, the equations, the bound-
ary conditions and the dimensional analysis. In Sect. 3, a 
numerical procedure is developed in order to solve the 
described problem. In Sect. 4, the results of this numerical 
procedure are used to establish correlations expressing the 
velocity of the bubbles and the mass transfer rate between 
these bubbles and the surrounding liquid as functions of 
the control parameters of the system. These results are also 
used to characterize the flow and the mass transport in the 
vicinity of the bubbles. Conclusions and perspectives are 
presented in Sect. 5.

2  Problem statement

2.1  Geometry of the microchannel

Gas–liquid bubbly flows in a square microchannel of length 
Lc and width w and in a circular microchannel of length 
Lc and diameter a are considered. For each microchan-
nel, a model segment of length L containing, at its center, 
a single spherical bubble of diameter d is studied. Taking 
benefit of the symmetries, only a quarter of the segment of 
the square microchannel is analyzed and the analysis of the 

flow and the mass transport in the segment of the circular 
microchannel is reduced to a two-dimensional axisymmet-
ric problem. Sketch of the square or circular microchannel 
and the model segments of the square (a) and the circular 
(b) microchannels are presented in Fig. 1, including labels 
of the boundaries.

In a laboratory reference frame (x̃, ỹ, z̃), the considered 
bubble moves along the microchannel at a velocity VB in 
the positive x̃ direction in a liquid moving in the same 
direction. QL and QG are the liquid and gas volumetric flow 
rates in the microchannel, respectively. The total superficial 
velocity is defined as JA = (QL + QG)/AΣ, with AΣ the 
area of the cross section of the microchannel—equal to w2 
in the case of the square microchannel and to πa2/4 in the 
case of the circular microchannel.

In a reference frame (x, y, z) attached to the center of the 
bubble, the walls of the microchannel move at a velocity 
VB in the positive x direction and the liquid enters the con-
sidered segment of the microchannel at an average velocity 
VB − JA in the positive x direction.

2.2  Modeling assumptions

An uncompressible Newtonian liquid is considered. It is 
assumed that the mass transfer between the bubble and the 
liquid does not affect the density and the viscosity of the 
liquid. They can therefore be considered as homogeneous 
and time independent. It is also assumed that the bubble–
liquid mass transfer is limited by phenomena taking place 
in the liquid phase. These are common assumptions in the 
modeling of bubble–liquid mass transfer (see for instance 
Ponoth and McLaughlin 2000; Dani et al. 2006; Wylock 
et al. 2010; Figueroa-Espinoza and Legendre 2010). These 
two assumptions are in particular valid when the transferred 
species has a low solubility in the liquid phase (Coulson 
and Richardson 1991).

The bubble is assumed to be spherical. The validity of 
this assumption is discussed a posteriori in Sect. 4.2.

Two limiting cases are considered regarding the gas–liq-
uid interface: a rigid interface (i.e., the bubble behaves as 
a solid sphere) and a stress-free interface (i.e., no viscous 
stress is exerted by the gas on the liquid). The considera-
tion of these two limiting cases is common in the modeling 
of bubble–liquid mass transfer (see for instance Magnau-
det et al. 1995; Ponoth and McLaughlin 2000; Dani et al. 
2006; Wylock et al. 2010; Figueroa-Espinoza and Legendre 
2010). Note that a stress-free interface corresponds to a 
clean interface, with a gas to liquid viscosity ratio tending 
to zero (see Haut and Colinet 2005).

Considering these different elements, it appears that, in 
order to characterize the flow field around the bubble and 
the mass transfer between the bubble and the surrounding 
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liquid, the momentum and mass transport equations can be 
solved in the liquid phase only. This assumption is often 
referred to as the one-sided approach (see for instance Haut 
and Colinet 2005).

In order to be able to take benefit of the symmetry of the 
studied system in its modeling (as mentioned in the previous 
section), it is necessary to assume that the bubble is at the 
center of the microchannel and that no vortex shedding occurs 
in the wake of the bubble. The validity of the former assump-
tion is discussed in Sect. 5 and of the latter one in Sect. 4.2. 
Furthermore, the flow of the liquid and the mass transport in 
the liquid are considered quasi-steady, i.e., the time deriva-
tive in the transport equations in the liquid phase can be set 
to zero. Such an assumption is valid if the time needed for 
the establishment of the steady velocity and concentration 
fields around the bubble in the microchannel (≈d/(VB − JA)) 
is much lower than the characteristic time for the change of 
the bubble size along the microchannel (≈d/kl), where kl is 
the mass transfer coefficient between the bubble and the liq-
uid (see Eq. 10). As the mass transfer coefficient across the 

bubble-liquid interface kl is not known a priori, the validity of 
this hypothesis is discussed a posteriori in Sect. 4.1.2.

2.3  Equations

According to the assumptions stated in Sect. 2.2, the liquid 
flow and the mass transport around the bubble in the model 
microchannel segments of Fig. 1 are analyzed by solving, 
in the reference frame (x, y, z) attached to the center of the 
bubble, the continuity, the Navier–Stokes and the mass 
transport equations, in a stationary state:

with ∇ the gradient operator (m−1), v the liquid velocity 
vector (ms−1), ρ the density of the liquid (kgm−3), p the 
pressure in the liquid phase (Pa), ¯̄T = 1/2µ(∇v + (∇v)T ) 

(2)∇ · v = 0,

(3)ρ(v ·∇)v = −∇p+∇ · ¯̄T = −∇p+ µ∇ ·∇v,

(4)v ·∇C = D∇ ·∇C,

Fig. 1  (Top) Sketch of the square or circular microchannel (Bottom) 
a model segment of the square microchannel and b model segment 
of the circular microchannel, both represented in a reference frame 

attached to the center of the bubble (x, y, z). The laboratory reference 
frame (x̃, ỹ, z̃) is also represented (see text for other details)

Author's personal copy
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the viscous stress tensor (Pa), µ the dynamic viscosity of 
the liquid (Pa s), C the concentration of the dissolved gas in 
the liquid phase (molm−3) and D the corresponding diffu-
sion coefficient (m2 s−1).

For the square microchannel, the three-dimensional ver-
sion of Eqs. 2–4 is solved, while for the circular microchan-
nel, the two-dimensional axisymmetric version of Eqs. 2–4 
is solved.

2.4  Boundary conditions

The boundary conditions for the liquid flow and the mass 
transport are presented in Table 1 for the square and the cir-
cular microchannels.

On the bubble surface, two cases are considered: a 
stress-free interface and a rigid interface, as discussed in 
the modeling assumptions. The boundary conditions at the 
stress-free interface are given by

where n is the normal vector to the bubble surface point-
ing outward the liquid phase and t1 and t2 are the tangential 
vectors to the bubble surface along the principal directions 
of the bubble surface. These boundary conditions are usu-
ally referred to as a “stress-free condition.” The boundary 
conditions at the rigid interface are given by

These boundary conditions are usually referred to as a 
“no-slip condition.” Thus, four cases are considered in this 

(5)











v · n = 0,

( ¯̄T · n) · t1 = 0,

( ¯̄T · n) · t2 = 0,

(6)







v · n = 0,

v · t1 = 0,

v · t2 = 0.

work, a bubble with either a stress-free or a rigid interface 
in a square microchannel and a bubble with either a stress-
free or a rigid interface in a circular microchannel.

Pseudo-periodic boundary conditions are used for the IN 
and the OUT planes defined in Fig. 1:

where �P and �C are, respectively, the pressure and the 
concentration differences between IN and OUT, and vx is 
the x-component of v; �P and �C are unknown. By using 
such pseudo-periodic conditions, a chain of bubbles sepa-
rated by a distance L within the microchannels is actually 
considered.

2.5  Dimensional analysis

Three dimensionless control parameters can be built to 
define the system: the ratio between the bubble diameter 
and the hydraulic diameter of the microchannel, d/dh, the 
Reynolds number based on dh and JA, ReJA = ρdhJA

µ
, and 

the Schmidt number, Sc = µ
ρD

. The hydraulic diameter is 
used in order to unify the study of the square and circu-
lar microchannels. Indeed, dh is equal to w for the square 
microchannel and to a for the circular microchannel. The 
considered ranges of these three dimensionless parameters 
are presented in Table 2 and cover a wide range of realis-
tic values for usual bubbly flows in microchannels. In order 
to cover these ranges of the dimensionless control param-
eters, the values of d, JA and D are changed according to 
Table 2 and the values of dh, µ and ρ are fixed to 200 μm, 
0.5513 mPa s and 791 kgm−3, respectively.

(7)























v|x=−L/2
= v|x=L/2

,

p|x=−L/2
= p|x=L/2

+�P,

C|x=−L/2
= C|x=L/2

+�C,
1
AΣ

�

IN vx dS = VB − JA,
1
AΣ

�

IN C dS = Cbulk,

Table 1  Boundary conditions for the liquid flow and the mass transport for the square and the circular microchannels, with the boundaries 
labeled in Fig. 1

Boundaries Boundary conditions for the liquid flow Boundary conditions for the mass transport

bubble (see Eqs. 5 and 6) Spherical and stationary surface  
with a stress-free condition or a no-slip condition

Imposed interfacial concentration, denoted Cint

wall v = (VB, 0, 0) No mass flux across the wall: n ·∇C = 0

sym Symmetry planes Symmetry planes

IN and OUT (see Eq. 7) Pseudo-periodic conditions with an  
imposed mass flow rate equal to (VB − JA)ρAΣ

Pseudo-periodic conditions with an imposed average 
concentration only on the plane IN, denoted Cbulk

axisym Symmetry axis Symmetry axis

Table 2  Ranges of dimensional 
and dimensionless control 
parameters

Dimensional control parameters Dimensionless control parameters
30µm ≤ d ≤ 150µm 0.15 ≤ d/dh ≤ 0.75
0.02 m s−1 ≤ JA ≤ 0.1m s−1 5.74 ≤ ReJA

≤ 28.7
1.26 10−9m2 s−1 ≤ D ≤ 4.58 10 x −9m2 s−1 152 ≤ Sc ≤ 551.3x

Author's personal copy
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Two dimensionless variables are defined for the post-
processing of the numerical simulations: the ratio of the 
bubble velocity to the total superficial velocity, VB/JA, 
and the Sherwood number, Sh = kld

D
, corresponding to the 

dimensionless mass transfer coefficient. In this work, cor-
relations are established in order to express VB/JA and Sh 
as functions of the three dimensionless control parameters 
d/dh, ReJA and Sc:

3  Numerical procedure

3.1  Grid

Based on the geometries of the square and circular micro-
channel segments described in Fig. 1, grids are generated 
for each value of d/dh in both types of microchannels, 
using the software Gambit 2.4. The three-dimensional 
geometry and the labels of the edges and volumes of the 
square microchannel are shown in Fig. 2. The mesh is 
refined around the bubble and next to the walls to ensure 
that the diffusion boundary layers are correctly captured. 
For this purpose, an estimation of the thicknesses of the dif-
fusion boundary layers at the wall (δCw) and at the bubble 
surface (δCb) can be calculated using δCw ∼ dh/

√

ReJASc 

(8)
VB

JA
= f1

(

d

dh
, ReJA

)

,

(9)Sh = f2

(

d

dh
, ReJA , Sc

)

.

and δCb ∼ d/
√
Re∞Sc with Re∞ = ρ(VB − JA)d/µ. For a 

given d/dh, in order to evaluate the smallest δCw and δCb in 
all the cases considered in this work, JA is taken equal to 
its maximum value of 0.1m s−1 and VB is taken equal to 
2.1JA (see Eqs. 12–15 in Sect. 4.1.1). At least four layers 
of cells are placed in the boundary layers. It is a common 
practice in the numerical simulation of bubble–liquid mass 
transfer (see for instance Figueroa-Espinoza and Legendre 
2010). The details of the meshing procedure in the case of 
the square microchannel are provided in “Square micro-
channel” in Appendix 1.

The two-dimensional geometry and the labels of the 
edges and surfaces of the circular microchannel are shown 
in Fig. 3. The same labels as in the case of the square 
microchannel are used for the edges because these edges 
have the same length and mesh as in the case of the square 
microchannel. Refined zones are again used around the 
bubble and next to the walls to ensure that the diffusion 
boundary layers are correctly captured. The details of the 
meshing procedure in the case of the circular microchan-
nel are provided in “Circular microchannel” in Appendix 
1.

3.2  Solver

For the square microchannel, the equations and bound-
ary conditions defining the problem are solved using the 
three-dimensional version of the solver Ansys Fluent 
14.5 (referred to as Fluent hereafter) with double preci-
sion. This solver relies on the finite volume method. For 

Fig. 2  a Three-dimensional geometry and labels of the edges and volumes for the square microchannel segment, b zoom on the refined zone 
around the bubble (cc includes all the circular arcs of Vol5). Labels refer to “Square microchannel” in Appendix 1
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the circular microchannel, the two-dimensional axisym-
metric version of the solver with double precision is used. 
For both types of microchannels, second-order upwind 
discretization schemes are selected for the pressure, the 
momentum and the concentration, as used, for instance, in 
the work of Figueroa-Espinoza and Legendre (2010). The 
pressure–velocity coupling algorithm used is the SIMPLE 
one, and the gradients are evaluated using the least square 
cell-based method. The under-relaxation factors are kept 
at their default values. It has been checked that lowering 
any of these factors does not lead to a relative modifica-
tion larger than 0.01 % of the determined x-component 
of the force exerted by the liquid on the bubble surface 
(Fx) and of the determined kl. The iterative procedure 
is stopped when a relative variation of the computed Fx 
and kl lower than 0.001 % is observed in 100 iterations. 
It has been checked that the obtained results are mesh 
independent.

3.3  Evaluation of VB/JA

For fixed values of the dimensional control parameters 
d and JA, VB is a priori unknown, but it appears in the 
boundary conditions of the problem. In this work, sta-
tionary transport equations are considered. It implies that 
the x-component of the force exerted by the liquid on the 
bubble surface (Fx) should be equal to zero. Therefore, to 
determine VB for given values of d and JA, two numerical 
simulations of the liquid flow are run with two different 
guesses of the bubble velocity. Fx is evaluated for these 
two numerical simulations. Then, a linear interpolation of 
Fx versus the guessed bubble velocity enables calculating 
VB, corresponding to Fx = 0. In Fig. 4, an example of the 
determination of VB is presented, in the case of the bubble 
with a stress-free interface in the square microchannel; the 
procedure is identical for the bubble with a rigid interface 
and in the circular microchannel.

It is worth mentioning that, for each simulation, the 
length L of the microchannel segment analyzed numeri-
cally is set to a value for which it is checked that when L is 
increased by 200 μm, the relative change in the determined 

VB is lower than 1 %. This procedure ensures that the value 
of VB is L-independent, even though the minimum value 
of L for which it is verified has not been systematically 
identified.

3.4  Evaluation of Sh

Once VB is evaluated for given values of d and JA, 
numerical simulations of the liquid flow and the mass 
transport around the bubble can be carried out, leading 
to the determination of the mass transfer coefficient kl as 
follows:

where Ab is the bubble surface. Knowing kl, Sh is 
calculated.

The same procedure as for VB has been applied here to 
ensure that the calculated value for Sh is L-independent. 
The corresponding value of L is found to be larger than the 
value of L used for VB, as anticipated from the large values 
of Sc (see Table 2). The final values of L for each d are 
given in Table 5.

(10)kl =
D
∫

Ab
n ·∇CdAb

πd2(Cint − Cbulk)
,

Fig. 3  Two-dimensional geometry and labels of the edges and surfaces used for the circular microchannel segment (cc includes all the circular 
arcs of S5)

Fig. 4  Example of the calculation of VB for the bubble with a  
stress-free interface in the square microchannel, with d = 50 μm and 
JA = 0.06m s−1

Author's personal copy



Microfluid Nanofluid 

1 3

3.5  Analysis of the liquid flow and the mass transport 
around the bubble

Once VB is evaluated for given values of d, JA and D, 
numerical simulations of the liquid flow and the mass trans-
port around the bubble can be carried out using the value 
of L identified in order to have Sh independent of L. These 
numerical simulations enable analyzing the velocity field 
of the liquid, the concentration field of the dissolved gas 
in the liquid phase and the distribution of the mass transfer 
rate at the bubble surface.

3.6  Comparison with the literature

In order to assess that the force exerted by the liquid on the 
bubble and the mass transfer coefficient across its interface 
are correctly evaluated using the numerical procedure pro-
posed here, the case of a bubble, approaching the unconfined 
limit, with d/dh = 0.02 in a segment of a square or a circular 
microchannel of length L/d = 200 is considered. The same 
geometries as in Fig. 1, the same equations as the ones pre-
sented in Sect. 2.3 and the same meshing method as the one 
presented in Sect. 3.1 are used. The same boundary condi-
tions as in Table 1 are used except that the pseudo-periodic 
conditions are replaced, at the plane IN, by a velocity inlet 
condition with a velocity v = (VB, 0, 0) and C = Cbulk and, at 
the plane OUT, by an outflow condition with a purely convec-
tive mass flux (n ·∇C = 0). VB is such that ρVBd/µ = 20.  
The Schmidt number of this system is chosen to be equal to 
100 or 500. Such a case is close to the case of a spherical bub-
ble moving in an infinite medium due to the negligible effect 
of the walls of the microchannel, and thus offers a possibility 
to assess the numerical procedure by comparison with well-
known results available in literature. In Table 3, simulation 

results, regarding the drag coefficient, CD = 8Fx
ρV2

Bπd
2
 in which 

Fx is evaluated numerically, and the Sherwood number, Sh, of 
this bubble, are compared with literature data. The correlation 
given in Haas et al. (1972) is based on numerical data. The 
results of Magnaudet et al. (1995) and Wylock et al. (2010) 
were obtained using a finite volume method and a finite ele-
ment method, respectively. In Clift et al. (1978), the correla-
tion for CD is given at page 112 and is based on experimen-
tal data and the correlation for Sh is given at page 121 and is 
based on numerical data. The good comparison observed in 
Table 3 between our results and literature data supports the 
validity of our numerical procedure.

4  Results and discussion

4.1  Correlations

For the ranges of the control parameters presented in 
Table 2, numerical simulations of the flow and the mass 
transport around the bubble with a stress-free interface or 
a rigid interface in the square or circular microchannel are 
performed and VB/JA and Sh are evaluated as described in 
Sects. 3.3 and 3.4. The corresponding results are provided 
in “Appendix 2” and consolidated by correlations as pre-
sented below.

4.1.1  Bubble velocity

The following correlation form is proposed to express 
VB/JA as a function of d/dh:

(11)

VB

JA
= 1+ (1+ �) exp

[

−k1

(

d

dh

)k2
]

,

Table 3  Comparison between numerical results obtained using the procedure developed in this work and numerical data and correlations avail-
able in the literature

These literature data consider a single bubble of diameter d, with either a stress-free interface or a rigid interface, rising in a liquid of infinite 
extent at a velocity VB such that ρVBd/µ = 20 and with a Schmidt number equal to 100 or 500

Microchannel (this work) Infinite medium (literature)

Square Circular Haas et al. (1972) Clift et al. (1978) Magnaudet et al. (1995) Wylock et al. (2010)

Stress-free interface

 CD 1.310 1.332 1.440 1.322 1.424

 Sh

  (Sc = 100) 39.48 39.56 39.67

  (Sc = 500) 86.31 86.47 86.82

Rigid interface

 CD 2.715 2.717 2.715 2.707 2.784

 Sh

  (Sc = 100) 16.62 16.63 16.85 16.74

  (Sc = 500) 27.69 27.71 27.90
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where k1 and k2 are fitting parameters and � is equal to 0.1 
for the square microchannel and to 0 for the circular micro-
channel. Such a correlation form is proposed for the fol-
lowing reasons:

•	 an analysis of the numerical results demonstrates that 
VB/JA does not depend significantly on ReJA (see Tables 
6, 7, 8, and 9 in “Appendix 2”);

•	 when d → 0, VB/JA → 2.1 is expected for the square 
microchannel and VB/JA → 2 is expected for the cir-
cular microchannel. Indeed, these values are the theo-
retical ratios between the maximum and the mean 
velocities of a laminar one-phase flow in a square and a 
circular channel, respectively (Bruus 2008);

•	 when d → ∞, VB/JA → 1 is expected, in the limit of 
which the bubble and the liquid move at the same veloc-
ity. Note that this limit is never reached in the bubbly 
flow regime, which requires d < dh by definition;

•	 a similar correlation given in Eq. 1 was success-
fully used for the fitting of the experimental results of 
Cubaud et al. (2012), in a nearly square microchannel.

Equation 11 is fitted to the numerical data given in 
“Appendix 2” by adjusting k1 and k2. Then, a fractional 
number close to the identified value of k2 is assigned to 
k2 and a new fit is done for obtaining the only remaining 
parameter, k1. It enables proposing the following correla-
tions for each of the four considered cases:

Note that these correlations are strictly valid for a 
chain of bubbles in the ranges of control parameters 
given in Table 2, which are 0.15 ≤ d/dh ≤ 0.75 and 
5.74 ≤ ReJA ≤ 28.7. It is observed in these correla-
tions that, when d/dh decreases, VB/JA increases in each 
case due to the decreasing influence of the walls on the 
bubbles.

(12)

Stress-free interface:

VB

JA
= 1+ 1.1 exp

[

−
(

d

dh

)5
]

(square)

(13)
VB

JA
= 1+ exp

[

−1.83

(

d

dh

)5
]

(circular)

(14)

Rigid interface:

VB

JA
= 1+ 1.1 exp

[

−1.5

(

d

dh

)9/4
]

(square)

(15)
VB

JA
= 1+ exp

[

−1.92

(

d

dh

)9/4
]

(circular)

In Fig. 5, the correlations given in Eqs. 12–15 are plot-
ted together with the numerical data given in “Appendix 2.”

The correlations to calculate VB/JA in the case of the 
square microchannel can be compared with the experimen-
tal data of Cubaud et al. (2012), as presented in Fig. 6. In the 
work of Cubaud et al. (2012), VB/JA and d are measured for 
CO2 bubbles dissolving into water in a rectangular micro-
channel of width wC and height hC, which gives dh = 2wChC

wC+hC
.  

Only the parts of the experiments where d/dh ≤ 0.75 are 
considered for comparison. Furthermore, it is assumed that 
the correlations given in Eqs. 12 and 14 (established for the 
square microchannel) are still valid for a rectangular micro-
channel, provided its aspect ratio remains close to unity as 
it is the case here with wC/hC = 0.87. As it can be seen in 
Fig. 6, the case of the bubble with a stress-free interface 
overestimates the experimental results, while the case of 
the bubble with a rigid interface underestimates them. This 

Fig. 5  Values of VB/JA computed with Eqs. 12–15 plotted together 
with the numerical results of VB/JA in the cases of the bubble with a 
stress-free or a rigid interface in the square or circular microchannel
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observation suggests that the liquid phase in the experi-
ments of Cubaud et al. (2012) could be contaminated, which 
invalidates both the stress-free and the no-slip conditions at 
the bubble surface and leads to values of VB/JA between the 
two limiting values obtained by considering these bound-
ary conditions. The bubble velocity VB is lower for a bub-
ble with a rigid interface than for a bubble of the same d/dh 
with a stress-free interface, because the friction resulting 
from the no-slip condition in the case of a bubble with a 
rigid interface slows down the bubble. The fact that VB/JA 
depends on the flow rate in the experiments but not in the 
correlations for the two limiting cases could also be attrib-
uted to the presence of contaminants, which would continu-
ously modify the boundary condition at the bubble surface 
during the bubble dissolution and hence the flow structure 
around the bubble. This crucial role of trace impurities on 
the motion of bubbles has already been shown by Ratulow-
ski and Chang (1990) in the slug flow regime. Stebe and 
Barthès-Biesel (1995) have further shown in the slug flow 
regime that the transition from a rigid to a stress-free bubble 
interface is controlled by adsorption–desorption processes, 
which are obviously present on a bubble dissolving along 
a microchannel as the surfactant concentration should vary 
with both the size of the bubble and its elapsed time inside 
the microchannel, hence with its position. Recently, Cham-
pougny et al. (2015) have also shown that the rigidity of 
a gas–liquid interface is not an intrinsic property of a sur-
factant solution, but a function of its dynamical behavior. 
These considerations are consistent with the observations of 
the results of Cubaud et al. (2012) plotted in Fig. 6, namely 
that the rigidity of the bubble surface depends on both the 
size of the bubble and the liquid flow rate. This is further 
discussed in Sect. 5.

4.1.2  Interfacial mass transfer

The following correlation form is proposed to express Sh 
as a function of d/dh, ReJA and Sc:

where k3, k4, k5 and k6 are fitting parameters and where 
Re is defined as Re = ReJA

VB
JA

d
dh

= ρVBd
µ

. Similar correla-
tions were proposed by Levich (1962) to express Sh for 
low Reynolds number flows around a single sphere with a 
stress-free or a rigid interface in an infinite medium:

The factor d/dh is included in Eq. 16 to take into account 
the wall effects.

Equation 16 is fitted to the numerical data given in 
“Appendix 2” by adjusting k3, k4, k5 and k6. Then, frac-
tional numbers close to the identified values of k4 and k5 
are assigned to k4 and k5 and a new fit is done for obtaining 
the two remaining parameters, k3 and k6. A number close to 
the identified value of k6 is then assigned to k6 and a new fit 
is done for obtaining the only remaining parameter, k3. It 
enables proposing the following correlations for each of the 
four cases of this work:

Note that these correlations are strictly valid for a chain of 
bubbles in the ranges of control parameters given in Table 2, 
which are 0.15 ≤ d/dh ≤ 0.75, 5.74 ≤ ReJA ≤ 28.7 and 
152 ≤ Sc ≤ 551.3. Nevertheless, as these correlations have 
been constructed such that Sh → 2 as d → 0 or Re → 0,  
which corresponds to the pure diffusion limit, we expect 
these correlations to be also valid for d/dh < 0.15.

(16)Sh = 2+ k3Re
k4Sck5

(

d

dh

)k6

,

(17)

Stress-free interface:

Sh = 2+ 0.6515Re
1/2

Sc
1/2 (infinitemedium)

(18)

Rigid interface:

Sh = 2+ 0.991Re1/3Sc1/3 (infinitemedium)

(19)

Stress-free interface:

Sh = 2+ 3Re1/3Sc1/3
d

dh
(square)

(20)Sh = 2+ 2Re2/5Sc2/5
d

dh
(circular)

(21)

Rigid interface:

Sh = 2+ 1.6 Re1/3Sc1/3
d

dh
(square)

(22)Sh = 2+ 1.8 Re1/3Sc1/3
d

dh
(circular)

Fig. 6  Comparison between the values of VB/JA computed with 
Eqs. 12 and 14 and the experimental data of Cubaud et al. (2012)
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In Fig. 7, the correlations given in Eqs. 19–22 are plot-
ted together with the numerical data given in “Appendix 2.”

Experimental data allowing to evaluate Sh in the bub-
bly flow regime are not available in literature, but the evo-
lution of the size of a bubble, in the bubbly flow regime, 
was monitored along a nearly square microchannel in the 
work of Cubaud et al. (2012), as already mentioned. There-
fore, in order to assess the validity of the correlations given 
in Eqs. 19 and 21, these correlations could be included 
in a model for the dissolution of spherical bubbles along 
a square microchannel in the bubbly flow regime, whose 
results for the evolution of the bubble size along the micro-
channel could then be compared with the experimental data 
of Cubaud et al. (2012). This is beyond the scope of the 
present work and is presented in a separate work (Mikae-
lian et al. 2015).

It is worth mentioning that, in the case of the bubble 
with a rigid interface, the exponents of Re and Sc in the 

correlations for Sh are the same in the square and circular 
microchannels (Eqs. 21 and 22) and in an infinite medium 
(Eq. 18), while such a parallelism is not observed in the 
case of the bubble with a stress-free interface. For the bub-
ble with a stress-free interface, if only the numerical sim-
ulations with d/dh lower than 0.45 are considered, once 
Eq. 16 is fitted to the numerical data of “Appendix 2,” the 
values of the exponents of Re and Sc approach 1/2, which 
suggests that the exponents 1/3 and 2/5 in Eqs. 19 and 20 
are certainly due to wall effects.

The quasi-steady state assumption mentioned in 
Sect. 2.2 is valid if d/(VB − JA) ≪ d/kl, which is equiva-
lent, in dimensionless form, to Sh/(Re∞Sc) ≪ 1, with 
Re∞ = Re− ReJAd/dh. Using the results presented in 
“Appendix 2,” it can be calculated that, for the conditions 
considered in this work, the largest value of Sh/(Re∞Sc) 
is 0.064, which thus supports the quasi-steady state 
assumption.

Fig. 7  Values of Sh computed with Eqs. 19–22 plotted together with the numerical results of Sh in the cases of the bubble with a stress-free or a 
rigid interface in the square or circular microchannel
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4.2  Liquid flow

In Fig. 8, pathlines in the symmetry plane z = 0 of the 
square microchannel and contours of the dimensionless 
velocity magnitude in the plane x = 0 are presented for 

various d/dh, with ReJA = 28.7 and with either a stress-free 
or a rigid interface. The dimensionless velocity magnitude 
is defined as the norm of the liquid velocity in the moving 
reference frame (x, y, z) divided by JA.

In order to analyze the liquid flow around the bubble in 
the symmetry plane z = 0 of the square or circular micro-
channel, the intersection of this plane and the bubble sur-
face is used and the angle θ (comprised between 0 and π) is 
defined as presented in Fig. 9. In this work, the zone of the 
bubble surface where θ ≈ 0 is called the front of the bub-
ble, the zone where θ ≈ π/2 is called the side of the bubble 
and the zone of the bubble where θ ≈ π is called the rear of 
the bubble.

As it can be seen in Fig. 8 in the case of the bubble with 
a stress-free interface, when d/dh increases, a recircula-
tion appears between two successive bubbles, as in a slug 
flow (Kashid et al. 2011). It can be explained by the fact 
that the bubble moves (in the positive x̃ direction) with a 
velocity VB higher than JA. For d/dh = 0.15, the liquid is 
able to go from the front of the bubble to its rear. When 
d/dh increases, the liquid cannot get around the bubble 
and a recirculation is generated. When such a recircula-
tion is present between two successive bubbles, the liquid 
flow around one of these bubbles is influenced by the other 
one. This influence disappears when d/dh is sufficiently 
small. In the case of the bubble with a rigid interface, a 

Fig. 8  Pathlines (colored by the dimensionless velocity magnitude) 
around the bubble, for various d/dh, with a stress-free or a rigid inter-
face, in the symmetry plane z = 0 of the square microchannel and 

contours of the dimensionless velocity magnitude in the plane x = 0, 
for ReJA = 28.7 (color figure online)

Fig. 9  Intersection between the bubble surface and the plane z = 0, 
with • the center of the circle resulting from this intersection, and def-
inition of the angle θ
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recirculation is present between two successive bubbles for 
all the considered values of d/dh, because, in addition to 
the fact that the liquid flow cannot get around the bubble as 
d/dh gets closer to unity, the liquid is carried by the front 
of the bubble due to the no-slip condition at the bubble sur-
face. This second reason explains why, for low values of 
d/dh, a recirculation is still present in the case of the bubble 
with a rigid interface, while it disappears in the case of the 
bubble with a stress-free interface.

Figure 8 shows that, in the case of the bubble with a 
stress-free interface, the dimensionless velocity magnitude 
is minimal at the front and at the rear of the bubble surface, 
while it is maximal on the side of the bubble surface. In the 
case of the bubble with a rigid interface, the dimensionless 
velocity magnitude is equal to zero on the bubble surface 
and is the highest in the vicinity of the bubble side. In both 
cases, the dimensionless velocity magnitude is equal to 
VB/JA on the walls of the microchannel.

The flow field around the bubble with a stress-free or a 
rigid interface in the circular microchannel appears to be 
quite similar to the one obtained in the square microchan-
nel, as shown in Fig. 10 for various d/dh and ReJA = 28.7.  
However, a notable difference can be observed between 
the flow fields in both types of microchannel. A meticu-
lous analysis of the contours of the dimensionless velocity 

magnitude in the plane x = 0 for the bubble with a stress-
free or a rigid interface in the square microchannel (see 
Fig. 8) for d/dh = 0.75 shows the presence of an azimuthal 
asymmetry in the liquid flow close to the bubble surface. 
Indeed, the dimensionless velocity magnitude close to the 
bubble surface is higher in the symmetry planes y = 0 and 
z = 0 than in between them. This can be explained by the 
fact that the bubble surface is the closest to the walls of 
the microchannel in these symmetry planes. Such an azi-
muthal asymmetry close to the bubble surface is obviously 
not observed in the circular microchannel. This azimuthal 
asymmetry disappears when d/dh decreases because the 
influence of the walls decreases, as it can be observed in 
the plane x = 0 for d/dh = 0.15 in Fig. 8.

It has been assumed here that the bubble is spherical. For 
the bubble with a rigid interface, this hypothesis is obviously 
appropriate, but it has to be evaluated for the bubble with a 
stress-free interface. To that aim, the capillary number Ca 
and the Weber number We can be evaluated. The capillary 
number compares the viscous forces which tend to deform 
the bubble-liquid interface and the surface tension forces 
which tend to keep it spherical. By using an analogy with 
a shear flow for the liquid flow around the bubble (Rust and 
Manga 2002), Ca can be calculated as Ca = µGd/σ, with 
G the shear rate acting on the bubble (that can be calculated 

Fig. 10  Pathlines (colored by the dimensionless velocity magnitude) around the bubble, for various d/dh, with a stress-free or a rigid interface, 
in the symmetry plane z = 0 of the circular microchannel, for ReJA = 28.7 (color figure online)
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with the simulated velocity field) and σ the surface tension 
of the gas–liquid interface. The Weber number compares 
the inertial forces, which tend to deform the bubble-liquid 
interface and the surface tension forces. By using an anal-
ogy with a bubble moving in an infinite medium, We can be 
calculated as We = ρ(VB−JA)

2d
σ

. It has been checked that, for 
the cases considered in this work, Ca is always lower than 
0.03 and We is always lower than 0.07, which support the 
hypothesis of spherical bubbles.

As mentioned in Sect. 2.2, it is assumed that no vortex 
shedding occurs in the wake of the bubble. This assump-
tion was checked in the conditions for which vortex shed-
ding is the most likely to occur. For this purpose, according 
to the range of values of the dimensionless numbers used 
in this work (see Table 2), a three-dimensional unsteady 
numerical simulation of the liquid flow was carried out for 
the complete square microchannel segment containing at its 
center the bubble with a rigid interface, with d/dh = 0.75 

Fig. 11  Dimensionless concentration field C∗ around the bubble, for various d/dh, with a stress-free or a rigid interface, in the symmetry plane 
z = 0 and in the plane x = 0 of the square microchannel for ReJA = 28.7 and Sc = 551.3 (color figure online)

Fig. 12  Superposition of the 
pathlines and the dimension-
less concentration field C∗ 
in the vicinity of the bubble 
with a stress-free interface in 
the symmetry plane z = 0 of 
the square microchannel for 
d/dh = 0.75, ReJA = 28.7 and 
Sc = 551.3 (color figure online)
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and ReJA = 28.7. The simulation results showed no vortex 
shedding and matched the ones obtained when considering 
only a quarter of the microchannel segment and a steady 
state.

4.3  Concentration fields of the dissolved gas in the 
liquid phase

In Fig. 11, the dimensionless concentration field of the dis-
solved gas in the liquid phase is presented in the symmetry 
plane z = 0 and in the plane x = 0 of the square micro-
channel for various d/dh, with ReJA = 28.7, Sc = 551.3 
and either a stress-free or a rigid interface. A dimension-
less concentration C∗ = C−Cbulk

Cint−Cbulk
 is presented in Fig. 11. 

It enables making the analysis of the concentration fields 
independent of Cint and Cbulk. For C = Cint, C

∗ = 1 and for 
C = Cbulk, C

∗ = 0.
The concentration field C∗ around the bubble is signifi-

cantly influenced by the flow field as it can be seen by com-
paring Figs. 8 and 11, especially at the stagnation points on 
the bubble surface observed for d/dh = 0.75 in the case of 
the bubble with a stress-free interface and for all the con-
sidered values of d/dh in the case of the bubble with a rigid 
interface.

The thickness of the diffusion boundary layer appears to 
be minimum at a position on the bubble surface characterized 
by θ ≈ π/3, as shown in Fig. 12, where the superposition of 
the pathlines and the dimensionless concentration field is pre-
sented in the vicinity of the bubble with a stress-free interface 
in the symmetry plane z = 0 of the square microchannel for 
d/dh = 0.75, ReJA = 28.7 and Sc = 551.3. This minimum 
value results from an interaction between the growth of the 
thickness of the diffusion boundary layer when θ increases 
and the increase of the liquid velocity when θ increases, due 
to the decreasing area of the cross section available for the 
liquid flow, with a minimum value of this area at θ = π/2. 
As the thickness of the boundary layer is minimum at a posi-
tion on the bubble surface characterized by θ ≈ π/3, the 
mass transfer between the bubble and the surrounding liquid 
is expected to be the highest in this region.

The C∗ field around the bubble with a stress-free or a 
rigid interface in the circular microchannel appears to be 
quite similar to the one obtained in the square microchan-
nel, as shown in Fig. 13 for various d/dh, ReJA = 28.7 and 
Sc = 551.3.

It is worth mentioning that the boundary condition 
imposed at the plane IN is that the average concentration 
of the dissolved gas is equal to Cbulk. Therefore, C can be 

Fig. 13  Dimensionless concentration field C∗ around the bubble, for various d/dh, with a stress-free or a rigid interface, in the symmetry plane 
z = 0 of the circular microchannel for ReJA = 28.7 and Sc = 551.5 (color figure online)
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locally higher or lower than Cbulk on this plane (depending 
of the influence of the preceding bubble on the concentration 
field) and in a cross section of the square or circular micro-
channel; C∗ can thus be locally lower than 0, as observed in 
Figs. 11 and 13. For the square microchannel, C∗ is lower 
than 0 in the wedges, as shown in Fig. 11 for d/dh = 0.75. 
In Figs. 11 and 13, it can also be seen that C is higher than 
Cbulk (C

∗ > 0) at the central region of the IN plane.

4.4  Local mass transfer between a bubble and the 
surrounding liquid

The mass transfer rate between the bubble and the sur-
rounding liquid is characterized locally on the bubble sur-
face by defining a local Sherwood number as

In Fig. 14, Shloc is presented on the bubble surface for 
various d/dh, with ReJA = 28.7 and Sc = 551.3, in the case 
of the square microchannel, with either a stress-free or a 
rigid interface.

The contour plots of Shloc in Fig. 14 show that the high-
est mass transfer rate is observed at a position on the bub-
ble surface characterized by 0 < θ < π/2. In Fig. 15, 

(23)Shloc =
d n ·∇C

Cint − Cbulk

.

Shloc is presented versus θ in the symmetry plane z = 0 
of the square and circular microchannels, for various 
d/dh, ReJA = 28.7, Sc = 551.3 and with either a stress-
free or a rigid interface. In Fig. 15, for each considered 
value of d/dh, Shloc is also presented versus θ for a bub-
ble rising in an infinite liquid medium, with either a stress-
free or a rigid interface, with a Schmidt number Sc = 551.3 
and with a Reynolds number Re∞ = ReJA(

VB
JA

− 1) d
dh

, 
with ReJA = 28.7 and VB

JA
 given as a function of d/dh using 

Tables 6 and 7 in “Appendix 2.” These Shloc for a single 
bubble in an infinite medium are calculated using the fol-
lowing equations, developed by Levich (1962) for low 
Reynolds numbers:

Even though these correlations are not rigorously applica-
ble for moderate Reynolds numbers and for a chain of bub-
bles, we use them here for qualitative comparison purpose. 
For both stress-free and rigid interfaces, the bubble velocity 
VB used for evaluating Re∞, and thus Shloc in the infinite 
medium, is the one evaluated in the square microchannel.

At the front of the bubble, Shloc is the highest for a bub-
ble moving in an infinite medium while it is low for a bub-
ble moving in microchannels. In the infinite medium, the 
highest mass transfer rate is observed at the front of the 
bubble because the diffusion boundary layer is the thinnest 
there. In the microchannels, Shloc is low at the front of the 
bubble because the recirculation present in the liquid phase 
creates a convergent stagnation region and because the liq-
uid impacting the front of the bubble has C larger than Cbulk 
due to the preceding bubble (see Figs. 11 and 13). The con-
vergent stagnation region is a region where the liquid flow 
converges. It leads to a region with a thick diffusion bound-
ary layer and thus a low Shloc. It is worth mentioning that 
a stagnation region also exist at the front of a bubble mov-
ing in an infinite medium, but it is a divergent stagnation 
point (Bird et al. 2007). The liquid flow diverges from this 
point and leads to a thin diffusion boundary layer and thus 
to a high Shloc. For the bubble with a stress-free interface in 
the microchannels, Shloc at the front of the bubble increases 
when d/dh decreases because the recirculation vanishes, the 
concentration of the dissolved gas in the liquid impacting the 
front of the bubble due to the preceding bubble decreases 
and the velocity around the bubble surface increases. For the 
bubble with a rigid interface, as, in the considered cases, the 

(24)

Stress-free interface:

Shloc =
√

3

π
(Re∞Sc)1/2

1+ cos θ√
2+ cos θ

(infinitemedium)

(25)

Rigid interface:

Shloc =
1

1.15
(3Re∞Sc)1/3

sin θ
(

θ − sin 2θ
2

)1/3
(infinitemedium)

Fig. 14  Contour plots of Shloc on the bubble surface, for various d/dh, 
with a stress-free or a rigid interface, ReJA = 28.7 and Sc = 551.3, in the 
case of the square microchannel (color figure online)
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recirculation does not vanish when d/dh decreases, the con-
vergent stagnation point at the front of the bubble remains 
too and an increase of Shloc is not observed there.

In microchannels, the highest Shloc is observed at a 
position on the bubble surface characterized by θ ≈ π/3 
because the diffusion boundary layer is the thinnest in this 
region. For d/dh = 0.75 in the case of the bubble with a 
stress-free interface and for d/dh = 0.75 and d/dh = 0.45 
in the case of the bubble with a rigid interface, Shloc is even 
higher in this region for a bubble in a microchannel than in 
an infinite medium.

When a recirculation is present between two successive 
bubbles, it helps cleaning the bubble-liquid interface at the 
rear of the bubble and a substantial mass transfer is then pre-
sent there. This recirculation vanishes when d/dh decreases in 
the case of the bubble with a stress-free interface, while it is 
present for each analyzed value of d/dh in the case of the bub-
ble with a rigid interface. Therefore, when d/dh decreases, 
the mass transfer rate between the bubble and the surrounding 
liquid at the rear of the bubble almost vanishes in the case of 
the bubble with a stress-free interface, while it remains sub-
stantial in the case of the bubble with a rigid interface.

Fig. 15  Plots of Shloc versus θ on the bubble surface in the symmetry plane z = 0. The results are presented for a stress-free or a rigid interface, 
in the square and circular microchannels, for ReJA = 28.7 and Sc = 551.3, as well as in an infinite medium
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Except at the front of the bubble, the mass transfer rate 
on the bubble surface is higher in the circular than in the 
square microchannel, at fixed values of d/dh, ReJA and Sc. 
This was expected because, for square and circular micro-
channels with the same hydraulic diameter, the fraction of 
the area of the microchannel cross section available in the 
plane x = 0 for the liquid flow around a bubble is lower 
in the circular than in the square microchannel; the dimen-
sionless velocity magnitude around the bubble and the sub-
sequent mass transfer rate are then higher in the circular 
microchannel. When d/dh decreases, Shloc is almost the 
same in both types of microchannel because the difference 
of dimensionless velocity magnitude decreases.

As it can be observed in Fig. 14, when d/dh increases, 
the azimuthal asymmetry of the local mass transfer rate 
on the bubble surface in the square microchannel becomes 
more pronounced. In order to analyze quantitatively this 
observation, the plane yz, passing through the constant x 
position where the maximum value of Shloc is observed, is 
defined in Fig. 16, together with the angle φ corresponding 
to the azimuthal angle on this plane, with its origin taken at 
the intersection between the planes yz and y = 0.

In Fig. 17, Shloc is presented versus φ in the plane 
yz of the square microchannel, for various d/dh, with 
ReJA = 28.7, Sc = 551.3 and either a stress-free or a rigid 
interface. The azimuthal asymmetry of Shloc is present 
because of the azimuthal asymmetry of the liquid flow 
mentioned in Sect. 4.2, which leads to a thinner diffu-
sion boundary layer on the bubble surface in the symme-
try planes y = 0 and z = 0 than between them and thus 
to a higher Shloc in the symmetry planes than between 
them. When d/dh decreases, the azimuthal asymmetry of 
the mass transfer rate on the bubble surface becomes less 
pronounced because the liquid velocity next to the bubble 
surface is almost the same in the symmetry planes than 
between them (see Sect. 4.2).

5  Conclusions and perspectives

In this paper, a numerical procedure is developed in order 
to analyze the liquid flow and the mass transport around 
a spherical bubble in square and circular microchannels, 
in the bubbly flow regime. A one-sided approach, where 
only the liquid flow is considered, is applied, and pseudo-
periodic conditions are used in order to mimic the chain of 
bubbles encountered in real microchannels. Two limiting 
cases are considered regarding the gas–liquid interface: a 
stress-free interface or a rigid interface. The results enable 
correlations to be established in order to express VB/JA and 
Sh as functions of the dimensionless control parameters of 
the analyzed system in both types of microchannels and 
for both types of boundary conditions at the bubble–liquid 
interface. The analysis of the liquid flow around the bubble 
shows that a recirculation can be present between two suc-
cessive bubbles depending on d/dh and the boundary con-
dition at the bubble–liquid interface. Indeed, for a bubble 
with a stress-free interface, this recirculation is observed 
only for values of d/dh close to unity, while for a bubble 
with a rigid interface, it is observed for all the considered 
values of d/dh. The analysis of the mass transport around 
the bubble highlights the influence of the liquid flow on the 
mass transport around the bubble in all the cases consid-
ered in this work. Indeed, this analysis points out that the 
highest mass transfer rates are observed at a position on the 
bubble surface characterized by θ ≈ π/3, where the liquid 
flow generates the thinnest diffusion boundary layer. It also 
shows that, when a recirculation is present between two 
successive bubbles, the mass transfer rate is low at the front 
of the bubble, due to the presence of a convergent stagna-
tion point, while it is substantial at its rear, where a diver-
gent stagnation point is observed.

When the flow and the mass transport around a bubble 
with a stress-free or a rigid interface in square and circular 
microchannels are analyzed, the main difference between 
the two types of microchannels is the presence, in the 
square microchannel, of an azimuthal asymmetry of the 
velocity field in the vicinity of the bubble surface, which 
leads to an azimuthal asymmetry of the mass transfer rate 
on the bubble surface. This asymmetry vanishes when d/dh 
decreases.

The local mass transfer rate on the surface of a bubble 
with a stress-free or a rigid interface in a microchannel is 
compared with the local mass transfer on the surface of 
a bubble in an infinite liquid medium (for an equivalent 
Reynolds number and identical Sc). The results show that 
the local mass transfer rate on the surface of a bubble with 
a stress-free or a rigid interface can be higher or lower 
in a microchannel depending on the presence or not of a 
recirculation and on the heterogeneity of the dissolved gas 

Fig. 16  Intersection between the bubble surface and the plane yz 
passing through the constant x position where the maximum value of 
Shloc is observed, with • the center of the circle resulting from this 
intersection, and definition of the angle φ
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concentration in the liquid entering the considered micro-
channel segment, due to the preceding bubble.

It was supposed in this work that the bubble is at the 
center of the microchannel. This hypothesis can be tested 
by making three-dimensional numerical simulations of the 
liquid flow for a complete square or circular microchannel 
segment containing a bubble slightly shifted vertically and 
horizontally relative to the microchannel center, and by 
analyzing whether the forces acting on the bubble surface 
will bring the bubble back toward the center. If the hypoth-
esis is shown to be inappropriate, an equilibrium position 
of this bubble can be determined using a similar approach 

to the one used to determine VB, and based on this posi-
tion, new numerical simulations can be carried out for the 
analysis of the liquid flow and mass transport around the 
bubble.

As it is difficult to fabricate, experimentally, perfectly 
square microchannels, it could be interesting to extend the 
numerical procedure used here for the analysis of the liq-
uid flow and the mass transport around a spherical bubble 
in square and circular microchannels to rectangular micro-
channels. In the same view, one could extend our numeri-
cal procedure to the case of bubble chains with a separat-
ing distance L between bubbles smaller than the value for 

Fig. 17  Plots of Shloc versus φ on the bubble surface in the plane yz for ReJA = 28.7 and Sc = 551.3. The results are presented for a stress-free 
or a rigid interface, in the square microchannel. One-fourth of the microchannel is considered due to symmetries
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which we have shown that it has no influence on the calcu-
lated values for VB and Sh.

It is observed, in Fig. 6, that the bubble velocity evalu-
ated experimentally by Cubaud et al. (2012) is comprised 
between the values of VB that can be computed using the 
two limiting cases of the bubble with a stress-free and a 
rigid interface. It suggests that the liquid could have been 
contaminated in these experiments leading to a partially 
rigid interface. This observation could be used in order to 
evaluate the contamination level of a liquid in a microchan-
nel by comparing the velocity of bubbles moving in this 
liquid to the velocities expected in the cases of bubbles 
with a stress-free or a rigid interface.

As mentioned above, the comparison between the corre-
lations expressing the bubble velocity as a function of the 
bubble diameter in the square microchannel and the experi-
mental data of Cubaud et al. (2012) suggests that, in these 
experiments, the liquid is partially contaminated. A “multi-
ple stagnant caps” model could be used in order to investi-
gate this possibility (see Wylock et al. 2011 for a description 
of the single stagnant cap model). In such a model, a no-slip 
condition would be used on the parts of the interface close 
to the stagnation points identified in Figs. 8 and 10 and a 
stress-free condition would be used for the other parts of 
the interface. The area of the parts of the interface where 
the no-slip condition is applied could then be varied, and its 
influence on the bubble velocity could be analyzed. Another 
possibility to model the partial contamination of the bub-
ble-liquid interface could be to consider the transport of 
surfactants on the interface and in the liquid phase and to 
couple the boundary condition at the bubble surface to the 
concentration of surfactants on the bubble-liquid interface.

The lack of experimental data regarding the dissolu-
tion of bubbles along square and circular microchannels 
in the bubbly flow regime with a controlled contamination 
level of their interface is appealing for new experiments. 
The results of these experiments would not only enable a 
validation of the correlations expressing the bubble veloc-
ity and Sherwood number as functions of the control 

parameters of the system, at least for a clean—i.e., stress-
free—interface, but would also provide a better insight on 
the surface (partial) rigidity of the bubbles traveling along 
microchannels.

The evolution of the size of a bubble was monitored in 
the bubbly flow regime along a nearly square microchannel 
in Cubaud et al. (2012), but a model for the dissolution of 
a spherical bubble, in a liquid, along a square or a circular 
microchannel in the bubbly flow regime has not been pro-
posed yet. It is thus relevant to develop such a model and 
compare, in the case of a square microchannel, the calcu-
lated evolution of the bubble size along the microchannel to 
the data presented in Cubaud et al. (2012).
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Appendix 1: Grid

Square microchannel

The geometry of the square microchannel is shown in 
Fig. 2. The principal volume is constituted of 5 subvol-
umes: Vol1, Vol2, Vol3, Vol4 and a zone Vol5 around the 
bubble. This principal volume is surrounded by smaller 
volumes forming a layer. These small volumes are referred 
to as Vlayer hereafter. The meshing parameters of the edges 
presented in Fig. 2 are provided in Table 4. When an edge 
mentioned in Table 4 is meshed, the same mesh is applied 
to the other edges presented in Fig. 2, which are parallel to 
it and of the same length. Numerical values of the mesh-
ing parameters presented in Table 4 are provided in Table 5. 
For the edge cr, the number of intervals is calculated such 

Table 4  Meshing parameters of the edges presented in Fig. 2

Edge Length Meshing scheme Number of intervals Size of the intervals First length 1 First length 2

ext L0 Uniform / lext / /

ext2 L − 2L0 Uniform / lext2 / /

cr � First length ncr / lcr /

int (L − 2L0)/2− d/2−� Uniform / lext2 / /

int2 (L − 2L0)/2 Uniform / lext2 / /

cc / Uniform ncc / / /

layer llayer Uniform nlayer / / /

side dh/2 − llayer Double-sided mesh nside / lside lside

ac dh/2 − llayer − � − d/2 Double-sided mesh nmac / 5lcr at the bubble side lside at the wall side
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that the ratio of the size of the last interval to the size of the 
first interval does not exceed 5.

Once the edges are meshed, Vol1, Vol4 and Vlayer are 
meshed using Hex(ahedral) elements of type Map. It ena-
bles having the same mesh on the planes IN and OUT, 
which is necessary for using pseudo-periodic boundary 
conditions. Vol5 is meshed using Hex/Wedge elements and 
Vol2 and Vol3 are meshed using Tet(rahedral) elements. 
The Tet(rahedral) elements of Vol2 and Vol3 are combined 
in order to form polyhedra. It enables reducing the number 
of elements, improving the quality of the mesh and fasten-
ing the convergence.

Vlayer and Vol5 are used in order to accurately cap-
ture the diffusion boundary layers at the walls of the 
microchannel and at the bubble surface, as explained in 
Sect. 3.1.

Circular microchannel

The two-dimensional geometry used for the circular micro-
channel is shown in Fig. 3. The principal surface is divided 
in 5 subsurfaces: S1, S2, S3, S4 and a surface S5 around the 
bubble. Smaller surfaces forming a layer are present at the 
top of the principal surface. These small surfaces are referred 
to as Slayer hereafter. Slayer and S5 are used in order to accu-
rately capture the diffusion boundary layers at the walls of 
the microchannel and at the bubble surface. The edges have 
the same names as for the square microchannel and are cre-
ated and meshed in the same way as described in “Square 
microchannel” in Appendix 1. Once the edges are meshed, 
S1, S4, S5 and Slayer are meshed using Quad(rilateral) ele-
ments and S2 and S3 using Tri(angular) elements.

Table 5  Numerical values of the parameters used for creating and meshing the edges presented in Table 4

d (μm) dh (μm) L (μm) L0 (μm) llayer (μm) � (μm) nlayer lext (μm) lext2 (μm) nside lside (μm) ncc lcr (μm) ncr nmac

150 200 5000 1600 1.6 10 4 5 2.5 76 0.398 60 0.302 15 20

130 4800 1500 10 78 0.267 15 30

110 4400 1200 10 78 0.238 17 50

90 4300 1100 10 74 0.219 19 60

70 4200 1000 10 70 0.196 21 60

50 3600 900 10 80 0.163 25 60

30 2000 400 2 110 0.096 9 70

Table 6  Values of the 
dimensionless control 
parameters and the 
postprocessed parameters for 
all the numerical simulations 
of the flow and the mass 
transport around the bubble 
with a stress-free interface in 
the square microchannel, with 
Re = ReJA

VB
JA

d

dh

d/dh ReJA VB/JA Re Sh (Sc = 152) Sh (Sc = 356) Sh (Sc = 551.3)

0.15 28.70 2.098 9.03 6.30 8.46 9.93

17.22 2.095 5.41 5.31 6.97 8.12

5.74 2.088 1.80 3.89 4.81 5.45

0.25 28.70 2.101 15.07 11.44 15.98 18.94

17.22 2.100 9.04 9.38 13.05 15.50

5.74 2.100 3.01 6.32 8.55 10.09

0.35 28.70 2.103 21.12 17.42 24.10 28.21

17.22 2.100 12.65 14.18 19.81 23.39

5.74 2.100 4.22 9.21 12.86 15.30

0.45 28.70 2.088 26.96 23.37 31.40 35.97

17.22 2.087 16.17 19.26 26.42 30.66

5.74 2.086 5.39 12.44 17.48 20.72

0.55 28.70 2.056 32.45 29.54 38.67 43.64

17.22 2.052 19.43 24.57 33.08 37.89

5.74 2.050 6.47 15.91 22.36 26.34

0.65 28.70 1.982 36.97 36.72 48.07 54.32

17.22 1.976 22.11 30.52 41.18 47.16

5.74 1.973 7.36 19.51 27.72 32.75

0.75 28.70 1.851 39.84 45.05 59.89 68.55

17.22 1.845 23.82 37.20 50.80 58.62

5.74 1.841 7.92 23.26 33.67 40.06
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Appendix 2: Numerical results

The values of the dimensionless control parameters 
and the postprocessed parameters are presented in  

Tables 6, 7, 8 and 9 for all the numerical simulations of 
the flow and the mass transport around the bubble with a 
stress-free or a rigid interface in the square or the circular 
microchannel.

Table 7  Values of the 
dimensionless control 
parameters and the 
postprocessed parameters for 
all the numerical simulations of 
the flow and the mass transport 
around the bubble with a 
rigid interface in the square 
microchannel

d/dh ReJA VB/JA Re Sh (Sc = 152) Sh (Sc = 356) Sh (Sc = 551.3)

0.15 28.70 2.069 8.91 4.76 5.88 6.66

17.22 2.070 5.35 4.28 5.16 5.77

5.74 2.069 1.78 3.52 4.08 4.44

0.25 28.70 2.022 14.51 7.39 9.59 10.96

17.22 2.022 8.70 6.33 8.19 9.37

5.74 2.022 2.90 4.77 5.90 6.69

0.35 28.70 1.950 19.58 10.24 13.29 15.16

17.22 1.951 11.76 8.72 11.35 12.96

5.74 1.951 3.92 6.23 8.06 9.24

0.45 28.70 1.859 24.01 13.11 16.93 19.29

17.22 1.860 14.41 11.18 14.49 16.51

5.74 1.861 4.81 7.91 10.34 11.83

0.55 28.70 1.750 27.62 16.08 20.75 23.65

17.22 1.751 16.58 13.73 17.76 20.24

5.74 1.752 5.53 9.69 12.70 14.53

0.65 28.70 1.627 30.35 19.32 24.99 28.53

17.22 1.628 18.22 16.48 21.39 24.40

5.74 1.629 6.08 11.58 15.23 17.46

0.75 28.70 1.498 32.24 22.86 29.65 33.92

17.22 1.497 19.33 19.44 25.32 28.93

5.74 1.497 6.44 13.60 17.95 20.62

Table 8  Values of the 
dimensionless control 
parameters and the 
postprocessed parameters for 
all the numerical simulations of 
the flow and the mass transport 
around the bubble with a stress-
free interface in the circular 
microchannel

d/dh ReJA VB/JA Re Sh (Sc = 152) Sh (Sc = 356) Sh (Sc = 551.3)

0.15 28.70 2.003 8.62 6.66 8.99 10.57

17.22 2.003 5.17 5.64 7.47 8.74

5.74 2.003 1.72 4.15 5.23 5.98

0.25 28.70 2.005 14.38 12.14 17.00 20.14

17.22 2.005 8.63 9.94 13.89 16.52

5.74 2.005 2.88 6.63 9.04 10.70

0.35 28.70 2.001 20.10 18.51 25.65 29.94

17.22 2.000 12.05 15.07 21.14 24.95

5.74 2.000 4.02 9.70 13.64 16.28

0.45 28.70 1.981 25.58 25.22 34.02 38.90

17.22 1.980 15.34 20.69 28.58 33.22

5.74 1.979 5.11 13.18 18.72 22.28

0.55 28.70 1.928 30.43 32.38 42.98 48.61

17.22 1.925 18.23 26.66 36.50 42.07

5.74 1.923 6.07 16.89 24.14 28.68

0.65 28.70 1.819 33.93 41.27 55.53 63.22

17.22 1.815 20.31 33.69 46.83 54.35

5.74 1.812 6.76 20.68 30.33 36.40

0.75 28.70 1.640 35.30 52.21 72.54 84.28

17.22 1.637 21.14 41.80 59.98 70.76

5.74 1.636 7.04 24.66 37.27 45.51
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