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ble au laboratoire a motivé, pour la plupart, les travaux rapportés dans le présent
manuscrit. Qu’il trouve ici toute ma reconnaissance.

Mes remerciements les plus sincères vont également au professeur Alexander Oron.
L’étroite collaboration qui s’est opérée durant cinq mois passés au sein de son service
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Nomenclature

Remark: unless units are specified in parenthesis, the quantities are dimensionless.

Quantities

A = (hmax − hmin)/hN reduced wave amplitude
A amplitude of harmonic disturbance (Ch.7)
bs basic state temperature gradient
Bi = αν2/3/

[
λ(g sin β)1/3

]
Biot number (at the film surface)

B = hNBi film Biot number
c wave speed
cp liquid heat capacity (J/kgK)
C = cosβ normal component of the gravity
Ct = cotβ slope coefficient
C = Ct/κ reduced slope coefficient
Fw heating function at the wall
g gravitational acceleration (m/s2)
h film thickness
hN = h̄N/lν = (3Re)1/3 Nusselt film thickness
hres thickness of the residual layer
i =

√
−1 imaginary number

k wave number

Ka = σ∞/
[
ρν4/3 (g sinβ)1/3

]
Kapitza number

l characteristic wavelength (m)
lν = ν2/3/(g sinβ)1/3 viscous length (m)
lσ = (σ∞/ρg sinβ)1/2 capillary length (m)
L heater length
L = (KahN)1/3 characteristic length for capillary ripples
Ma = γ∆TKa/σ∞ Marangoni number based on lν
M = Ma/h2

N film Marangoni number (TC)
M = Ma/hN film Marangoni number (HFC)
M? = MbshN M based on the base state temperature gradient
M = M/κ reduced Marangoni number
n unit normal vector
p pressure (Ch.1)

p =
∫ h

0
wdy spanwise local flow rate

P base state pressure

v



vi NOMENCLATURE

Pr = ν/χ Prandtl number
Pe = Pr Re Péclet number
qw heat flux at the wall (W/m2)

q =
∫ h

0
u dy streamwise local flow rate

Q = q − c h flow rate in the moving reference frame
r1, r2, r3 corrections to the transverse parabolic profile
Re = uNh̄N/ν = g sinβh̄3

N/3ν
2 film Reynolds number

R = 3Re = h3
N Re based on the linear wave speed 3uN

Rs = 3Re/2 Re based on the film surface velocity
R = Re/κ reduced Reynolds number
s real growth rate
s1, s2, s3 corrections to the streamwise parabolic profile
S = sinβ longitudinal component of the gravity
t time
tν = ν1/3/(g sinβ)2/3 viscous characteristic time (s)
t1, t2, t3, t4 corrections to the temperature profile
T temperature
∆T characteristic temperature difference (K)
v = (u, v,w) velocity
U, V, W base state velocity
We = Ka/h2

N = σ/
(
ρgh̄2

N sinβ
)

Weber number
x, y, z streamwise, cross-stream and spanwise coordinates



NOMENCLATURE vii

Greek letters

α heat transfer coefficient (W/m2K)
β wall inclination angle (rad)
γ = −∂σ/∂T positive surface tension gradient (N/mK)
γ1, γ2 families of travelling wave solutions
Γ = k c+ i s complex pulsation
δ = ∆T/∆Tw ratio between uniform and non-uniform heating
ε film parameter
ε = h̄N/l aspect ratio
η amplitude of the film thickness perturbation (Ch.1)
η = 1/κ2 viscous dispersion number
θ surface temperature
Θ base state temperature
κ = L/hN scale factor
λ heat conductivity (W/mK)
µ dynamic viscosity (kg/ms)
ν = µ/ρ kinematic viscosity (m2/s)
ξ = x− c t coordinate in a moving frame of reference
ρ density (kg/m3)
σ surface tension (N/m)
ς wavenumber shift
τx, τz unit tangent vector
τ amplitude of the temperature perturbation
φ amplitude of the cross-stream velocity perturbation
ϕ amplitude of the stream function
χ = λ/ρcp heat diffusivity (m2/s)
ψ stream function

Symbols & operators

d/dt ≡ ∂t + (v ·∇) material derivative
D ≡ d/dy derivative with respect to y
∂i partial derivative with respect to i
∇ ≡ (∂x, ∂y, ∂z)

t gradient operator
∇s surface gradient operator
∇xz ≡ (∂x, 0, ∂z)

t parallel gradient operator
< real part of a complex number
= imaginary part of a complex number
〈·〉i average along one wavelength (period) of the variable i
.
∣∣
h

evaluation at the free surface y = h



viii NOMENCLATURE

Subscripts

c critical (for instability)
∞ ambient air far from the interface
L linear problem
m maximum
ν based on the length scale lν
N based on the length scale h̄N (N for Nusselt)
⊥ vertical wall (sinβ = 1)
s surface
w wall
x, y, z components in x, y, z directions

Superscripts

? base state temperature
∗ saddle-node bifurcation
(i) ith−order in the gradient expansion

Overscripts

− dimensional quantity (when necessary)
∧ average value
∼ perturbed quantity

Acronyms

BE Benney equation
BL boundary layer (model)
CL closed (flow)
HB Hopf bifurcation
HFC heat flux condition
IBL integral boundary layer (model)
OP open (flow)
PD period doubling
TC temperature condition
WIBL weighted integral boundary layer (model)



Introduction

Interest for thin falling films and aims of this work

The development of efficient means for interfacial heat and mass transfer in engi-
neering applications has received a great deal of interest for several decades. Thin
liquid film flows play a central role in such equipments because of their small thermal
resistance and their large contact area at small specific flow rates. Typical exam-
ples involving falling liquid films include heat transport from a hot wall to a film,
vapor condensation and absorption of dilute gas (see e.g. Alekseenko, Nakoryakov &
Pokusaev [1]). In coating technology, the hydrodynamic behaviour of the initial liquid
film can affect the quality of the final coated surface. Thin films are also used as lubri-
cant layers for the flow of crude oil in pipes and channels. In rocket engines the liquid
film is used for thermal protection of the combustion chamber walls. Falling films
are also commonly used in cooling of microelectronic equipment (local heat source).
Falling film evaporators are widely used for separation of multicomponent mixtures
in chemical and food industries. They even represent the state-of-the-art technique in
sugar industry. They are also the basic components in salt sea-water distilling plants.
Finally, film heat exchangers are used as condensers of cooling agents in cryogenic
technology. Some of the above-mentioned industrial applications involving falling
liquid films are detailed in appendix A.

The length of film flows may vary from several centimeters in cooling processes of
electronic components to about ten meters in industrial thin film evaporators. In
thin film flows, the most widely observed phenomena, such as formation of surface
waves, breaking of a stream into rivulets, and evaporation with termination of the
liquid layer at a contact line, are caused by various interfacial instability mechanisms.
Therefore, the understanding of the stability and evolution of falling heated films will
help to improve predictions of heat and mass transfer rates. For instance, instabilities
of free film surfaces play a crucial role by inducing wavy regimes that are known to
enhance heat and/or mass transfer [23]. Frisk & Davis [37] and Goren & Mani [44]
have shown that heat and mass transfer across a laminar film can increase by as much
as 10-100% as compared to flat films, when large amplitude solitary waves appear at
the interface.

From a fundamental point of view, thin viscous film flow driven by gravity is a
reference problem in the theory of spatio-temporal chaos. We can observe a well-
organized cascade of bifurcations that leads from the flat film state (or laminar) to a
state of disorder (or turbulence). The instabilities responsible for these bifurcations

1



2 INTRODUCTION

are typically associated with long-wave modes, as based on the Cross & Hohenbreg
classification [24], depending on the behaviour of the growth rate in the neighborhood
of the critical point. In the context of the present work, “long wave” means that the
waves are always long as compared to the film thickness.

In this thesis, we will focus on two distinct long-wave instability mechanisms: one
occurring when a thin layer is heated from below and induced by the so-called
‘Marangoni effect’, and the other producing waves when the layer is flowing along
an inclined plate (falling liquid film). The main objectives of this work are to study
the coupling between those two mechanisms in the linear and nonlinear regimes, to
propose the most appropriate models with respect to the flow conditions considered
and to compare our theoretical results with available experimental data.

Phenomenology

In this section, we present the phenomenology of the both above-mentioned mech-
anisms, including their coupling. We also show some experimental results for an
inhomogeneously heated falling liquid film.

Marangoni effect

Theoretical and experimental studies of various aspects of Marangoni convection are
numerous in literature (see e.g. Colinet, Legros & Velarde [23] or Velarde & Zey-
tounian [142]). The Marangoni effect arises from the fact that surface tension at the
interface between two fluids (here a liquid and a gas) is temperature or concentration–
dependent; the effect will be referred to as the thermocapillary or solutocapillary ef-
fect, respectively. When a temperature (or concentration) gradient is applied along a
fluid layer having a free surface, the emergence of temperature (or concentration) non
uniformity at the interface leads to tangential stresses equal to the surface tension
gradient. Despite the similarity between thermocapillary and solutocapillary effects
(that are both referred to as the Marangoni effect), only the latter will be studied in
this work.

When a temperature gradient is applied across a horizontal fluid layer, the layer being
heated from below, two mechanisms related to the Marangoni (thermocapillary) effect
can lead the liquid layer from a quiescent conducting state to convective motions [23].
Both of them originate from the interfacial stress generated at the interface by the
surface tension gradient. This gradient can have two origins, a modification of the
temperature distribution in the bulk due to the advection by the velocity field, or
a modulation of the free surface elevation, both of them generating a temperature
gradient at the interface. The two mechanisms were classified by Goussis & Kelly [46]
as the P-mode and the S-mode, respectively. The P-mode generally yields convection
rolls or hexagonal or square cells, the size of which is of the same order of magnitude
than the depth of the layer. This instability is referred to as the Marangoni–Bénard
instability and was theoretically evidenced by Pearson [100]. The S-mode produces
large-scale deformations, the horizontal size of which is much larger than the depth



INTRODUCTION 3

of the layer, and may generally lead to dry spots. This instability is referred to as
the long-wave Marangoni instability and was first theoretically evidenced by Scriven
& Sterling [125], who neglected the gravity, which was later corrected by Smith [129].
Since in this thesis, devoted to the problem of long-wave instabilities, we are only
interested in very thin films – the thickness of which is much smaller than a millimeter
–, the P-mode which is of short-wave type is not relevant here. Therefore, from now
and in the remaining of this work, speaking about the Marangoni effect will always
refer to the thermocapillary long-wave instability, or S-mode.
Let us then detail the mechanism of this long-wave thermocapillary instability, as-
suming that, as for most of fluids, the surface tension decreases with the temperature.
As said above, this instability is triggered by the modification of the basic tempera-
ture at the free surface by the surface deformation (Goussis & Kelly [45]). Consider
a cross-section of a horizontal liquid layer heated from below at the temperature Tw

as sketched on figure 1; T∞ being the temperature of the ambient gas far from the
interface. If an infinitesimal deformation occurs at the interface, what corresponds
to the stage “1” in figure 1, the film temperature in the trough of a depression will
be hotter than at the crest of an elevation, given that Tw > T∞. Because the surface

y

z Tw

T∞

T+
T−

hN

1

2

Figure 1: Mechanism of a pure long-wave Marangoni instability.

tension decreases with the temperature, a flow is induced along the interface from
a hot spot to a cold spot. This flow acts in a way to amplify the initial perturba-
tion (stage “2” in figure 1) such that the basic flat film is unstable. What mainly
opposes the deformation is the gravity which tends to maintain the layer flat. For
disturbances of sufficiently short wavelength, surface tension also acts so as to sup-
press surface deformation. Therefore instability with respect to this mode takes the
form of large-wavelength disturbances for which the hydrostatic pressure is the only
stabilizing force. Instability occurs then when the balance between the Marangoni
stress produced by the temperature gradient across the layer and the hydrostatic
pressure turns in favour of the former. This instability can effectively lead to dry
spots formation as evidenced experimentally by VanHook et al. [141].
Let us now figure out the consequence of tilting the plate: the liquid layer will fall
down, driven by gravity, and the long-wave Marangoni instability will lose its isotropy,
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which means that the flow will align the deformations into rivulets as drawn on figure
2, and demonstrated theoretically by Joo et al. [54].

Figure 2: Rivulet pattern at the surface of a falling liquid film.

Yet, non heated (isothermal) falling film can also be unstable with respect to surface
wave instability, the mechanism of which is detailed below.

Surface wave instability

Thin liquid film flowing along an inclined plate in isothermal conditions experiences
long wavelength deformations at the film surface as sketched on figure 3. These
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Figure 3: Sketch of a thin liquid film of mean film thickness h̄N flowing down an
inclined wall of inclination angle β; ud is a parabolic velocity profile corresponding to
a fully-developed viscous film flow.
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waves result from a long-wave instability classified by Goussis & Kelly [46] as the
hydrodynamic or H-mode. Smith [130] provides a detailed discussion about the three
related mechanisms influencing this long-wave hydrodynamic instability: the first one
is due to gravity and triggers the wave motion, the second one involves inertia and
amplifies the wave motion, the third one is due to the hydrostatic pressure and can
prevent the wave motion. Let us describe these three mechanisms in general terms
[130] (see chapter 1 for mathematical formulations):

I Consider a disturbance to the liquid film in which the top surface is deflected
upward slightly over a lengthscale l that is much longer than the depth h̄N of
the film. Because the height of the top surface varies slowly in the streamwise
direction, the velocity profile u at each streamwise location will remain close to
a fully-developed viscous film flow characterized by a parabolic velocity profile
as depicted by ud in figure 3. It can be shown that the net longitudinal flow
rate in the film is positive and that it increases with the depth of the film.
Thus, at the crest of the deflection the longitudinal flow rate is a maximum
and it decreases at the troughs. The net result of this, as shown on figure 4, is
that gravity draws fluid toward the front face of the crest, deflecting it upward,
and gravity drains fluid from the rear face, deflecting it downward. This first
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Figure 4: A disturbance to the free surface. The dashed line is the undisturbed free-
surface position. It shows a control volume Vc (dotted box) enclosing the film on
the right-hand side of the disturbance crest. There is a net inflow Qin on the left-
hand side of the control volume, but no outflow on the right-hand side. To conserve
mass, the interface must move in the positive cross-stream direction. Likewise, for
a control volume on the left-hand side of the crest, the interface must move in the
negative cross-stream direction. These interface motions (indicated by arrows) result
in a translation of the disturbance to the streamwise direction.
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mechanism produces a forward motion of the disturbance without growth at
a phase speed larger than the velocity of any fluid particle in the undisturbed
film (this will be shown in chapter 1). This wave motion will be referred to as
kinematic waves.

II Now, at a particular instant in time, consider a streamwise location that is
at the front face of a disturbance crest. Here, the surface height is increas-
ing because of the forward motion of the disturbance. The flow in the bulk of
the film is accelerating at this position because it is attempting to follow the
fully-developed viscous velocity profile dictated by the surface height increase.
However, inertial effects prevent the flow from accelerating fast enough to com-
pletely follow this velocity. The result is that the volume flux in the film is not
as large as it should be if this was truly a fully-developed film flow. At the
rear face of the crest, the velocity is decreasing, but inertial effects similarly
prevent the flow from decelerating rapidly enough. Thus the volume flux in the
film is larger than that due to a fully developed film flow. The net effect of
these two volumes fluxes can result in an accumulation of fluid underneath the
disturbance crest and an increase in the interfacial displacement, as shown on
figure 5.

residual

residual interfacial motion

inertial flow

inertial flow

Figure 5: Film flow and induced interfacial motion produced by the effects of inertia.
The dashed line is the undisturbed free-surface position.

III The disturbance also produces an increase in the hydrostatic pressure under the
crest proportional to the local depth of the film. This pressure tends to push
fluid away from the disturbance crest, towards the troughs were the hydrostatic
pressure is lower, resulting in a depletion of the fluid under the crest and a
decrease in the depth of the film, as shown on figure 6. This stabilizing flow
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Figure 6: The direction of the disturbance film flow and the induced interfacial motion
when an increase of the hydrostatic pressure lies underneath a disturbance crest; p̃
is the change of hydrostatic pressure due to disturbances. The dashed line is the
undisturbed free-surface position.

competes with the inertial accumulation of fluid under the crest. If the inertial
effect, as measured by the Reynolds number, is large enough, the film is unstable
and the disturbance grows. Hence, a film falling along a vertical wall is always
unstable with regards to free surface disturbances since the effect of hydrostatic
pressure cancels (Yih [147]). Because of the competing forces of inertia and
hydrostatic pressure involved in the growing of the initial kinematic waves, one
speaks then about dynamic waves.

In conclusion, a key point of the hydrodynamic instability mechanism (H-mode) is
the fact that the kinematic waves generated at the interface travel much faster than
any fluid particles inside the film, such that inertia plays a central role in the growth
of the instability by introducing a shift between the vorticity field generated by the
kinematic waves and the film surface displacement (Ruyer-Quil [107]). The threshold
of this H-mode and its linear stability properties were first scrutinized by Benjamin
[6].

Many experimental studies have been devoted to the wavy regime of film flows since
the first observations by Kapitza & Kapitza [69]. Thin films generally exhibit a
cascade of symmetry-breaking bifurcations leading from two-dimensional waves, i.e.
is independent of the spanwise coordinate, to three-dimensional solitary waves (see
below, figure 7).
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Surface wave instability and Marangoni effect

Let us consider now the coupling between the thermocapillary and the surface wave
instability. Conditions obtained from linear stability analysis of a heated falling liquid
film by Goussis & Kelly [46] has revealed that the thermocapillary S-mode predomi-
nates at low flow rates – or equivalently for thin films – where the Marangoni stress
in the presence of surface deformation, generated by the temperature gradient across
the layer is large and the stabilizing hydrostatic pressure is small. On the other hand,
the hydrodynamic H-mode prevails at large flow rates where the destabilizing inertial
effects become dominant. Nevertheless, Joo et al. [53] have shown that for a large
range of parameters, the S and H-modes are both present and actually reinforce each
other.
Interestingly, figure 7 shows an experimental picture recently obtained by Kabov et
al. [60] which evidences the possible coexistence between rivulet structures produced
by transverse thermocapillarity (see figure 2) and three-dimensional hydrodynamic
waves (that are also modified by thermocapillarity).

Figure 7: Picture showing the coexistence between three-dimensional hydrodynamic
waves flowing downstream and rivulets aligned with the flow induced by thermocap-
illary effect. The wall is heated at constant temperature and Re = 22. Courtesy of
O.A. Kabov [60].

Inhomogeneous heating

Many experimental studies performed by Kabov and coworkers have also focused on
thin films falling down inhomogeneously heated vertical plates and have revealed the
occurrence of novel instabilities [55, 62, 59, 58, 119], specifically in the case of a
locally heated film at small Reynolds number, as shown on figure 8. At the upper
edge of the heater, the temperature of the plate increases along the flow direction.
Consequently, as the temperature of the fluid surface increases, the surface tension
decreases. The concomitant surface tension gradient produces a Marangoni flow op-
posed to the gravitationally driven flow. As first reported by Kabov, Diatlov &
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Figure 8: Steady regular structure for a 10% ethyl-alcohol aqueous solution, Re = 1
[63]. The bright rectangular zone corresponds to the heater. The characteristic
wavelength of the structure is 10 mm, while the film thickness before the heater is
about 100µm.

Marchuk [61], the competing flow produces a horizontal bump of increased film thick-
ness at the upper edge of the heater, which may become unstable and develop rivulets
periodic in the spanwise direction, as shown on figure 8.

The phenomena shown on both figures 7 and 8 present some of the milestones for
this thesis. In both cases, the Marangoni effect plays a crucial role in the pattern
formation. In the homogeneous heating case of figure 7, the Reynolds number is
moderate (Re = 22) such that hydrodynamic waves have large amplitudes and become
rapidly three-dimensional. On the contrary, in the local heating case of figure 8,
the Reynolds number is small (Re = 1) such that hydrodynamic waves have small
amplitudes (at least not detected by the optical technique) while thermocapillary
effect is dominant and induces steady regular patterns. Therefore, depending on the
flow regime, as measured by the Reynolds number, different levels of simplification
can apply to the model equations (Navier-Stokes/Fourier equations), as discussed in
the next section.

Modelling

As already mentioned, the interfacial deformations (as those of figures 7 and 8)
are always long as compared to the film thickness. The cross-stream and stream-
wise/spanwise scales are thus separated, similar to the separation of scales sustaining
the boundary layer theory (Schlichting [123]). The approximations that lead to the
boundary layer equations also apply for thin film flows where the pressure is here
mostly governed by gravity and surface tension (Chang et al. [15, 16]). In thin film
theory, the separation of scales leads to the so-called lubrication approximation.

The large ratio between a typical wavelength of the instability and the average film
thickness enables us to perform a gradient expansion of the temperature and veloc-
ity fields and subsequently to obtain systems of equations of reduced dimensionality
which model the real dynamics of the flow. In the region where inertia is not impor-
tant, namely if the Reynolds number is small, the temperature and velocity fields turn
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out to be slaved to the kinematics of the free surface and a single evolution equation
for the film thickness h can be derived, as shown in next chapters.
For isothermal films, this was done first by Benney [7] followed by Gjevik [41, 42],
Lin [79], Atherton & Homsy [3] and many other authors (see the review by Oron,
Davis & Bankoff [97]). Benney’s approach is exact in the limit of small Reynolds
numbers but it breaks down at an O(1) Reynolds number leading to equations that
may exhibit non-physical finite-time blow-up (Pumir, Manneville & Pomeau [103]).
This behaviour is a sign of the own dynamics of the slaved modes for larger Reynolds
numbers. A solution to this unrealistic behaviour was proposed by Ooshida [93]
who modified the Benney expansion by using a Padé approximants regularization
procedure for divergent asymptotic series. Though the equation he obtained does not
suffer from the drawback of finite-time blow-up, it does fail to describe accurately the
dynamics of the film at moderate Reynolds numbers (in the region ∼ 10 − 30) since
its solitary-wave solutions exhibit unrealistically small amplitudes and speeds.
On the other hand, the so-called integral-boundary-layer (IBL) approach performs
much better in the region of moderate Reynolds numbers. This formulation com-
bines the assumption of a parabolic velocity profile within the film with the Kármán-
Polhausen averaging method of boundary-layer theory. The approach was first sug-
gested by Kapitza to describe stationary waves and later on extended by Shkadov and
coworkers [69, 126, 28, 29] to non-stationary and three-dimensional films. Nonlinear
waves far from criticality obtained from the IBL model are in quantitative agreement
with the boundary layer [28] and full Navier-Stokes equations for moderate Reynolds
numbers [27, 115, 104].
Despite the success of the IBL model in the nonlinear regime, it does not predict
very accurately neutral and critical conditions, except for large inclination angles;
indeed for a vertical falling film, the IBL model gives the correct value for the critical
Reynolds number, i.e. zero so that the flow is unstable for all Reynolds numbers.
For all other inclination angles, the IBL model introduces an error, typically of the
order of 20% for the critical Reynolds number. As shown by Ruyer-Quil & Manneville
[108], this discrepancy is due to the velocity profile assumed in the Shkadov method.
Although this profile seems to be in agreement with the experiments by Alekseenko,
Nakoryakov & Pokusaev [1], and hence does capture most of the physics, corrections
to the profile, known to exist at first order in the long-wave expansion (see chap-
ter 2), are important for an accurate prediction of the linear instability threshold.
Ruyer-Quil & Manneville [109] have then cured this discrepancy by combining a sys-
tematic gradient expansion with weighted residual techniques using polynomials as
test functions, obtaining models referred to hereafter as weighted-integral-boundary-
layer models (WIBL). Applying a Galerkin method, they obtained a new first-order
model, involving two coupled evolution equations only for the film thickness h and
the local flow rate q, as for the Shkadov’s equation. The only difference is in the coef-
ficients of the terms originating form inertial effects which allows to obtain a correct
instability threshold for all inclination angles. Another advantage of their model is
that it enables a correct representation of the velocity profile accounting for its devi-
ations with respect to the parabolic profile. Next, Ruyer-Quil & Manneville derived
a second-order model involving four equations, allowing the corrections themselves
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to evolve according to their own dynamics. Moreover they also proposed a simplified
second-order model involving two fields only, that can be derived by applying a gen-
uine Galerkin method. They pointed out the role played by the second-order viscous
dispersion on homoclinic chaos, wave profiles and stationary wave selection, using the
tools of dynamical-systems theory to study waves stationary in their moving frame.
The spatial evolution of the solutions of their model in the presence of noise or periodic
forcing compares favourably to both experiments and time-dependent simulations of
the boundary layer equations [109, 110].

For the problem of a film flowing down along a uniformly heated wall, Joo, Davis
& Bankoff [53] included in addition to thermocapillary effects, evaporation and in-
termolecular forces. They used the Benney long-wave (lubrication) approximation
to obtain an equation for the evolution of the local film thickness. In the absence
of evaporation effects and intermolecular forces, their evolution equation will be re-
ferred to hereafter merely as the Benney equation (BE), even though it includes the
Marangoni effect. These authors compared the influence of the H and S-modes on
the shape of the nonlinear waves by performing numerical experiments in time using
periodic boundary conditions. They observed, as already mentioned, that both insta-
bility modes reinforce each other. They also noted that the H-mode is more sensitive
to the local layer thickness – with the humps growing more rapidly than the troughs
– than the S-mode for which the growths at the crests or at the troughs are similar.
To our knowledge, the interaction between S and H-modes has only been studied
recently for moderate Reynolds numbers (i.e. outside the range of validity of BE)
by Kalliadasis et al. [67]. Their model is based on the Shkadov integral boundary
layer approximation. Therefore, as for the isothermal case, it does not suffer any
blow-up like the Benney equation and Kalliadasis et al. [67] could indeed calculate
solitary wave solutions for larger Reynolds numbers than the Benney equation, where
inertia effects are dominant as compared to the Marangoni effect. They recovered
the Benney equation as derived by Joo et al. [53] as a limit of their IBL model
for reasonably low Reynolds numbers where the velocity and temperature fields are
effectively slaved to the kinematics of the film thickness. Kalliadasis et al. [67] also
showed that for a vertically falling film the onset of the long-wave instability, of
either H or S-type, can be described by the Kuramoto-Sivashinsky equation, or the
Kawahara equation if dispersion is taken into account [72]. Nevertheless, the IBL
model obtained by Kalliadasis et al. [67] for the heated falling film suffers from the
same limitations than with the Shkadov IBL model for isothermal films, i.e. it does
not predict accurately the behavior of the film close to criticality when the plate is
inclined. One of our purposes in this work will be to overcome the limitations of the
model equations derived by Kalliadasis et al. [67].

Structure of this work

We introduced so far the main concepts and issues related to the investigations re-
ported in the present work. Let us now see how the latter is organized.

In chapter 1 are presented the governing equations and the boundary conditions
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to describe deformable film flows along a heated inclined plate. Two heat boundary
conditions at the plate are considered in parallel, namely a temperature and a heat flux
condition. In both cases, the base state is a flat film with a parabolic velocity profile
and a linear temperature profile across the layer. Then, a linear stability analysis is
performed with respect to two-dimensional normal mode disturbances from the flat
film solution. The two long-wave instabilities, namely the thermocapillary (S) and
the hydrodynamic (H) modes are mathematically identified. Finally, we apply the
boundary layer approximation for thin heated falling films, and obtain the ”boundary
layer equations”, which form the main model equations for the present study. From
these equations, two levels of simplification yield the Benney equation or the weighted
integral boundary layer equations, depending on the flow regime as measured by the
Reynolds number. Therefore, the remaining of this work is divided into two parts
corresponding to the low and the moderate Reynolds number cases, respectively.

Part I: Low Reynolds numbers

In chapter 2, we use a the long-wave asymptotic expansion to reduce the govern-
ing equations into one single evolution equation for the film thickness, namely the
Benney equation. This equation describes the dynamics of a thin falling liquid film
at small Reynolds numbers, including the Marangoni effect when the plate is at uni-
form temperature. Since this equation experiences singularities (finite-time blow-up)
when increasing the Reynolds number, we determined its ”validity domain” in the
parameter space by considering the boundedness of its solutions as well as their ac-
curacy. To this purpose, a weighted integral boundary layer model (developed later
in Part II) valid at higher Reynolds number than the Benney equation is used as
reference. Stationary solutions for both models are followed through parameter space
using continuation techniques. To consider stationary travelling waves the flow rate
in the moving frame has to be specified. Open and closed flow conditions are both
analysed.

In chapter 3, we extend the Benney equation developed in chapter 2 in the case of a
vertical plate with a non-uniform, sinusoidal temperature distribution. Therefore, in
addition to the thermocapillary long-wave instability, a second thermocapillary effect
appears due to the non-uniform heating imposed at the plate and leads to steady-state
deformations of the liquid-gas interface. The analysis is performed in the situation
when both thermocapillary effects are of the same order of magnitude. Actually, the
dynamics of such interaction is very rich and is described by means of stationary
solutions and direct numerical simulations. The enhancement of the heat transfer
due to permanent deformations and travelling waves is also assessed.

In chapter 4, we study theoretically and experimentally the rivulet instability oc-
curring when a falling film is locally heated from the wall (see figure 7). Firstly, the
base state that now depends on the streamwise coordinate is calculated and compared
with profiles measured in experiments. Secondly, a linear stability analysis of this base
state is performed. An energy analysis is applied in order to identify the instability
mechanisms. Finally, we explore the nonlinear regime using direct three-dimensional
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numerical simulations and make a comparative survey with our previously obtained
experimental data.

Part II: Moderate Reynolds numbers

In Chapter 5, the weighted integral boundary layer (WIBL) model valid for mod-
erate Reynolds numbers is obtained in the case of a constant temperature imposed
at the plate. To this purpose, we outline the weighted residual approach and use a
gradient expansion combined with a Galerkin projection with polynomial test func-
tions for both velocity and temperature fields. We obtain two model equations for
the evolution of the velocity and temperature amplitudes at first and second-order in
the expansion parameter. However, these equations are complex and hence not con-
venient for practical applications. A procedure is then described that enables us to
simplify our set of equations and to formulate models fully compatible with the Ben-
ney expansion up to second order. This approach results in systems of three coupled
nonlinear partial differential equations for the evolution of the local film thickness,
flow rate and interfacial temperature.
In chapter 6 we examine in detail the linear stability properties of the models
developed in chapter 5 and in particular we compare their neutral stability curves
with those obtained from the Orr-Sommerfeld eigenvalue problem of the full Navier-
Stokes/energy equations. This allows us to identify a model of reduced dimensionality
that is in very good agreement with Orr-Sommerfeld. The model is then used to ob-
tain nonlinear waves far from criticality. Particular emphasis is given to solitary
waves. We scrutinize the influence of the thermocapillary effect on the instability and
the properties of the solitary waves and we analyze the effect of Reynolds and Prandtl
numbers on the shape of the waves, flow patterns and temperature distributions in
the film.
In chapter 7, we extend our new model to the three-dimensional case in order to
describe solitary waves and rivulet pattern such as those of figure 8. For isothermal
conditions, we compare results of our 3D numerical simulations with experimental
data available in the literature, by considering two kind of external perturbations,
namely a periodic forcing and a white noise. Finally, a constant temperature at the
wall is also considered in the 3D simulations.
In chapter 8, we discuss two further topics. First, we formulate our new model in
the case of a heat flux condition imposed at the wall. We show that the formulation is
also applicable in the case of a temperature distribution dependent on the streamwise
coordinate. Secondly, we show the modification of our new model when considering
the small Biot number limit (i.e. small heat transfer coefficient).

Even though some conclusions are given at the end of each chapter, general conclu-
sions and perspectives are presented at the end of this text.
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Original contributions

The present work has been written with the intention of being as self-contained as
possible. For this purpose, it has been necessary to recall several well-established
concepts and theories.
Thereby, chapter 1 is devoted to the derivation of the basic equations and boundary
conditions, and does not contain any original contribution, except in §1.4 where linear
stability analysis is applied for two different heat boundary conditions at the wall,
namely the temperature and the heat flux conditions (including heat losses at the
substrate). To our knowledge, linear stability results related to this latter condition
is not available in the literature; the same as for the small-wavenumber expansion
performed in §1.4.2 in the case of a heated substrate (i.e. our analysis extending the
isothermal case).
In chapter 2, §2.1 recalls some generalities about the Benney equation. In §2.2, we
re-established earlier results through the long-wave expansion leading to the Benney
equation, including the Marangoni effect. However, this expansion is completed here
in the case of the heat flux condition imposed at the plate. Moreover, even in the
case of the temperature condition, the Benney equation obtained at second-order is
not available in the literature (§2.2.2). The remaining sections, from §2.3 to §2.8, are
original contributions reported in [122]. However, the Floquet analysis of §2.7 has
been performed by Christian Ruyer-Quil.
Chapter 3 about periodic heated falling films is an entirely original contribution that
was initially reported in [120, 118].
Chapter 4 compiles several previous works (performed in the frame of DEC2 and
DEA) about the instability of a thin film due to localized heating: the linear stability
analysis reported in [118, 128], the experimental data reported in [116, 117] and the
3D numerical simulations reported in [118]. Nevertheless, the chapter includes new
elements in the comparison between theory and experiments.
Chapter 5 and 6 present the modelling of a film flowing along an inclined plate
of uniform temperature, at moderate Reynolds numbers [111, 121]. The first and
second-order models have been obtained for isothermal conditions by Ruyer-Quil &
Manneville [108, 109, 110] who developed a suitable mathematical technique based on
the weighted residual method. Our original contributions are to have added second-
order corrections accounting for inertia, and to have included the Marangoni effect in
their model.
Chapter 7 shows the extension of our new models for three-dimensional films when
the local flow rate in the spanwise direction is of the same order of magnitude than the
one in the streamwise direction. This contribution is original, as well as comparisons
with available experimental data in the literature.
Chapter 8 presents the modifications in our new models to account for the heat flux
condition at the wall as well as for the small Biot number limit. They are both
original contributions.
Unless specified by ”courtesy of”, or if a reference is given, all the figures of this work
are original.



Chapter 1

Definition of the general problem
and primary instability

This chapter presents the main hypotheses sustaining the governing basic equations
(Navier-Stokes/Fourier) plus the boundary conditions for a falling and heated liquid
film with a “free surface” (§1.1). Because of relatively low (dynamic) shear viscosity
of the gas, we can expect that the influence of the gas motion in the liquid is neg-
ligible, and hence the terminology “free surface”, in the case of which a simplified
mathematical model may be used. Also we can ignore the temperature field in the
gas using some empirical boundary conditions for temperature. In this case, we can
consider the processes that take place only in the liquid phase. Such “one-fluid” ap-
proach may be justified only under some conditions (see, e.g., Golovin et al. [43]),
and in some cases makes it difficult to permit a comparison with experiments in the
framework of such an approach (because of unmeasurable empirical coefficients used).
Nevertheless, this approach may be useful for the qualitative description of the phys-
ical phenomena (see Nepomnyashchy, Velarde & Colinet [90]), and will be adopted
here.

In our formulation, two heat boundary conditions at the substrate are considered in
parallel, namely a temperature and a heat flux distribution. For the latter condi-
tion to be realistic, heat losses at the plate should be included, which implies one
empirical parameter more in the system of equations. The dimensionless equations
are obtained in §1.2. The base states are calculated from the system of governing
equations and a discussion on the heat transfer at the interfaces is addressed for both
heating conditions (§1.3). In both cases, the base state is a flat film referred to as the
“Nusselt solution” with a parabolic velocity profile and a linear temperature profile
across the layer. In §1.4 is performed a linear stability analysis of the base state iden-
tifying mathematically the two instability modes mentioned in the Introduction, i.e.
the long-wave thermocapillary (S) and hydrodynamic (H) modes; the former existing
in both longitudinal and transverse directions while the latter only in the longitu-
dinal (streamwise) direction. In §1.5, we truncate the basic equations to obtain the
so-called “boundary layer” equations in which the inertia terms in the cross-stream
momentum equation are neglected. The relevant sets of dimensionless parameters are
classified in §1.6. Finally, we present in §1.7 in terms of those parameters the two

15
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class of reduced models that will be studied in the remaining of this work.

1.1 Governing equations and boundary conditions

We consider a liquid film flowing down a wall of inclination β to the horizontal. The
flow is driven by gravity whose g is the acceleration factor. The mean film thickness
is noted h̄N. The wall can be heated either through a fixed temperature distribu-
tion Tw(x) or a fixed heat flux distribution qw(x). Figure 1.1 shows the geometry
of the problem and the coordinate system (x, y, z) with the origin at the wall, x di-
rected streamwise, y normal to the wall (cross-stream) increasing into the liquid and
z spanwise. The hypotheses are the following:

H1: The density ρ of the liquid is assumed to be constant, i.e. the liquid remains
incompressible. This assumption holds for very thin films (hN << 1mm), as
the ones considered in this work, where the buoyancy effect can be neglected
(see, e.g. , Birikh et al. [10] or Colinet et al. [23]).

H2: The liquid is Newtonian, implying a linear stress-strain relationship whose pro-
portionality factor is the dynamic viscosity µ. The kinematic viscosity is

ν = µ/ρ.

H3: In the heat equation, we shall neglect the frictional viscous heating which has
negligible influence for shallow liquid layers [23].

H4: The wall is rigid and solid.

H5: The evaporation is neglected so that the unknown position of the interface can
be described by its variable height

y = h(x, z, t),

taken as a single-valued function of the horizontal coordinates x and z (see
figure 1.1).

H6: Above the liquid layer, we assume the air to be passive. Its temperature T∞ and
pressure p∞ are supposed to be constant sufficiently far from the interface. A
necessary condition for a gas to be passive is that the viscous stress from the air
is negligible compared to that from the liquid side because the dynamic (shear)
viscosity of air is generally negligible compared with that of the liquid (for
instance, µair/µwater ≈ 10−2). This means that both phases are mechanically
decoupled, which enables to solve the momentum equation for the liquid without
having to solve it for the air. Note that despite the smallness of the dynamic
viscosity ratio between air and liquid, the opposite is true for the kinematic
viscosity (for instance, νair/νwater ≈ 10) [10].
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H7: The surface tension is assumed to decrease linearly with the temperature,

σ = σ∞ − γ(Ts − T∞), (1.1)

where σ∞ is the surface tension at the gas temperature and γ = −∂σ/∂T is
positive for common liquids.

H8: When a boundary (either the liquid-solid or liquid-gas boundary) possesses a
non-negligible thermal resistance, a difference of temperature may exist across
the boundary, and the continuity of the heat flux is often written

±λ∂yT = α(T − T0), (1.2)

where λ is the heat conductivity of the liquid, T is the liquid temperature at
the boundary, T0 is the temperature on the other side of the boundary, and α is
the heat transfer coefficient. Equation (1.2) is referred to as “Newton’s law of
cooling” in the absence of radiation. This relation is mathematically convenient
since it eliminates the need for solving Fourier’s equation at the solid and at
the gas phases. However, it is phenomenological in the sense that it defines
the heat transfer coefficient α and its validity thus depends on the particular
situation considered. Because the problem we have to solve is by nature non
stationary, α depends on time and position. Indeed, heat transfer at the liquid-
air interface, for instance, will be modified by the presence of thermal and
momentum boundary layers and the possible presence of convection. Moreover,
evaporation tough neglected in this work plays most often in reality a major
role in heat transfer. Therefore, evaluating the heat transfer coefficient is not a
straightforward task. Nevertheless, in our specific problem, we expect the wavy
regimes to more or less regularize the process of heat transfer (as discussed in
§3.4) and for simplicity α in the following will be assumed to be constant.

H9: The system geometry is assumed to be infinite in x and z directions.

For description of the bulk motions of the liquid we shall use the Boussinesq ap-
proximation (see, e.g. , [90]). In short, this approximation amounts to considering
all parameters like viscosity, heat diffusivity, etc., as having values not significantly
altered by the action of the (not too strong) thermal gradients. Within this approxi-
mation, the values of dynamic viscosity µ, kinematic viscosity ν, heat conductivity λ
and heat diffusivity χ are then assumed to be constant. Under these conditions, the
governing equations (using H1, H2 and H3) are respectively the momentum balance
(Navier-Stokes), the energy balance (Fourier) and the continuity equations,

dv

dt
= −ρ−1∇p+ ν∇2v + F, (1.3)

dT

dt
= χ∇2T, (1.4)

∇ · v = 0, (1.5)
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Figure 1.1: Sketch of a viscous liquid film flowing down an inclined wall.

where d/dt ≡ ∂t + (v ·∇) stands for the material derivative, ∂t is the partial deriva-
tive with respect to time t and ∇ ≡ (∂x, ∂y, ∂z)

t is the gradient operator. The fields
v = (u, v,w), T and p are respectively the fluid velocity, temperature and pressure
while F = (g sinβ,−g cos β, 0) is the body force. Finally, χ = λ/ρcp is the thermal
diffusivity where cp is the heat capacity of the liquid. Equations (1.3-1.5) should be
completed by the following boundary conditions:

At the wall y = 0,

• the no-slip velocity condition (H2 + H4),

v = 0, (1.6)

• the heating condition that can be either the temperature condition (TC)

T = Tw(x), (1.7)

in which case the wall is assumed to be a perfect conductor of heat of infinite
heat capacity; or the heat flux condition (HFC), using the Newton’s law (H8),

λ∂yT = −qw(x) + αw(T − T0), (1.8)

where qw(x) is the imposed heat flux and αw is the heat transfer coefficient that
quantifies the heat loss through the wall driven by a temperature difference in
which T0 is a constant temperature at the other side of the wall. For the sake
of simplicity, T0 will be set equal to T∞ in the following. The acronyms TC and
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HFC will be used hereafter to refer to the corresponding heating condition at
the wall, as one of our goals will be to compare these conditions.

The temperature or heat flux distribution at the wall can be split into two
components, namely the average (∧) and the non-uniform (∼) quantities:

Tw(x) = T̂w + T̃w(x) or qw(x) = q̂w + q̃w(x). (1.9)

This chapter deals essentially with the uniform heating but chapter 3 and 4 will
focus on the non-uniform heating in the case of which relations (1.9) will be
useful.

At the free surface y = h,

• the liquid-gas interface kinematic condition obtained by differentiating y =
h(x, z, t) with respect to t [23] (see H5),

d

dt
(h− y) = 0.

Using the definition of the material derivative, it provides a relationship between
the film thickness and the normal velocity component v = dy/dt at the free
surface:

v = ∂th+ v · ∇h. (1.10)

• the momentum jump condition (see H6 and H7),

(p∞ − p) n + P · n = σ(∇ · n)n − ∇sσ, (1.11)

where P = µ (∇v + (∇v)t) is the shear (viscous) stress tensor in the liquid
phase, n is the unit normal vector directed outwards the liquid phase and ∇s =
(I − nn) · ∇ is the surface gradient operator∗ [21]. Figure 1.2 shows the unit
normal vector at the point P of the film surface where the slope is positive
in x and z−directions. Then, proceeding from geometrical projections [2], its
expression in the Cartesian coordinates reads

n =
1

n
(−∂xh, 1,−∂zh),

where n = (1 + (∂xh)
2 + (∂zh)

2)
1/2

is the metric. The projection of (1.11) on
the normal n gives the normal stress boundary condition

p∞ − p + (P · n) · n = 2σK(h). (1.12)

where the mean film surface curvature is defined by

K(h) = −1

2
∇ · n =

1

2

∂xxh (1 + (∂zh)
2) + ∂zzh (1 + (∂xh)

2) − 2∂xh∂zh∂xzh

(1 + (∂xh)2 + (∂zh)2)3/2
.

∗The definition comes from the decomposition of the gradient operator ∇ on the film surface as
∇ = (I − nn) · ∇ + nn · ∇ = ∇s + nn · ∇.
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Defining two unit tangent vectors by

τx =
1

nx
(1, ∂xh, 0) and τz =

1

nz
(0, ∂zh, 1),

with ni = (1 + (∂ih)
2)

1/2
, the projections of (1.11) on them give the tangential

stress boundary conditions

(P · τi) · n = τi ·∇sσ i = x, z. (1.13)

h(x, z, t)

x

y

z

u

v
w

n

τx

τz

0

P

Figure 1.2: Definition of normal and tangent unit vectors at the film surface.

• the Newton’s cooling law (see H8),

−λ∇T · n = α(T − T∞), (1.14)

where α is the heat transfer coefficient between the liquid film and the ambient
air sufficiently far from the interface.
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1.2 Dimensionless equations and parameters

When the flow is stationary, of constant film thickness h̄N and in the case of uniform
heating (T̃w = q̃w = 0), the solution of the Navier-Stokes/Fourier equations is a parallel
flow where the viscosity balances exactly the gravity (Nusselt flow) and the heat is
propagated by pure conduction:

U(y) =
g sinβ

2ν
y(2h̄N − y) (1.15a)

V (y) = 0 (1.15b)

W (y) = 0 (1.15c)

P (y) = p∞ + ρg cos β(h̄N − y) (1.15d)

Θ(y) = T̂w − α(T̂w − T∞)

λ + αh̄N

y (TC) (1.15e)

Θ(y) = T∞ +
q̂w(λ + α(h̄N − y))

λ(α + αw) + ααwh̄N

, (HFC) (1.15f)

Equation (1.15a) has been initially obtained by Nusselt [92]. Following Ruyer-Quil
& Manneville [108], the physical characteristics of the film, the viscosity ν and the
streamwise gravity component g sinβ, are used to define the length and the time scales
as follows,

lν =

(
ν2

g sinβ

)1/3

and tν =

(
ν

(g sinβ)2

)1/3

.

The velocity and pressure scales are selected as

uν =
lν
tν

= (νg sinβ)1/3 and pν = ρu2
ν = ρ(νg sinβ)2/3.

For a layer of thickness lν, (1.15a) yields that uν equals twice the film surface velocity.
Therefore, lν is twice the distance covered by a fluid particle at the film surface, during
the time tν, in a gravity-driven Nusselt flow of constant film thickness lν . Note that
choosing to base our scaling on the streamwise gravity acceleration does not allow to
consider the limit of horizontal plane.
The temperature scale is chosen as

∆T = T̂w − T∞ (TC) (1.16a)

or

∆T = q̂wlν/λ (HFC), (1.16b)

depending on the heating condition. Note that the temperature difference for the
TC is suitable for the problem at hand while the one for the HFC corresponds to
the particular case of a perfectly insulating wall (αw = 0) and a perfectly conducting
gas phase (α → ∞). Certainly, the base state temperature (1.15f) would provide a
more realistic approximation of the temperature difference between the wall and the
ambient air,

Θ
∣∣
y=0

− T∞ =
q̂w(λ + αh̄N)

λ(α + αw) + ααwh̄N

. (HFC)
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Nevertheless, the impractical consequence is that it depends a priori on the flow
characteristics through the Nusselt film thickness h̄N. This could be avoided by
choosing as reference, a film of thickness lν. However the relation between lν and
the film thickness h of a deformed film surface is not trivial, which would make the
subsequent equations cumbersome. We therefore stick to the definition 1.16b.
Here the temperature T and the pressure p will be reckoned relative to their reference
values in the gas phase T∞ and p∞. Keeping the same symbols for the dimensionless
quantities, the dimensionless governing equations read therefore

∂tu+ u∂xu+ v∂yu+ w∂zu = −∂xp + ∂xxu+ ∂yyu+ ∂zzu+ 1, (1.17)

∂tv + u∂xv + v∂yv + w∂zv = −∂yp + ∂xxv + ∂yyv + ∂zzv − Ct, (1.18)

∂tw + u∂xw + v∂yw + w∂zw = −∂zp + ∂xxw + ∂yyw + ∂zzw, (1.19)

Pr (∂tT + u∂xT + v∂yT + w∂zT ) = ∂xxT + ∂yyT + ∂zzT, (1.20)

∂xu+ ∂yv + ∂zw = 0, (1.21)

and the dimensionless boundary conditions read

• at the wall y = 0:

u = v = w = 0, (1.22)

T = 1 + Fw(x) (TC) (1.23a)

or

∂yT = −1 − Fw(x) + BiwT (HFC), (1.23b)

where Fw(x) is the dimensionless distribution function of the non-uniform heat-
ing and has a zero average (see chapter 3). The uniform heating case corresponds
therefore to Fw = 0 in both cases TC and HFC.

• at the film surface y = h:

v = ∂th+ u∂xh+ w∂zh, (1.24)

p =
2

n2

[
(∂xh)

2∂xu+ (∂zh)
2∂zw + ∂xh∂zh(∂zu+ ∂xw)

−∂xh(∂yu+ ∂xv) − ∂zh(∂zv + ∂yw) + ∂yv]

− 1

n3
(Ka − MaT )

[
∂xxh

(
1 + (∂zh)

2
)

+ ∂zzh
(
1 + (∂xh)

2
)

−2∂xh∂zh∂xzh] , (1.25)

0 =
1

n

[
2∂xh(∂yv − ∂xu) +

(
1 − (∂xh)

2
)
(∂yu+ ∂xv)

−∂zh(∂zu+ ∂xw) − ∂xh∂zh(∂zv + ∂yw)]

+Ma(∂xT + ∂xh∂yT ), (1.26)

0 =
1

n

[
2∂zh(∂yv − ∂zw) +

(
1 − (∂zh)

2
)
(∂yw + ∂zv)
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−∂xh(∂zu+ ∂xw) − ∂xh∂zh(∂yu+ ∂xv)]

+Ma(∂zT + ∂zh∂yT ), (1.27)

BiT =
1

n
(∂xh∂xT + ∂zh∂zT − ∂yT ). (1.28)

The set of dimensionless numbers is:

- the inclination number

Ct = cot β, (1.29)

which compares the normal (cross-stream) component of the gravitational force
to its streamwise component. It quantifies the hydrostatic pressure force that
vanishes for a film falling vertically, i.e. Ct = 0.

- the Prandtl number

Pr =
ν

χ
(1.30)

which represents the ratio of momentum and heat diffusivities.

- the Kapitza number

Ka =
σ∞

ρ (g sinβ)1/3 ν4/3
, (1.31)

which compares surface tension force ∝ σ∞lν to force of inertia ∝ ρ(uν lν)
2 = ρν2.

- the Marangoni number†

Ma =
γ∆T

ρ (g sinβ)1/3 ν4/3
= Ka

γ∆T

σ∞
, (1.32)

which compares the force induced by surface tension gradient ∝ γ∆T lν to force
of inertia ∝ ρν2.

- the Biot number

Bi =
α lν
λ

=
αν2/3

λ (g sinβ)1/3
, (1.33)

describing the rate of heat transport from the liquid to the ambient gas.

- the wall Biot number

Biw =
αw lν
λ

=
αw ν

2/3

λ (g sinβ)1/3
, (1.34)

describing the rate of heat transport from the liquid to the wall. This number
appears only if the heat flux condition is used.

†The Marangoni number Ma differs by a factor Pr to the usual definition Ma =
γ∆T lν

µχ
, used to

quantify thermocapillary convection in horizontal layers [90].
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The original definition of the Kapitza number Ka⊥ = σ∞/ρg
1/3ν4/3 [69] implies only

the liquid properties and remains thus fixed once the liquid is selected. The reason is
that Kapitza made experiments on a vertical wall for which sinβ = 1 and therefore
the streamwise acceleration is simply g. However, the alternative definition Ka⊥ =
Ka
∣∣
sinβ=1

– and so forth for the other dimensionless numbers with the subscript ⊥ –

may be useful to study separately the influence of the wall inclination keeping constant
all the other parameters (see §2.6.3). In this case, we will introduce for readability
the two following numbers

S = sinβ and C = cosβ.

In the above unit system, the Reynolds number uνlν/ν that compares inertia to
viscous forces is equal to unity and does not appear explicitely in the equations. The
Reynolds number based on the film thickness h̄N and on the average velocity ūN is
hidden in the inlet boundary condition that defines the Nusselt solution (1.15a), used
as reference. In experiments, the control parameter that determines the Nusselt film
thickness h̄N is the specific volumetric flow rate‡

q̄N =

h̄N∫

0

U(y)dy =
g sinβh̄3

N

3ν
. (1.35)

It provides an other velocity scale ūN = q̄N/h̄N allowing to construct the film Reynolds
number

Re =
ūNh̄N

ν
=
q̄N
ν

=
g sinβh̄3

N

3ν2
. (1.36)

The Reynolds number appears therefore simply as the dimensionless flow rate qN =
q̄N/ν. Consequently, the dimensionless film thickness reads

hN =
h̄N

lν
= (3Re)1/3 . (1.37)

The definition of the Reynolds number can vary depending if the chosen characteristic
velocity is the mean velocity ūN, the velocity at the interface 3ūN/2 (see 1.15a) or the
speed of linear waves 3ūN (see later).
Another set of dimensionless numbers could be defined based on the Nusselt solution,
with h̄N and h̄N/ūN as the length and time scales, with

- the Weber number

We =
σ∞

ρgh̄2
N sinβ

=
Ka

h2
N

, (1.38)

that compares the surface tension pressure ∝ σ∞/h̄N to the viscous normal
stress generated by gravity at the film surface ∝ µūN/h̄N = ρgh̄N sin β. For
large We, the fluid behaviour is mainly determined by surface tension (e.g. at

‡The bar is used to distinguish dimensional from dimensionless quantities unless the distinction
is obvious.
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small h̄N), while gravity dominates for small We. The transition between these
two regimes occurs at a length scale obtained by setting We = 1. We then get
the capillary length scale, for a vertical wall (sinβ = 1),

lσ =

(
σ∞
ρg

)1/2

(1.39)

which is about 2.5 mm for water.

- the film Marangoni number

M =
γ∆T

ρgh̄2
N sinβ

=
Ma

h2
N

(TC) (1.40)

that compares stress induced by surface tension gradient ∝ γ∆T/h̄N to the
viscous normal stress generated by gravity at the film surface ∝ µūN/h̄N =
ρgh̄N sinβ. We have specified in (1.40) that the definition of M applies for the
TC when ∆T is given by (1.16b). This is important since the definition of M is
different for the HFC. Indeed, in this case, the temperature difference (1.16b) is
dependent on the lengthscale lν and should be rescaled here with h̄N such that

∆TN =
qwh̄N

λ

and M =
γ∆TN

ρgh̄2
N sinβ

=
Ma

hN
(HFC). (1.41)

Both definitions (1.40) and (1.41) will be used hereafter depending on the heat-
ing condition.

- the film Biot numbers

B =
αh̄N

k
and Bw =

αwh̄N

k
. (1.42)

1.3 Base state and discussion on the Biot number

In dimensionless form, the base state solution (1.15), using the scaling based on the
characteristic length lν and for a uniform heating (Fw = 0), reads

U(y) =
1

2
y(2hN − y) (1.43a)

V (y) = W (y) = 0 (1.43b)

P (y) = Ct(hN − y) (1.43c)

Θ(y) =
1 + Bi(hN − y)

1 + BihN
(TC) (1.43d)

Θ(y) =
1 + Bi(hN − y)

Bi + Biw(1 + BihN)
(HFC). (1.43e)
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In the following, we discuss separately the TC and HFC cases. For each of them, we
will analyse the influence of the Biot number on the base state surface temperature
and how it affects the Marangoni effect. Then, we will define a new Marangoni
number appropriate to the base state solution.

1.3.1 Temperature condition (TC)

The temperature of the undeformed free surface is obtained from 1.43d as

Θ
∣∣
y=hN

=
1

1 + BihN
, (1.44)

and consequently, the gradient of temperature between the surface and the wall

bs ≡
Θ
∣∣
y=0

− Θ
∣∣
y=hN

hN
=

Bi

1 + BihN
. (1.45)

Now let us consider the behaviour of (1.44) and (1.45) in the limits of Bi = 0 and
1/Bi = 0. The former corresponds to a null heat transfer coefficient, that is an
insulated free surface, and the latter to a null thermal conductivity, that is a layer of
fluid conducting the heat very poorly.

• If Bi = 0, (1.44) shows that the dimensionless temperature at the free surface
is unity, which means simply that the wall and the free surface have the same
temperature. Actually, the fluid temperature is uniform.

• In the limit 1/Bi = 0, (1.44) shows that the dimensionless temperature at the
free surface is equal to zero so that the free surface and the air have the same
temperature.

In both cases, the temperature of the free surface is independent of the film thickness
so that any perturbation of h does not affect the free surface temperature and the
Marangoni instability (the S-mode) does not occur. This can be made obvious by
defining a Marangoni number based on the base state solution, namely a flat film of
thickness h̄N with the temperature difference between the wall and the free surface

∆Ts ≡ (Tw − Ts) = bshN(Tw − T∞),

such as

M? =
γ∆Ts

ρh̄2
Ng sinβ

=
MaBi

hN(1 + BihN)
, (1.46)

where the product MaBi appears explictly through (1.45) and therefore goes to zero
if Bi goes to zero. Nevertheless, it can be noted that, in the case of a small Biot
number Bi � 1, which is generally the case for liquid films in contact with gases,
the base state temperature gradient can be assumed to be independent of the film
thickness, bs ≈ Bi. Within this limit, the base state temperature gradient is uniquely
defined by the heat transfer α and the conductivity λ. The small Biot number limit
is treated in details in §8.2.
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1.3.2 Heat flux condition (HFC)

In this case, the temperature of the undeformed free surface is obtained from 1.43e
as

Θs ≡ Θ
∣∣
y=hN

=
1

Bi + Biw(1 + BihN)
, (1.47)

and the gradient of temperature between the surface and the wall reads

bs ≡
Θ
∣∣
y=0

− Θ
∣∣
y=hN

hN
=

Bi

Bi + Biw(1 + BihN)
. (1.48)

Comparing to the TC case, the limit 1/Bi = 0 leads to the same conclusion while
the limit Bi = 0 is different. Actually, in this latter case, (1.47) shows that the
dimensionless temperature at the free surface is 1/Biw, and depends therefore on the
conduction properties of the wall.
Let us emphasize that the surface temperature Θs depends on the film thickness only
through the parameter Biw. If the latter is equal to zero, Θs = 1/Bi remains con-
stant. In other words, the thermocapillary instability is ineffective for an insulating
wall boundary condition [120]. Actually, in this case, the temperature gradient across
the film layer is independent of h (bs = 1), which implies that any elevation (depres-
sion) of the film thickness will be accompanied by an increase (decrease) of the wall
temperature Θ|y=0 = (1 + BihN)/Bi such that the film surface temperature remains
constant. Therefore, enabling heat losses at the wall through the mixed boundary
condition (1.8) is the only mean to enable a Marangoni effect when a heat flux is
imposed at the wall.
As for the TC case, let us define a temperature difference between the wall and the
free surface

∆Ts = bshN
qwh̄N

λ

such as

M? =
MaBi

Bi + Biw(1 + BihN)
. (1.49)

The Marangoni number M? based on the base state solution will be useful in the
linear stability analysis when the perturbations are precisely applied on the base
state temperature field.

1.4 Linear stability analysis

Referring to the isothermal case, it is known that the flat film solution appears very
rapidly after the inlet§. Nevertheless, because the Prandtl number Pr can be large for
liquids, we cannot assume the linear temperature profile to be obtained as soon as the

§It depends of course on the initial film thickness hi provided by the distributor. One can find in
Alekseenko et al. [1] that for hi/h̄N = 3, the distance xh necessary for the film to reach the Nusselt
flat film solution with an accuracy of 10−4, is xh/h̄N ≈ 1.2Re. For instance, a water film with
h̄N = 0.15mm and Re = 11 gives xh ∼ 2mm.
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flat film solution is formed. An approximation of the position of the plane after which
the temperature profile is linear can be obtained by considering the development of a
thermal boundary layer in a flat film (see [5]). It has been proved [5] that the thermal
boundary layer thickness grows proportionally to the Péclet number

Pe = Re Pr. (1.50)

Using integral boundary layer theory, with the approximation of a parabolic temper-
ature distribution T = 1 − 2(y/δT ) + (y/δT )2 in the thermal layer of thickness δT ,
one gets for the position x? on the plane where the thermal boundary layer thick-
ness is equal to the film thickness, x?/h̄N ≈ 0.04Pe so that for moderate Prandtl and
Reynolds numbers, the linear temperature distribution can be assumed soon after the
inlet. We will therefore make the assumption that the film reaches a state governed
by Equation (1.15) before it undergoes any instability.
Therefore we study here the stability of the flat film solution with regards to small
disturbances. In order to proceed analytically, the boundary conditions should be
homogeneous and the heating will still remain constant, i.e. Fw = 0 (the case of non-
uniform heating will be studied later). Goussis and Kelly performed this analysis in
the case of a constant temperature imposed at the wall (TC). However, they used
the film surface temperature Ts as reference which makes tricky the comparison with
experiments since Ts is unknown. Hence, we will rather use our scaling based on T∞,
and extend the development to the constant heat flux condition (HFC).
Let us introduce the following perturbation quantities of the base state solution (1.43)

v = (U + ũ, ṽ, w̃), T = Θ + T̃ , p = P + p̃, h = hN + h̃,

into the Navier-Stokes/Fourier/continuity equations (1.17)-(1.20) and linearize with
respect to the perturbations to obtain

∂tũ+ U∂xũ+ DUṽ + ∂xp̃− ∇2ũ = 0 (1.51)

∂tṽ + U∂xṽ + ∂yp̃ −∇2ṽ = 0 (1.52)

∂tw̃ + U∂xw̃ + ∂zp̃ − ∇2w̃ = 0 (1.53)

∂tT̃ + U∂xT̃ + DΘṽ − Pr−1∇2T̃ = 0 (1.54)

∂xũ+ ∂yṽ + ∂zw̃ = 0, (1.55)

with D = d/dy. The perturbed and linearized boundary conditions become

• at the wall y = 0:

ũ = ṽ = w̃ = 0 (1.56)

T̃ = 0 (TC) (1.57a)

or

∂yT̃ = BiwT̃ (HFC). (1.57b)
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The above conditions can be related to the effect of wall conductivity on the
instability and lead to two limiting cases of 1/Biw = 0 and Biw = 0 that make
the wall a perfect conductor or an insulator, respectively [132]. Actually, when
the film becomes unstable, the temperature perturbation is quickly suppressed
along the plate if the conductivity of the wall is much higher than that of
the liquid film. In the limiting case of a perfect conductor (1/Biw = 0), the
temperature perturbation along the wall vanishes and HFC (1.57b) reduces
to TC (1.57a). In the other case of an extremely poor conductor (Biw = 0),
the temperature perturbation in the film hardly has enough time to alter the
base flow heat flux at the onset of instability because of its extremely poor
conductivity. This corresponds to a constant heat flux case ∂yT̃ = 0. However,
this second case is very difficult to realize in experiments. It is therefore the
goal of having introduced the mixed condition (1.57b) which is more realistic.
Under this condition, the wall temperature is altered by the perturbations of
the base state.

• at the film surface y = hN:

ṽ = ∂th̃ + U∂xũ (1.58)

p̃ = Ct h̃− (Ka −MaΘ)∇2
xzh̃+ 2∂y ṽ (1.59)

h̃ = Ma(DΘ ∂xh̃+ ∂xT̃ ) + ∂yũ+ ∂xṽ (1.60)

0 = Ma(DΘ ∂zh̃+ ∂zT̃ ) + ∂z ṽ + ∂yw̃ (1.61)

∂yT̃ = −Bi(DΘ h̃+ T̃ ), (1.62)

where D2U = −1, D2Θ = 0, DP = −Ct, DU |hN
= 0, P |hN

= 0 and the
continuity equation (1.55) have been used. ∇2

xz = ∂xx + ∂zz is the laplacian
operator at the film surface.

The above system of equations can be rearranged to make appear only the pertur-
bations of the normal velocity ṽ, the temperature T̃ and the film thickness h̃. Let
us first apply the divergence operator to the Navier-Stokes equation in its vectorial
form, i.e. [∂x(1.51) + ∂y(1.52) + ∂z(1.53)]. With the use of the continuity equation
(1.55), it reduces to

∇2p̃ = −2DU∂xṽ. (1.63)

Applying then the Laplacian operator to the normal component of the Navier-Stokes
equation, i.e. [∇2(1.52)], and with the use of (1.63) to eliminate the pressure, plus
D2U = −1, we obtain

∇2(∂tṽ − ∇2ṽ) + (1 + U∇2)∂xṽ = 0. (1.64)

We do the same for the normal stress boundary condition to which we apply the
Laplacian operator. Given that, from (1.63), ∇2p̃|hN

= 0, and using the continuity
equation, [∇2(1.59)] becomes independent on the pressure and yields

Ct∇2
xzh̃− (Ka − MaΘ)∇2

xz∇2
xzh̃+ 2∇2∂yṽ = 0. (1.65)
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Besides, an other way to eliminate the pressure is to perform the operation [(1.52)−
∂y(1.59)] that leads to

∂tṽ − ∇2
xz ṽ + ∂yy ṽ + U∂xṽ = 0. (1.66)

Finally, the difference [(1.65)-∂y(1.66)] gives the final form of the normal stress bound-
ary condition

Ct∇2
xzh̃− (Ka − MaΘ)∇2

xz∇2
xzh̃ + 3∇2

xz∂yṽ + ∂yyy ṽ − ∂ytṽ − U∂xy ṽ = 0. (1.67)

Applying now the divergence operator to the vectorial tangential stress boundary
condition, i.e. [∂x(1.60) + ∂z(1.61)], and with the use of the continuity equation, we
get

∂xh̃− Ma(DΘ∇2
xzh̃+ ∇2

xzT̃ ) − (∇2
xz − ∂yy)ṽ = 0. (1.68)

Proceeding with the linear stability analysis we now substitute the perturbed quan-
tities by their normal mode expression




ṽ

T̃

h̃


 =




φ(y)
τ (y)
η


 exp{i(kxx+ kzz − Γt)}. (1.69)

where kx and kz are the wavenumbers in the x- and z-directions and Γ is the complex
pulsation. We rescale the variables from the base state film thickness hN through the
following transformation: (x, y, z, η,Γ) → hN(x, y, z, η,Γ), (t, kx, kz) → (t, kx, kz)/hN,
(φ,U) → h2

N(φ,U). This has the advantage that the dimensionless space interval
y ∈ [0, hN] is now [0, 1]. The transformation makes also appear the set of parameters
{Re,Ct,We,M,B} introduced in §1.2, and more appropriate to the linear problem.
The base state in this scaling is described by

U(y) =
1

2
y(2 − y) (1.70a)

V (y) = W (y) = 0 (1.70b)

P (y) = Ct(1 − y) (1.70c)

Θ(y) = 1 − By

1 + B
(TC) (1.70d)

Θ(y) =
1 + B(1 − y)

B + Bw(1 + B)
(HFC). (1.70e)

Introducing (1.69) into the governing equations (1.64,1.54) and the boundary condi-
tions (1.56,1.57,1.58,1.62,1.67,1.68) leads to

(
D2 − k2

)2
φ+ i3Re

[
(Γ − kxU)(D2 − k2) − kx

]
φ = 0 (1.71a)

(
D2 − k2

)
τ − 3RePr [DΘ φ− i (Γ − kxU) τ ] = 0 (1.71b)

φ(0) = 0 (1.71c)

τ (0) = 0 (TC) (1.71d)
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Dτ (0) = Bwτ (0) (HFC) (1.71e)

φ(1) + i
1

2
η (2Γ − kx) = 0 (1.71f)

η k
[
Ct + (We − MΘ(1)) k3

]
=

[
(D2 − 3k2) + i

3

2
Re (2Γ − kx)

]
Dφ(1) (1.71g)

(
D2 + k2

)
φ(1) + M [ηDΘ + τ (1)] k + ikxη = 0 (1.71h)

Dτ (1) + B [ηDΘ + τ (1)] = 0, (1.71i)

where k2 = k2
x + k2

z , 3Re has been substituted for h3
N (1.37), and U(1) = 1

2
has been

used. Let us stress that kx and kz play very different roles, even at linear perturbation
analysis, as the next two sections show explicitely.

1.4.1 Pure transverse perturbations: kx = 0, k = kz

When the film is horizontal, a mean flow does not exist and the instability is of
thermocapillary origin with no preferred direction [45, 23]. As announced in §1.2, our
scaling does not allow the β = 0 limit. Nevertheless, when the plane is slightly tilted
(β � 1), Sreenivasan & Lin [132] show that the instability at k = O(1) assumes the
form of longitudinal rolls. In this case (kx = 0), the basic velocity is absent from
the governing equations and the pure spanwise instability is stationary, which implies
the transformation Γ → is, where s is the real growth rate. The system (1.71), with
k = kz becomes (

D2 − k2
)2
φ− 3Re s

(
D2 − k2

)
φ = 0 (1.72a)

(
D2 − k2

)
τ − 3RePr [DΘ φ+ sτ ] = 0 (1.72b)

φ(0) = 0 (1.72c)

τ (0) = 0 (TC) (1.72d)

Dτ (0) = Bwτ (0) (HFC) (1.72e)

η =
φ(1)

s
(1.72f)

η k
[
Ct + (We − MΘ(1)) k3

]
=
[
(D2 − 3k) − 3Re s

]
Dφ(1) (1.72g)

(
D2 + k2

)
φ(1) + M [ηDΘ + τ (1)] k = 0 (1.72h)

Dτ (1) + B [ηDΘ + τ (1)] = 0, (1.72i)

with DΘ =
−B

1 + B
(TC) or DΘ =

−B

B + Bw(1 +B)
(HFC).

For usual liquids, M � We and Θ(1) = 1/(1+B) = O(1) such that we can neglect the
surface tension variation due to temperature in the normal stress boundary condition
(1.72g). Moreover, assuming that the marginal state is stationary [45], i.e. s = 0, the
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system (1.72) yields an analytic solution. The marginal (neutral) state, for the heat
flux condition first, is found as

M?
c =




16k [(B + Bw)k cosh k + (BBw + k2) sinh k] (2k − sinh 2k)

3PrRe
[
(3k2 + 12k4(Bw − 1)) cosh k − k cosh−4Bw sinh3 k

+4k2(2 + k2) sinh k]− 32k5(Bw cosh k + k sinh k)(Ct + k2We)−1


 (HFC)

(1.73)
where the relation M? = MbshN = −MDΘ, based on the base state solution (see 1.46
and 1.49), has been used for sake of generality. Indeed, it allows the limit Bw → ∞
of (1.73) to yield

M?
c =

4k(k cosh k + Bsinh k)(2k − sinh 2k)

3PrRe
(
k3 cosh k − sinh3 k

)
− 8k5 cosh k (Ct + k2We)

−1 , (TC) (1.74)

that corresponds to a perfect conducting wall. This latter expression (1.74) is iden-
tical to the critical Marangoni number found by Scriven & Sterling [125] and Smith
[129] for cellular convection in a horizontal layer heated from below. This may be sur-
prising since as announced in §1.2, our scaling does not allow to consider the limit of
horizontal layers. Hence, it merely means that the pure transverse instability modes
are decoupled to the gravity driven-flow and match therefore with the ones for a hor-
izontal layer, under the same conditions; the Reynolds number appearing in (1.74)
accounting only for the change of the mean film thickness with the flow rate.
In the same vein, note that (1.74) reduces to Pearson’s relation [100] in the limit
Ct,We → ∞, i.e. for an horizontal layer with non-deformable interface. Within this
limit, Pearson obtained also the critical Marangoni number in the case of a really
poorly heat conducting plate, i.e. Biw = 0, that can also be obtained directly from
(1.73).
Now, for finite Ct and We, a significant modification of the neutral stability result
occurs in the region of long waves (k → 0). Taking the zero wavenumber case k = 0
reduces (1.73) and (1.74) to

Ct =
3BwM?

2(B + Bw(1 + B))
(HFC) (1.75a)

Ct =
3M?

2(1 + B)
(TC), (1.75b)

which makes the critical Marangoni number constant. In the case of a perfectly
conducting plate (TC), M? ∼ h−1

N such that the long-wave instability is dominant for
very thin films unless the film is vertical (Ct = 0), in the case of which the film is
always unstable, i.e. for all hN (say Re). Let us consider then the vertical case and
the long-wave expansion of M?

c, i.e. k � 1. Under those conditions, (1.73) and (1.74)
yield the so-called cut-off wavenumbers that read

kc =

(
3BwM?

2We(B + Bw(1 + B))

)1/2

(HFC) (1.76a)
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kc =

(
3M?

2We(1 + B)

)1/2

(TC), (1.76b)

depending whether the wall is a poor or a perfect conductor, respectively. The cut-
off wavenumber provides the band of unstable normal modes 0 < k < kc for which
the linear growth rate of the corresponding disturbances is positive. The resulting
instability was classified by Goussis & Kelly [46] as the S-mode. Equations (1.76) can
also be obtained for an inclined wall by truncating the long-wave expansion at first-
order, provided k2We = O(1). Indeed, the surface tension is the only mechanism that
provides a cut-off wavenumber beyond which small wave disturbances are damped.

1.4.2 Pure longitudinal perturbations: k = kx, kz = 0

Yih [146] extended the Squire’s theorem to free surface flows [50]. He demonstrated
for zero Marangoni number, that the stability of the primary flow with respect to
two-dimensional disturbances determines also its stability with respect to three-
dimensional ones. Actually, he found that when the film is isothermal, the most
unstable disturbance, i.e. with the largest growth rate, consists of longitudinal waves
(kz = 0). The situation remains the same in the non-isothermal case, at least in the
long-wave k → 0 limit [46]. The equations governing the stability of the flow with
respect to streamwise disturbances are obtained from (1.71) by use of the transfor-
mations

φ = ikxϕ, Γ = kxc,

where ϕ is the normal mode amplitude of the stream function and c is the complex
wave speed. The use of the stream function – usually noted ψ and defined as u = ∂yψ
and v = −∂xψ – is justified here for an incompressible and a bidimensional flow. The
governing equations with k = kx become

(
D2 − k2

)2
ϕ+ i3Re k

[
(c− U)(D2 − k2) − 1

]
ϕ = 0 (1.77a)

(
D2 − k2

)
τ + i3RePrk [DΘ ϕ+ (c− U) τ ] = 0 (1.77b)

ϕ(0) = Dϕ(0) = 0 (1.77c)

τ (0) = 0 (TC) (1.77d)

Dτ (0) = Bwτ (0) (HFC) (1.77e)

η =
ϕ(1)

c− 1/2
(1.77f)

[
(D2 − 3k2) + i

3

2
Rek(2c− 1)

]
Dϕ(1) − iηk

[
Ct + (We − MΘ(1)) k2

]
= 0 (1.77g)

(
D2 + k2

)
ϕ(1) + ikM[ηDΘ + τ (1)]− η = 0 (1.77h)

Dτ (1) + B [ηDΘ + τ (1)] = 0. (1.77i)

Equation (1.77a) is referred to as the Orr-Sommerfeld equation. Let us perform now
a small-wavenumber analysis of the above system, following the method proposed by
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Yih [147] for the isothermal case. It consists in expanding ϕ, τ and c around their
solutions for k = 0. When k = 0, the system (1.77) reduces to

ϕ′′′′ = 0 (1.78a)

τ ′′ = 0 (1.78b)

ϕ(0) = ϕ′(0) = 0 (1.78c)

τ (0) = 0 (TC) (1.78d)

τ ′(0) = Bwτ (0) (HFC) (1.78e)

ϕ′′′(1) = 0 (1.78f)

ϕ′′(1) − ϕ(1)

c− 1/2
= 0 (1.78g)

τ ′(1) + B

[
ϕ(1)

c− 1/2
Θ′ + τ (1)

]
= 0, (1.78h)

where the prime is equivalent to the differential operator D. The integration of (1.78a)
gives: ϕ = A0y

3 + B0y
2 + C0y + D0. The no-penetration and no-slip conditions at

the wall (1.78c) and the normal stress condition at the free surface (1.78f) lead to
A0 = C0 = D0 = 0. The tangential stress condition (1.78g) at the free surface
determine the phase speed c0 = 1. The constant B0 remains undetermined since
the system is linear and homogeneous. For convenience, we will take B0 = 1 and
therefore,

ϕ0 = y2. (1.79)

At zero-order, the perturbed streamwise velocity is thus linear, ϕ′
0 = 2y, whose origin

is the viscous shear stress. Since c0 has no imaginary part, the perturbation is neither
amplified nor damped. The axis k = 0 is part of the marginal stability curve and
corresponds to the transition between one Nusselt solution to another one by change
of the flow rate, which is always a neutrally stable perturbation.
The integration of (1.78b) gives:

τ0 = E0 y + F0. (1.80)

The heat transfer conditions at the wall (1.78d) or (1.78e) and at the free surface
(1.78h) leads to

E0 = 2DΘ2, F0 = 0 (TC)

E0 = 2Bw DΘ2, F0 = 2DΘ2 (HFC),

where c0 = 1 has been used. Let expand now c, ϕ and τ around their solutions for
k = 0, as

c = c0 + ikc1 − k2c2 − ik3c3 + O
(
k4
)

ϕ = ϕ0 + ikϕ1 − k2ϕ2 − ik3ϕ3 + O
(
k4
)
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τ = τ0 + ikτ1 − k2τ2 − ik3τ3 + O
(
k4
)
,

and substituting their expression in (1.77). In the same way as for the zeroth order,
the resolution of the system at first-order leads to

ϕ1 = Re

(
y5

20
− y4

4

)
+

Ct

3
y3 +B1y

2 (1.81)

τ1 = Pe

(
− 3

40
E0y

5 − 1

8
(2DΘ − 2E0 + F0)y

4

−1

2
(E0 − F0)y

3 − 3

2
F0y

2

)
+ E1y + F1 (1.82)

c1 =
2

5
Re− 1

3
Ct − M

4
(2DΘ + E0 + F0). (1.83)

The constant B1 is unspecified (it actually replicates the solution at zeroth-order,
corresponding to a redefinition of B0). Since ikB1y

2 ∝ ϕ0, let us set B1 = 0 such that
ϕ1 appears as a true correction to ϕ0. The other constants become

E1 = G, F1 = 0 (TC)

E1 = Bw G, F1 = G (HFC),

where G = 2DΘ2(Ct −Re) +
2DΘ3M

1 + B
− PeDΘ

40B
[10(4 + B)DΘ

+(35 + 13B)E0 + 5(16 + 9B)F0] .

The first-order term of the phase speed ikc1 being imaginary, k2c1 will contribute to
the growth rate of the instability. If c1 < 0, the system will be stable and if c1 > 0,
the system will be unstable. Therefore, the condition c1 = 0 provides the relations
for a neutral disturbance:

Ct =
6

5
Re +

3M?

2(1 + B)
(TC) (1.84a)

Ct =
6

5
Re +

3BwM?

2(B + Bw(1 + B))
(HFC). (1.84b)

The right-hand side terms of (1.84) represent the destabilizing effects of inertia and
thermocapillary forces, respectively, while the left-hand side term represents the sta-
bilizing effects of hydrostatic pressure. When M? = 0, the above relation reduces
to Ct = 6

5
Re which defines the critical conditions for the surface wave or hydrody-

namic mode of instability (H-mode). Smith [130] has evidenced the role of inertia in
the occurrence of a phase shift between the interface location and the vorticity field
that originates this H-mode instability. For longitudinal rolls (say rivulets aligned
with the flow) Goussis & Kelly [46] have shown that there is no mechanism to allow
energy transfer from the mean flow to the disturbance, so that the term represent-
ing the mean shear is absent. Indeed, if the term Re of (1.84) is neglected, one
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recovers (1.75), which defines the critical conditions for thermocapillary instability
(S-mode) for long-wave disturbances. This result led to the conclusion that in the
k → 0 limit, transverse waves are more unstable (i.e. with higher growth rate) than
longitudinal rolls [46]. In summary, long-wave transverse and longitudinal modes are
equally affected by thermocapillarity, but the latter gets an additional destabilizing
contribution from inertia; H-mode and S-mode clearly reinforcing each other.

We can proceed further with the wavenumber expansion of the system (1.77) in the
same manner as for the first-order. Because of tedious algebra, we only report here
the results for the complex phase speed of the TC case:

c = 1 + ik

[
2

5
Re− Ct

3
+

M?

2(1 + B)

]
(1.85)

− k2

[
1 − 10

21
CtRe +

4

7
Re2 +

M?

80(1 + B)

(
57Re +

15 − 7B

1 + B
Pe

)]

− ik3

[
−3

5
Ct +

471

224
Re − 17363

17325
CtRe2 +

75872

75075
Re3 +

2

15
Ct2Re +

We

3
− M?

3B

+
M?

1 + B

[
M?

16(1 + B)

(
5Re +

3 − B

1 +B
Pe

)
− 49

120
CtRe +

2707

1792
Re2 +

(6 + 5B)

6(1 + B)

− (−5435 + B(2090 + 749B))Pe2

44800(1 + B)2
+

(9605 − 3653B)PeRe

22400(1 + B)
− CtPe(33 − 7B)

240(1 + B)

]]
.

Equation (1.85) will be used in the following to validate the new models. It actually
represents an exact asymptotic result that should be compared to simpler asymptotic
models. Since the validation will be made on the TC case in the following, we do
not report here the similar expression for the HFC case. Remark that the Weber
number appears only at the order three in the k−expansion. However, the surface
tension is the only physical effect that limits the growth rate of short waves (k →
∞) and then prevents waves from breaking. It implies that k2We = O(1) when k
corresponds to waves observed experimentally. In this case, the marginal stability
curve corresponding to a zero growth rate, i.e. =(c) = 0, can be obtained close to the
criticality by truncating the long wavelength expansion (1.85) at lowest order in k:

(
6

5
Re− Ct +

3M?

2(1 + B)

)
− k2

cWe = 0, (TC) (1.86)

where kc is the cut-off wavenumber. Relation (1.86) describes the neutral curve in the
parameter space, i.e. the locus where the growth rate is zero. In the same manner,
the wavenumber corresponding to the maximal growth rate, i.e. ∂(k=(c))/∂k = 0,
verifies (

6

5
Re − Ct +

3M?

2(1 + B)

)
− 2k2

mWe = 0, (TC) (1.87)

such that

km =
kc√
2
.
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Finally, the linear growth rate of the most unstable mode reads

sm = =(k c)
∣∣
km

=
(5Ct − 6Re)2

300We
− M?(5Ct − 6Re)

20(1 + B)We
+

3M?2

16(1 + B)2We
. (1.88)

Note that similar results are obtained with the HFC case although we will not need
them in the following.

1.5 Boundary layer equations

Since the issue of this work is to study the dynamics of thin films, where long-
wave instability modes (S and H) are dominant, we may expect an approximation to
apply in this context, arising from the smallness of the film thickness modulations
as compared to the film thickness itself. The answer is given by the boundary layer
approximation leading to the boundary layer equations. Those equations are obtained
in this section and will constitute the starting equations for the remaining chapters.
In the boundary layer theory, the strong viscous diffusion in the cross-stream y compo-
nent of the momentum equation ensures the coherence of the flow across the momen-
tum boundary layer whose thickness is a solution of the problem. Therefore, the flow
is laminar in the core of the viscous boundary layer and the inertia effects associated
to the motion of the fluid particles along the y−coordinate can be neglected. Thin
viscous film flows share the same characteristics such that the boundary layer theory
applies, but only as an approximation since the film thickness is a priori determined
by the flow rate.
To express that the slope of the interface is always small with regards to the film
thickness itself, we shall introduce a formal parameter ε� 1. This parameter, some-
times named the ‘film parameter’, should ensure slow time and space modulations of
the basic flat film solution (1.43). Practically, it consists in applying a gradient expan-
sion through the transformation (∂t, ∂x, ∂z) → ε(∂t, ∂x, ∂z) in the governing equations.
The continuity equation reads therefore

ε∂xu+ ∂yv + ε∂zw = 0,

which shows that ∂yv, and thus v, are of order ε. This suggests the transformation
v → εv such that

∂xu+ ∂yv + ∂zw = 0, (1.89)

in this scaling (which is used everywhere in what follows). The remaining of the
system (1.17-1.20), truncated at O(ε3), then becomes

ε (∂tu+ u∂xu+ v∂yu+ w∂zu) = −ε∂xp + ε2∂xxu+ ∂yyu+ ε2∂zzu+ 1 (1.90)

ε2 (∂tv + u∂xv + v∂yv + w∂zv) = −∂yp + ε∂yyv − Ct + O
(
ε3
)

(1.91)

ε (∂tw + u∂xw + v∂yw + w∂zw) = −ε∂zp + ε2∂xxw + ∂yyw + ε2∂zzw (1.92)

εPr (∂tT + u∂xT + v∂yT + w∂zT ) = ε2∂xxT + ∂yyT + ε2∂zzT. (1.93)

The dimensionless boundary conditions at the wall are still given by (1.22,1.23) –
it is necessary to assume slow variation of Fw(x) –, while at the free surface, the
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kinematic condition is given by (1.24). The other boundary conditions at the free
surface (1.25,1.26,1.27,1.28) are expanded in ε up to O(ε3):
at y = h(x, z, t),

p = 2ε(∂yv − ∂xh∂yu− ∂zh∂yw) − ε2(Ka − MaT )(∂xxh+ ∂zzh) + O
(
ε3
)

(1.94)

∂yu = −εMa∂xθ + ε2 (∂zh[∂zu+ ∂xw] + 2∂xh[2∂xu+ ∂zw] − ∂xv) + O
(
ε3
)

(1.95)

∂yw = −εMa∂zθ − ε2 (∂xh[∂zu+ ∂xw] + 2∂zh[2∂zw + ∂xu]− ∂zv) + O
(
ε3
)

(1.96)

∂yT = −BiT − ε2

(
Bi

2
T
[
(∂xh)

2 + (∂zh)
2
]
− ∂zh∂zT − ∂xh∂xT

)
+ O

(
ε3
)

(1.97)

where the surface temperature θ = T
∣∣
y=h

has been introduced through the relation

[(∂i + ∂ih∂y)T ]
∣∣
h
≡ ∂iθ with i = x, z.

The notation ·
∣∣
h

refers to the evaluation of the corresponding quantity at the free
surface y = h. The temperature at the film surface will appear as the relevant
variable in the following for the derivation of the new models in chapter 5.
At O(ε2), the momentum equations in the streamwise and spanwise directions, as well
as the energy equation are still exact. The O(ε2) dissipation terms ∝ ∂xx, ∂zz have an
effect on wave dispersion, in the linear and in the nonlinear regime, as pointed out by
Ruyer-Quil [107] for the isothermal case. Since the pressure is only coupled in (1.90)
and (1.92) through its gradient ∝ ε, a simple approximation of the pressure valid up
to O(ε) will be sufficient for its elimination while keeping the model consistent at
O(ε2). This elimination of p constitutes the main consequence of the boundary layer
approximation as explored initially for the isothermal case by Shkadov [126]. The
above procedure would obviously have been impossible with O(ε3) terms because of
the second-order inertia terms in (1.91).
Equations (1.95,1.96) show that ∂yu, ∂yw are at least of O(ε) at the free surface such
that (1.94) becomes

p
∣∣
h

= 2ε∂yv
∣∣
h
− ε2Ka(∂xxh+ ∂zzh) + O

(
ε2
)
, (1.98)

where the O(ε2) term corresponding to the surface tension has been conserved. In-
deed, as seen in §1.4.2, the surface tension cannot be neglected since it determines the
range of unstable wavenumbers 0 < k < kc and ensures the validity of the hypothesis
of slow time and space evolution. Setting ε2Ka → Ka, integrating (1.91) between y
and h, and using the boundary conditions (1.98) and (1.22), one obtain

p = Ct(h− y) − Ka(∂xxh+ ∂zzh) + ε(∂yv + ∂yv
∣∣
h
) + O

(
ε2
)
. (1.99)

The first term of the r.h.s. of (1.99) is the hydrostatic pressure that vanishes for
vertical walls (Ct = 0) while the third term accounts for higher-order viscous effects.
Then, substituting p into (1.90) and (1.92)) leads to

ε
[
∂tu+ ∂x(u

2) + ∂y(uv) + ∂z(uw)
]
− ∂yyu− ε2(2∂xxu+ ∂zzu+ ∂xzw)

= 1 − εCt ∂xh+ ε3Ka(∂xxx + ∂xzz)h − ε2∂x

[
∂yv
∣∣
h

]
(1.100a)
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ε
[
∂tw + ∂x(uw) + ∂y(vw) + ∂z(w

2)
]
− ∂yyw − ε2(2∂zzw + ∂xxw + ∂xzu)

= −εCt ∂zh+ ε3Ka(∂xxz + ∂zzz )h− ε2∂z

[
∂yv
∣∣
h

]
, (1.100b)

obtained by using the relation u∂xϕ + v∂yϕ + w∂zϕ = ∂x(uϕ) + ∂y(vϕ) + ∂z(wϕ) −
ϕ(∂xu + ∂yv + ∂zw) together with the continuity equation (1.21). We may refer to
(1.100) as the second-order boundary layer equations. As for the boundary layer
theory, the scale separation between x and y allows to neglect the inertia terms in
the cross-stream momentum equation, and therefore to eliminate the pressure from
the initial problem. That is the reason for calling (1.100) boundary layer equations
[78, 26]. The original boundary layer equation in isothermal conditions, that does
not contain the O(ε2) terms, was studied in its tri-dimensional version by Chang et
al. [14]. Yu et al. [148] have explored the two-dimensional second-order version of
the boundary layer equation but with an heuristic term to approximate the normal
pressure gradient, motivated in the case of a wall with curvature (cylindrical geom-
etry). They compared the marginal curve of instability predicted by their model to
the one corresponding to the Orr-Sommerfeld analysis as well as to the first-order
boundary layer equation. They obtained that for Re > 25 with Ka = 3371, the
viscous second-order terms should be taken into account to stay in qualitative agree-
ment with the Orr-Sommerfeld equation (figure 4 in [148]). In the nonlinear regime,
the significant role played by viscous dispersion on wave profiles and stationary wave
selection has been pointed out by Ruyer-Quil & Manneville [109, 110] already in the
range of 1 < Re < 10 with We = 76.4 (figure 4 in [109]). For these reasons, the new
models that will include also the non-isothermal conditions, will be developed in the
following up to second-order.
Because the modification of the surface tension with the temperature is neglected
in the normal stress boundary condition, the second-order boundary layer equations
(1.100) remain identical in the non-isothermal case. Then they should be completed
by the continuity equation (1.89), the energy equation (1.93) and the boundary con-
ditions (1.22, 1.23, 1.24, 1.95, 1.96, 1.97).

1.5.1 Two-dimensional boundary layer equations

The preceding system of equations can be reduced for a 2D flow (or parallel flow),
i.e. w = 0 and ∂z = 0, to

∂xu+ ∂yv = 0 (1.101a)

∂tu+ ∂x(u
2) + ∂y(uv)− ∂yyu− 2∂xxu = 1 −Ct∂xh+ Ka∂xxxh+ ∂x

[
∂xu
∣∣
h

]
(1.101b)

Pr (∂tT + u∂xT + v∂yT ) = (∂xx + ∂yy)T (1.101c)

∂th+ u
∣∣
h
∂xh = v

∣∣
h

(1.101d)

∂yu
∣∣
h

= 4∂xh∂xu
∣∣
h
− ∂xv

∣∣
h
− Ma∂x

[
T
∣∣
h

]
(1.101e)

∂yT
∣∣
h

= −Bi

(
1 +

1

2
(∂x)

2

)
T
∣∣
h

+ ∂xh∂xT
∣∣
h
, (1.101f)

where the formal parameter ε has been omitted. This system is completed by the
no-slip (1.22) and the heat boundary (1.23) conditions and will be used in chapter 5
as “starting equations” for the derivation of our new model.
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1.5.2 Pure longitudinal linear stability analysis

Let us compare the exact result of the Orr-Sommerfeld equation with the linear stabil-
ity analysis of (1.101). Introducing the base state set of parameters {Re,Ct,We,M,B},
the pure longitudinal linear stability analysis – i.e. for a uniform heating Fw = 0 – of
the second-order boundary layer model leads to solve

ϕ′′′− ik(Ct+ k2We)
ϕ(1)

c− 1/2
− k2(2ϕ′ +ϕ′(1))− i3Rek((U − c)ϕ′−ϕU ′) = 0, (1.102)

together with (1.77b) and completed by the boundary conditions (1.77c–1.77f, 1.77h,
1.77i). Following the same steps as in §1.4.2, the expansion of the linear system of
equations around k = 0 leads also to (1.85) for the TC, except the coefficient 14513

6720
≈

2.16 instead of 471
224

≈ 2.10 and the correction to the surface tension ik3M?/3B that is
missing. The small difference in coefficient is a consequence of the approximation on
the pressure gradient in the streamwise Navier-Stokes equation.

1.6 Sets of parameters

In this section, we first introduce a new scaling appropriate for nonlinear regimes
and next summarize the different sets of parameters introduced up to now with their
respective roles.
Comparisons of the shapes of the different waves can be made easier using a scaling
based on the intrinsic length-scales of the structures considered. Therefore let us
apply a change of scales due to Shkadov [127]. It will be noticed in next chapter
that the characteristic slope of the waves corresponds to fore-running capillary waves
that precede the main solitary humps. The breaking of the waves promoted by the
streamwise gravity force, which is unity in (1.101b), is stopped by the pressure gradi-
ent induced by the surface tension Ka∂xxxh. Therefore, the streamwise characteristic
lengthscale corresponding to this balance reads L = (KahN)1/3 and the ratio between
the two lengthscales is noted κ = L/hN. The characteristic slope is then given by
1/κ = (ρgh2

N sinβ/σ∞)1/3 = We−1/3. Applying the transformation

T : x→ Lx, (y, h) → hN(y, h), t→ L t/h2
N and (u, v) → h2

N(u, v/κ), (1.103)

some equations of the boundary-layer system (1.101) are modified as

R (∂tu+ u∂xu+ v∂yu)− (∂yy + 2η∂xx)u− η∂x[∂xu
∣∣
h
]

−1 + C∂xh − ∂xxxh = 0 , (1.104a)

PrR (∂tT + u∂xT + v∂yT )− (η∂xx + ∂yy)T = 0 , (1.104b)

∂yu
∣∣
h

= η
(
4∂xh∂xu

∣∣
h
− ∂xv|h

)
−M∂x

[
T
∣∣
h

]
, (1.104c)

∂yT
∣∣
h

= −B
(
1 +

η

2
(∂xh)

2
)
T
∣∣
h

+ η∂xh∂xT
∣∣
h
. (1.104d)
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A set of ‘reduced’ parameters appear

R =
h3

N

κ
=

3Re

We1/3
=

(3Re)11/9

Ka1/3
(1.105a)

C =
Ct

κ
=

Ct

We1/3
=

Ct(3Re)2/9

Ka1/3
(1.105b)

η =
1

κ2
=

1

We2/3
=

(3Re)4/9

Ka2/3
(1.105c)

M =
Ma

κh2
N

=
M

We1/3
=

Ma

Ka1/3(3Re)4/9
(1.105d)

B = Bi (3Re)1/3, (1.105e)

along with B already defined in (1.42). R is the reduced Reynolds number¶ and C the
reduced slope. The parameter η appears along with every second-order streamwise
dissipative terms in the momentum and heat equations. Similarly M is a reduced
Marangoni number. Note that with this scaling, the coefficient appearing in front of
the surface tension term ∂xxxh is fixed to unity.
We can summarize now the different sets of parameters and how relevant they are
with respect to the problem considered:

I the natural set : {Re,Ct,Ka,Ma,Bi,Pr} which is independent on the flow
characteristics. This set corresponds to the balance between viscosity and grav-
ity. It is useful in the physical interpretation of the numerical results, because
each of the physical parameters with which one might control the experiment
(i.e. the flow rate, the temperature difference or the heat transfer coefficient)
appears in only a single non-dimensional number. This is true at least for a
vertical wall. If we want to control separately the inclination angle, the set
{Re,C,S,Ka⊥,Ma⊥,Bi⊥,Pr} should be used.

II the base state set : {Re,Ct,We,M?,B,Pr} that is based on the unperturbed
Nusselt film thickness h̄N and will therefore be appropriate in the linear stability
analysis (see §1.4). For this reason, the Marangoni number M? is rather based
on the difference of temperature across the undisturbed layer of thickness hN

(see 1.46). Note that set II coincides to set I for a liquid film of thickness lν,
i.e. hN = 1.

III the nonlinear set : {R, C, η,M,B,Pr} that will be suitable when studying
nonlinear waves. This set is based on the characteristic length of capillary rip-
ples preceding solitary waves. The advantage of this scaling is to make explicit
the origin of the different terms in the equations: the inertial terms appearing
with R and the second-order viscous terms appearing with η. An other ad-
vantage of this scaling is that the parameters remain close to unity which is
interesting on a numerical point of view.

¶The reduced Reynolds number defined initially by Shkadov [127] is δ = R/45. This numerical
factor originates from a slightly different change of variables.
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In the following, we will refer to the different sets of parameters depending on their
usefulness. The two-dimensional boundary layer system of equations is given in ap-
pendix B for each set of parameters. This appendix gives also the relations between
all the parameters.

1.7 Reduction of the governing equations

The second-order boundary layer equations (1.100) with the energy equation (1.93)
do not constitute a real simplification of the initial problem. These equations have
actually the same dimensionality than the Navier-Stokes equations. The search of
nonlinear solutions of such models requires elaborate numerical techniques to track
the film interface. Among others, Ramaswamy et al. [105] have developed such a
numerical scheme using the finite-element method to simulate in time the film surface
location – the latter being updated through the kinematic equation (1.24) – in the
case of TC. However, the full-scale computations are complex to implement and
numerically time consuming.
The coherence imposed by the strong diffusion in the y–direction in the momentum
and heat equations, makes it be possible to eliminate the cross-stream y–coordinate
and derive models in terms of evolution equation(s) for one or more meaningful phys-
ical quantities that evolve only with position on the plane (x, z) and time t such as
the film thickness h, and additionally the flow rate q or, for example, the film surface
temperature θ. Many authors since decades (see reviews [28, 1, 15, 107]) have worked
in reducing the governing equations to derive such evolution equation(s). We will
identify here two main simplifications, depending on the flow regime considered, to
which the remaining of this work will be dedicated. It will therefore constitutes the
two following parts:

• Part I : Low Reynolds numbers. When inertia can be neglected with
respect to viscous effects, i.e. when εRe � 1, an asymptotic expansion in ε of
the governing equations allows to come up with a single evolution equation for
the film thickness h. This method was initially introduced for thin isothermal
falling film problems by Benney [7], who was followed by many authors up to
nowadays (see the review by Oron et al. [97]), having included many physical
effects such as heating, chemical reactions, evaporation, topological leveling,
etc. The success of this equation is mainly based on its great simplicity even
though it may experience singularities already at Re = O(1). Therefore, its
validity should be carefully established.

• Part II : Moderate Reynolds numbers. It is still possible to reduce the
dimensionality of the boundary layer equations, while keeping a model valid for
εRe ∼ 1. This is done by integrating the boundary layer equations across the
layer following the example of the Kármán-Polhausen method. This method
was introduced for falling film problems by Kapitza [69] and Shkadov [126]. In
this work, we will use the last improvement of this method developed recently
by Ruyer-Quil & Manneville [109, 110] who combined a gradient expansion
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to a weighted residual method in the cross-stream direction. The advantage
is that the resulting models agree with exact linear (long-wave) asymptotic
results while describing properly the nonlinear dynamics of falling films in a
wide range of parameters. An other advantage is that this method allows a
consistent representation of the velocity and the temperature fields at the given
order in ε.

In the case of large Reynolds number (e.g. Re = O(100)), the inertial effects become
predominant such that the boundary layer approximation fails in describing the wave
dynamics and the full-scale Navier-Stokes equation should be considered instead.
The different levels of simplification of the Navier-Stokes equations are summarized
in figure 1.3. Note that two level of simplification are identified depending on the
order of approximation in ε: The ε–models are suitable for systems of large Kapitza
number (Ka ∼ 103-104) while the ε2–models are suitable for smaller (Ka ∼ 10-102),
when the viscous effects are important. This will become apparent in the following.






Navier-Stokes (NS)

Boundary layer (BL)

Weighted integral boundary layer (WIBL)

Long-wave, Benney (BE)

O(ε) O(ε2) 3D:(x,y,z)

2D:(x,z)

εRe � 1

εRe ∼ 1

εRe � 1

Figure 1.3: Successive reductions of the Navier-Stokes equations.

The different approximations shown in figure 1.3 remain identical when the energy
equation is added to the system, i.e. for non-isothermal conditions, only if Pe = O(1).
If Pe > 1, the coupling between the velocity and the temperature fields may be large
enough to violate the approximation of small temperature gradients ∂xT, ∂zT ∼ ε.
This situation will be discussed in the last chapter of this work.
Whenever it is possible, we will validate the models developed later with the results
obtained in the present chapter, as far as linear stability analysis is concerned.
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Chapter 2

Benney equation including
Marangoni effect

In this chapter, the Benney equation including thermocapillary effects is derived and
used to study the dynamics of a liquid film flowing down a heated inclined wall. After
summarizing the state-of-the-art of the Benney equation (§2.1), we will present the
details of the long-wave expansion leading to its formulation (§2.2), as well as the
corresponding dynamical system enabling the search of stationary wave solutions in
their moving frame of reference (§2.3). The aim of this chapter is also to determine
the validity domain of the Benney equation by considering the boundedness of its
solutions as well as their accuracy. To this purpose, a weighted integral boundary
layer model (presented comprehensively in chapter 5) will be used as for reference
model. To consider stationary travelling waves the flow rate in the moving frame has
to be specified (§2.4). Open and closed flow conditions will be introduced and it will
be shown that only the former resembles experimental conditions and, furthermore,
yields bounded solutions for larger Reynolds numbers than the latter one. Station-
ary wave solutions for both models will be followed through parameter space using
continuation techniques (§2.5). In this way, the validity of the Benney equation will
be characterized specifying three boundaries, namely the parameter values where (i)
amplitudes of solitary waves exceed the ones of the reference model by 10%, (ii) only
solitary waves are unbounded yielding finite-time blow-up, and (iii) all the linearly
unstable modes lead to blow-up. The influence of surface tension, inclination, and
thermocapillarity on the boundaries will be evaluated (§2.6). Especially, the latter
two will be shown to strongly reduce the validity range of the Benney equation. Fi-
nally, it will be pointed out that the bounded solutions are unstable to disturbances
of larger periodicity (§2.7). So, for these solutions, coalescence of solitary waves may
be the pathway yielding finite-time blow-up.

2.1 The Benney equation

From a fundamental point of view, thin film flows are a reference topic for the study
of long-wave instabilities. Because the waves are always long as compared to the film

47
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thickness, it is a widespread practice to define a small parameter as the ratio of the
film thickness and the typical lengthscale of disturbances of the flow. It is called
film parameter and is denoted here by ε [15]. Though in the linear stage the film
parameter can be assimilated with the wavenumber, contrary to usual situations and
especially to the boundary-layer theory, the value of ε cannot be assigned a priori but
is rather given a posteriori by the (nonlinear) solution itself. Indeed, the separation
of scales is enabled by the smallness of the local steepness of the waves. Nevertheless,
the latter can vary strongly along the wave due to steepening of the fronts. At low
Reynolds number where the flow is dominated by viscosity and surface tension, the
maximal steepness of the wave is governed by a balance of the streamwise pressure
gradient produced by surface tension and the gravity acceleration along the plane.
This leads to a nonlinear estimate ε ∼ We−1/3. In the linear stage, however, this is
rather the balance between the pressure drop due to surface tension and the pressure
disturbance at the interface that leads to the estimate k ∼ ε ∼ We−1/2, hence to the
common assumption We ε2 ∼ O(1) [41].
The incompatibility between these two estimates can be resolved at low Reynolds
number where the classical long-wave expansion first proposed by Benney [7] applies.
Indeed at low Reynolds number, viscosity ensures the in-depth coherence of the flow
which allows to reduce the full set of equations to a single evolution equation for the
film thickness. It is usually truncated at the first or second order and still referred to as
the Benney equation (see the review by Oron et al. [97]). The slaving of the dynamics
of the flow to its kinematics is ensured by the smallness of the product εRe. In the
linear stage, the characteristic wavenumber is the cut-off wavenumber kc ∝

√
Re/We

for a vertical wall in isothermal conditions (see 1.86) such that εRe ∼ (ReWe−1/3)3/2.
Therefore both nonlinear and linear estimates lead to the definition of a reduced
Reynolds number ∝ ReWe−1/3 as introduced by Shkadov [127] (see 1.105a).
The Benney equation asymptotically predicts the linear stability threshold for long
waves (H-mode) in agreement with the Orr-Sommerfeld equation. It allows for
bounded nonlinear travelling wave solutions, waves that remain stationary in their
moving frame, extending to solitary waves, i.e. to infinite wavelength. Pumir et al.
[103] and Nakaya [89] constructed such solitary waves. However, Pumir et al. [103]
found that the Benney equation can lead to finite-time blow-up (singularities) when
the Reynolds number exceeds a limiting value. Beyond this value no solitary waves
can be observed. Obviously, the range of parameters for which the Benney equation
provides correct results is much more limited in the highly nonlinear regime corre-
sponding to solitary waves. One simple explanation is that localized objects in real
space are delocalized in Fourier space such that solitary waves involve a broad range
of wavenumbers.
Yet, the Benney equation is the most simple model of the dynamics of film flows. It
faithfully captures all physical mechanisms at low Reynolds number and its widespread
use still justify people’s interest for it [97].
The Benney equation is a particular case of the following evolution equation for the
film thickness h(x, t)

∂th+ ∂x

(
h3 + Φhm∂xh+ h3∂xxxh

)
= 0, (2.1)
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where m is a positive integer and Φ a positive parameter. For m = 6, the Benney
equation corresponding to a vertical and isothermal film (see §2.6.1) is recovered.
Hocherman & Rosenau [48] have conjectured that (2.1) leads to finite-time blow-up
when m > 3. Bertozzi & Pugh [8] refined this criterion proving that nonlinearities
with exponents m < 5 can yield yet bounded solutions under certain conditions.
Rosenau et al. [106] have integrated (2.1) for m = 6 in time using a sinusoidal mod-
ulation of the film thickness as initial condition. They identified Φ∗ ≈ 0.5 as limiting
value separating uniformly bounded solutions and finite-time blow-up. This value
appears to be independent of the initial frequency.
All these previous works agree on identifying the strong nonlinearity ∂x(h

6∂xh) as the
cause of the singularities found with the Benney equation. This term comes from the
inertial terms of the boundary layer equations. Furthermore, this behaviour seems to
be related to the presence or absence of solitary waves for the considered parameters
[103]. However, the finite-time blow-up has no physical meaning – experimentally,
the film does not break – and reduces strongly the parameter range for which the
asymptotic expansion is valid. Unfortunately, the addition of higher order terms
reduces the range of validity even more (see Salamon et al. [115]), asymptotic series
having usually poor convergence properties. Hence the idea appeared to regularize
the asymptotic expansion as performed by Ooshida [93] who formulated an evolution
equation that does not lead to singularities for any value of the Reynolds number.
However, his equation underestimates seriously the phase speed and the amplitude
of the waves at moderate Reynolds numbers. A second shortcoming of the Benney
equation is the slaving of the film dynamics to its kinematics. Far from threshold the
dynamics of the film cannot be described by the evolution of the free surface only.
Other variables related to the velocity field should be introduced. This will be the
subject of the second part of this work. However, we will already use here the first-
order weighted integral boundary layer, that possess one more variable, as reference
model in order to define the limit of validity of the Benney equation.
Let us turn now to the thermocapillary effect and first to the pure one, i.e. for a
horizontal liquid layer. Boos & Thess [11] followed numerically the evolution of a
horizontally oriented film profile towards rupture using the full set of equations in
combination with a linear temperature field, and identified a cascade of consecutive
‘structuring events’. The qualitative agreement between their results and those ob-
tained from the long-wave approximation for horizontal layers [95] indicates that the
main features of the physical system are well captured by this approximation, as far as
the S-mode is concerned. Weakly nonlinear analysis done by VanHook et al. [141] has
shown the subcritical character of the pure long-wave Marangoni instability. Thiele
& Knobloch [137] studied the transition between a horizontal and a slightly inclined
layer in the presence of the Marangoni effect. They showed that their bifurcation
analysis in the horizontal case shares similarities with the inclined problem only for
very small values of the inclination angle β. For larger inclinations the system behaves
much more like a ‘falling film’ even though their theory does not retain inertial effects
and the dominant balance in the direction normal to the wall is still hydrostatic.
Furthermore, for very small inclinations, they found the bifurcation from the flat film
to be always subcritical as for the case of horizontal films, while for sufficiently large
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inclinations it becomes always supercritical.
For inclined and vertical walls, the Marangoni effect has been incorporated into the
Benney equation by Joo et al. [53]. They examined numerically the interaction of the
two instability modes, namely hydrodynamic (H-mode) and thermocapillary insta-
bility (S-mode). They found that the thermocapillarity enhances the instability and
promotes a ‘dramatic behaviour’. They associated this behaviour with the results
of weakly nonlinear analysis by Gjevik [41] and Lin [79] where no stationary solu-
tions were found for small wavenumbers. Indeed, weakly nonlinear analysis involves
only a small number of harmonics and does not represent the highly nonlinear waves
observed by Kapitza [69] and computed by Pumir et al. [103] in this range of param-
eters. In the present chapter, the ‘dramatic behaviour’ found by Joo et al. [53] will
be shown to be connected to the finite-time blow-up of the Benney equation (§2.6.4).

2.2 Long-wave asymptotic expansion

As seen in the linear stability analysis (§1.4.2), the critical wavenumber at onset is
zero. It implies that the waves are always long as compared to the film thickness such
that k ∼ ε and at least not too far from threshold. Therefore, close to the critical
Reynolds number Rec, there is always a Reynolds number for which εRe � 1 is valid.
This hypothesis allows to neglect the inertial effects contained in dv/dt with respect
to the viscous effects. Following the steps introduced by Benney [7], one can express
the velocity, the pressure and the temperature fields by an asymptotic expansion of
the form

u = u(0) + εu(1) + ε2u(2) + O
(
ε3
)

v = v(0) + εv(1) + ε2v(2) + O
(
ε3
)

w = w(0) + εw(1) + ε2w(2) + O
(
ε3
)

(2.2a)

p = p(0) + εp(1) + ε2p(2) + O
(
ε3
)

T = T (0) + εT (1) + ε2T (2) + O
(
ε3
)
,

where v is of O(ε) by continuity (see 1.89).
This expansion could be also applied to the time-derivative, though not performed in
the following, such that ∂t = ∂t0 +ε∂t1+ε

2∂t2 +O(ε3) (one speaks about multiscaling).
If so, the long-wave assumption imposes that ∂t0 = 0, hence the time will not appear
explicitely in the zeroth-order system. This is indicative of the adiabatic elimination of
the short time dynamics necessary to establish the gravity/viscosity balance. Indeed,
this balance sets up with the short viscous time scale tvis = h̄2

N/ν. Therefore, as
already mentioned, the basic flow is assumed to be fully developed before it undergoes
any instability. The first perturbations due to inertia, introduced at first-order, will
set up with the long inertial time scale tine ∼ l/uN where l = 2πhN/k ∼ hN/ε
represents the length scale for the film thickness variations (see figure 1.1).
We now proceed with the asymptotic analysis by substituting (2.2a) into the system
(1.89–1.97) already expanded in series with respect to ε, and completed by (1.22–
1.24). At leading order, for ε → 0, the system reduces to (still considering ε2Ka =
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O(1))

∂yyu
(0) = −1 (2.3a)

∂yp
(0) = −Ct (2.3b)

∂yyw
(0) = 0 (2.3c)

∂yyT
(0) = 0 (2.3d)

∂yv
(0) + ∂xu

(0) + ∂zw
(0) = 0 (2.3e)

at y = 0

u(0) = v(0) = w(0) = 0 (2.3f)

T (0) (TC)
= 1 + Fw (2.3g)

∂yT
(0) − BiwT

(0) (HFC)
= −1 − Fw (2.3h)

at y = h

v(0) − u(0)∂xh −w(0)∂zh = ∂th (2.3i)

p(0) = −Ka (∂xxh+ ∂zzh) (2.3j)

∂yu
(0) = 0 (2.3k)

∂yw
(0) = 0 (2.3l)

∂yT
(0) + BiT (0) = 0. (2.3m)

This system at leading order corresponds to a steady flow governed by the balance
between gravity and viscosity.
The solution of (2.3) reads

u(0) = h2ȳ
(
1 − ȳ

2

)
(2.4a)

v(0) = −h2 ȳ
2

2
∂xh (2.4b)

w(0) = 0 (2.4c)

p(0) = Cth(1 − ȳ) − Ka (∂xxh+ ∂zzh) (2.4d)

T (0) (TC)
= (1 + Fw)

1 + Bih(1 − ȳ)

1 + Bih
(2.4e)

T (0) (HFC)
= (1 + Fw)

1 + Bih(1 − ȳ)

Bi + Biw(1 + Bih)
, (2.4f)

where the reduced coordinate ȳ = y/h has been introduced. The zeroth-order ap-
proximations for the film surface temperature, which will be used later, are

θ(0) (TC)
=

1 + Fw

1 + Bih
(2.5a)

θ(0) (HFC)
=

1 + Fw

Bi + Biw(1 + Bih)
. (2.5b)

Now, the remaining kinematic boundary condition (2.3i) plays the role of solvability
condition for the ε−hierarchy of equations. Thereby, introducing the zeroth-order
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solutions for the velocity into (2.3i) yields the leading order form of the evolution
equation for the film thickness

∂th+ h2∂xh = 0, (2.6)

which describes the downwards propagation of waves driven by gravity at the film
surface where, apparently, h2 plays the role of wave velocity. As compared to the
Burgers equation ∂th+ αh∂xh = υ∂xxh [145], (2.6) contains only the nonlinear prop-
agation effects – with the difference that α = α(h) is not constant here – but not
the diffusive effects. However, the latter are needed to prevent wave from breaking
and should therefore appear in the next order of the asymptotic expansion. Because
the heat transfer and the mechanical equilibrium of the flat film are two decoupled
problems in the zeroth-order limit, (2.6) does not involve the Marangoni effect, which
appears at first order in the tangential stress conditions (1.95,1.96).
At first-order with respect to ε, we obtain

∂yyu
(1) = ∂tu

(0)+u(0)∂xu
(0)+v(0)∂yu

(0)+w(0)∂zu
(0)+∂xp

(0) (2.7a)

∂yp
(1) = ∂yyv

(0) (2.7b)

∂yyw
(1) = ∂tw

(0)+u(0)∂xw
(0)+v(0)∂yw

(0)+w(0)∂zw
(0)+∂zp

(0) (2.7c)

∂yyT
(1) = Pr−1(∂tT

(0)+u(0)∂xT
(0)+v(0)∂yT

(0)+w(0)∂zT
(0)) (2.7d)

∂yv
(1) + ∂xu

(1) + ∂zw
(1) = 0 (2.7e)

at ȳ = 0

u(1) = v(1) = w(1) = 0 (2.7f)

T (1) = 0 (TC) (2.7g)

∂yT
(1)−BiwT

(1) = 0 (HFC) (2.7h)

at ȳ = 1

v(1)−u(1)∂xh−w(1)∂zh = 0 (2.7i)

p(1) = 2
(
∂yv

(0) − ∂xh∂yu
(0) − ∂zh∂yw

(0)
)

(2.7j)

∂yu
(1) = −Ma

(
∂xT

(0) + ∂xh∂yT
(0)
)

(2.7k)

∂yw
(1) = −Ma

(
∂zT

(0) + ∂zh∂yT
(0)
)

(2.7l)

∂yT
(1)+BiT (1) = 0. (2.7m)

We see that the left-hand sides of (2.7) and (2.3) are identical, and thus will be the
case at all orders in ε. Instead of the kinematic condition (2.3i) as compatibility
condition we could have used the standard Fredholm’s alternative∗ [142].
The solution of the system at first-order reads

u(1) = h2

(
ȳ2

2
− ȳ

)
(Ct∂xh− Ka (∂xxxh+ ∂xzzh)) − Mahȳ∂xθ

(0)

∗In short, when a homogeneous system of equation has a trivial solution, the Fredholm’s alterna-
tive states that the non-homogeneous system will have a solution if the linear differential operator
(that applies here at the left-hand-side of the system 2.7) will have a non-trivial solution provided
the right-hand-side is orthogonal to the solutions of the self-adjoint problem [36].
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+
1

3
h5∂xh

(
ȳ4

8
− ȳ3

2
+ ȳ

)
(2.8a)

w(1) = h2

(
ȳ2

2
− ȳ

)
(Ct∂zh− Ka (∂xxzh+ ∂zzzh)) − Mahȳ∂zθ

(0) (2.8b)

p(1) = −h∂xh(ȳ + 1) (2.8c)

T (1) (TC)
=

PrBih4∂xh

(1 + Bih)2

[
−Bih

40
ȳ5 +

1 + 3Bih

24
ȳ4 − Bih

6
ȳ3

−10 −Bih(5 + 4Bih)

60(1 + Bih)
ȳ

]
(2.8d)

T (1) (HFC)
=

PrBiBiwh
4∂xh

(Bi + Biw(1 + Bih))2

[
−Bih

40
ȳ5 +

1 + 3Bih

24
ȳ4

−Bi

6

(
h− 1

Biw

)
ȳ3 − Bi

2Biw
ȳ2 +

(
ȳ +

1

Biwh

)

×30Bi − 10Biw + Bih(5(4Bi + Biw) + 4BiBiwh)

60(Bi + Biw(1 + Bih))

]
, (2.8e)

where the film surface temperature θ(0) = T (0)
∣∣
ȳ=1

has been introduced (see 2.5) and

Fw = 0 for simplicity. The first-order corrections of the surface temperature read

θ(1) (TC)
=

PrBih4∂xh(7Bih− 15)

120(1 + Bih)3
(2.9a)

θ(1) (HFC)
=

PrBih3∂xh(60Bi − 20Biw + Biwh(35Bi − 15Biw + 7BiBiwh))

120(Bi + Biw(1 + Bih))3
, (2.9b)

and the first-order contribution to the cross-stream velocity is found by continuity,
i.e. v(1) = −

∫
(∂xu

(1) + ∂zw
(1)) dy which is a fifth-order polynomial in ȳ. To obtain

the above solutions, the time-derivatives ∂th and ∂xth have been estimated using the
zeroth-order expression (2.6), i.e. ∂th = −h2∂xh + O(ε). This rule also applies for
∂tθ

(0) since θ(0) is slaved to the film thickness.

2.2.1 Evolution equation for the film thickness

Substituting now u(1), v(1), w(1) into the kinematic condition (2.7i) yields the first-
order correction to the evolution equation of the film thickness. This evolution equa-
tion reads in its three-dimensional form

∂th+ h2∂xh+ ε
2

15
∂x(h

6∂xh) + ε∇ ·
[
−Ct

h3

3
∇h− Ma

h2

2
∇θ(0) + Ka

h3

3
∇∇2h

]
= 0.

(2.10)
Equation (2.10) may be written in a conservative form ∂th+∇·q = 0 where q = (q, p)
is the local flow rate in the (x, z)–plane at time t. Let us now consider a parallel
flow such that the spanwise component of the flow rate is zero, i.e. p(x, z, t) = 0.
The streamwise component of the flow rate written first for the Burgers equation
reads q(x, t) = 1

2
αh2 − υ∂xh. The comparison to the evolution equation (2.10) yields
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h−dependent coefficients on the form α(h) = 2
3
h and υ(h) = − 2

15
h6 + 1

3
Cth3 −

1
2
MaBih2/(1 + Bih)2 where θ(0) from (2.5a) has been used as an example. Since
υ accounts for diffusive effects, its terms that are positive will be stabilizing while
the ones that are negative will be destabilizing and yield instability. It remains an
additional term to the flow rate q, namely β∂xxxh with β = 1

3
Kah3, that is a higher-

order diffusive term still stabilizing if positive.
Back to (2.10), we can now assess that the third term, that originate from inertia,
causes the hydrodynamic instability (H-mode), the fourth one represents the stabiliz-
ing effects of the hydrostatic pressure, the fifth one is responsible for the thermocapil-
lary instability (S-mode) and the last one accounts for the stabilizing surface tension.
The two-dimensional version ∂z = 0 of (2.10) in isothermal conditions (Ma = 0) is
referred to as the Benney equation. By extension, this name is often used to designate
any long-wave evolution equation obtained to describe the dynamics of thin falling
films, specifying which additional physical effect has been included, namely here the
Marangoni effect. Equation (2.10) was first obtained by Joo et al. [53].

2.2.2 Higher-order terms in the Benney equation

It is useless to proceed at third-order for the following reason: the effects of inertia in
the cross-stream component of the Navier-Stokes equation should appear at this order
(through the elimination of the pressure). Nevertheless, those effects are neglected
by the boundary layer approximation whose depends directly the Benney equation.
On the contrary, the second-order is still consistent with the boundary layer approx-
imation and the results will be used in the second part of this work to validate our
new models. Because the calculations at this order are cumbersome, we present only
the final result here.
Still considering a parallel flow, a uniform heating (Fw = 0), with the temperature
condition (TC), the second-order Benney equation reads

∂th+ ∂x

(
q(0) + εq(1) + ε2q(2) + ε3 Ka

3
h3∂xxxh

)
= 0 , (2.11)

where the flow rate q(x, t) has been expanded relative to the order of its derivative,
with

q(0) =
1

3
h3 (2.12a)

q(1) =

(
2

15
h6 − 1

3
Cth3 +

MaBih2

2(1 + Bih)2

)
∂xh (2.12b)

q(2) =

(
127

315
h9 − 8

15
Cth6 +

7

3
h3 (2.12c)

+MaBih56(5Pr + 11) − 5Bi(2Pr − 15)h + Bi2(−7Pr + 9)h2

120(1 + Bih)4

)
(∂xh)

2

+

(
4

63
h10 − 10

63
Cth7 + h4 + MaBih615Pr + 57 + Bi(−7Pr + 57)h

240(1 + Bih)3

)
∂xxh .
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Note that q(2) has been obtained without having to solve for the gradient expansion
of the surface temperature θ at second order. Indeed, θ is coupled to q through its
gradient – already of O(ε) – such that only θ(1), expressed by (2.9a) was necessary.
As already mentioned, in order to keep every relevant physical effects in our formu-
lation, the first contribution of the surface tension – though of O(ε3) – has been kept
in (2.11). However, due to the poor convergence of the present asymptotic expan-
sion (see §2.5.2), the contributions of the surface tension at higher order have been
removed.

2.2.3 Weakly nonlinear models

It is still possible to simplify the long-wave evolution equation if we assume the wave
amplitude η of the free surface to be limited. This is always true in the vicinity of
the critical point, at Rec (e.g. Rec = 0 for a vertical wall). This procedure has the
advantage to retain only a small number of nonlinear terms and thus to suppress the
strong nonlinearities introduced by the inertial effects that may be responsible for the
finite-time blow-up.
Let us then substitute h = hN(1 + ςη) with ς � 1 into the second-order BE (2.11)
for the isothermal conditions (Ma = 0). Its amplitude expansion gives, rescaling
t→ t/3Re and assuming ς at least of O(ε2) through the transformation ς → ε2ς (to
keep only the first nonlinearity η∂xη accounting for wave propagation),

∂tη + ∂xη + 2ε2ςη∂xη + ε

(
2

5
Re − 1

3
Ct

)
∂xxη

+ε2

(
1 +

4

7
Re2 − 10

21
CtRe

)
∂xxxη + ε3 1

3
We∂xxxxη = O

(
ε3
)
, (2.13)

where the base state set of parameters has been used – with ε2We = O(1) – since
the problem concerns small amplitude deformations about the flat film solution. Pro-
ceeding to the following change of variables:

T =
12(Re − Rec)

2

25We
t, X =

[
6|Re − Rec|

5We

]1/2

(x− t)

and H =
25We

24(Re − Rec)2

[
6|Re− Rec|

5We

]1/2

η,

with Rec = 5
6
Ct and Re −Rec = O(ε), we obtain the Kawahara equation [72]:

∂TH + 4H∂XH + εc ∂XXH + δ ∂XXXH + ∂XXXXH = 0, (2.14)

where εc is the sign of (Re− Rec) and

δ =

[
15

2We|Re− Rec|

]1/2 [
4

7
Re(Re − Rec) + 1

]
.
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The Kawahara equation accounts for wave dispersive terms occuring at second-order.
If the dispersion vanishes (δ = 0), the Kawahara equation reduces to the Kuramoto-
Sivashinsky equation. Both of these equations have been extensively studied in liter-
ature in order to model correctly the solitary wave formation [72, 73, 20, 18]. They
provide a paradigmatic model for the application of the dynamical systems approach
to turbulence [90].
When the Marangoni effect is considered at the film surface then an additional non-
linearity of the form ∂x(η∂xη) appears [39]. The influence on the dynamical behaviour
of this additional term as a destabilizing factor (according to its sign in the equation)
was elucidated in [51]. In the same way as (2.13) was obtained, but now with M? 6= 0,
we can write, up to O(ε3) in order to get the expected nonlinearities,

∂tη + ∂xη + 2ε2ςη∂xη + ε

(
2

5
Re − 1

3
Ct +

M?

6(1 + B)

)
∂xxη

+ε2

(
1 +

4

7
Re2 − 10

21
CtRe +

M?Re(57 + B(57 − 7Pr) + 15Pr))

240(1 + B)2

)
∂xxxη

+ε3ς

(
12

5
Re− Ct +

M?

3(1 + B)2

)
∂x(η∂xη) + ε3 1

3
We∂xxxxη = O

(
ε4
)
, (2.15)

that can be rewritten, using a suitable Galilean transformation in order to eliminate
∂xη, in the form

∂tη + α1η∂xη + α2∂xxη + α3∂xxxη + α4∂xxxxη + α5∂x(η∂xη) = 0. (2.16)

This latter equation is referred to as the Korteweg-de-Vries-Kuramoto-Sivashinsky-
Velarde equation [22] that reduces to a slightly dissipation-perturbed Korteweg-de-
Vries equation when α2, α4, α5 are small, while it appears as an extension of the
Kuramoto-Sivashinsky equation for small α3, α5 [75].
It is worth noting that even though strong nonlinearities do not occur anymore in
weakly nonlinear models, they may still yield finite-time blow-up depending on the
initial conditions as for instance pointed out by Kliakhander et al. [75]. They ac-
tually showed that the dissipation-perturbed Korteweg-de-Vries equation may lead
a localized and finite-amplitude initial disturbance (like a soliton) to blow-up in a
finite-time.

2.2.4 Primary instability

To analyse the linear stability of the uniform flat film in the same way than in §1.4,
one imposes a small harmonic disturbance writing

h = hN + η exp {i (k x− c t) + s t)} , (2.17)

where η, k, c and s are real and represent, respectively, the amplitude, the wavenum-
ber, the phase speed and the growth rate of the disturbance. Inserting the normal
mode representation (2.17) into the two-dimensional form of (2.10) and linearizing in
η yield the linear phase speed and growth rate:

c
L

= h2
N, (2.18)
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s = k2h3
N

(
2

15
h3

N − 1

3
Ct +

1

2

BiMa

hN(1 + BihN)2
− 1

3
Ka k2

)
. (2.19)

The surface waves will grow for s > 0, i.e. for disturbance wavenumbers smaller than
the critical (cut-off) wavenumber

kc =
1

Ka1/2

(
2

5
h3

N − Ct +
3

2

BiMa

hN(1 + BihN)2

)1/2

. (2.20)

This surface wave instability is named primary instability and corresponds to a Hopf
bifurcation from the flat film solution. The emerging branch of solutions will be called
supercritical (subcritical) if it bifurcates towards the region where k < kc (k > kc).
Equation (2.19) may be written generically as s(k, µ) = µk2 − k4 + O(k6) (suitably
rescaling time and µ) where µ denotes a control parameter. In each case, there exist an
eigenvalue s(k, µ) such that s(0, µ) = 0 for all µ while s(k, µ) remains small at small k.
Such a long-wave mode is named Goldstone mode [13] in Condensed Matter Physics
and is linked with a particular conservation law. Here, for the surface deformational
mode, the corresponding Goldstone mode is a shift of the height of the interface (from
one Nusselt solution to another one), which is neutrally stable as long as the shift
is uniform [23]. This explains that the axis k = 0 in the (µ, k)−plane (with s = 0)
is part of the neutral stability curve. Notice this long-wave mode had been already
obtained in §1.4.2 (see 1.86 with the base state set of parameters), what confirms that
2.20 is an exact asymptotic result.

2.3 Search for stationary wave solutions

To study the solution behaviour, we employ bifurcation analysis using numerical
continuation techniques [30]. Continuation is a very effective method to determine
branches of stationary solutions (possibly in a moving frame) and their bifurcations by
following them through parameter space using Newton’s method [30]. For thin films
continuation was applied in studies of travelling and solitary waves of film flows down
inclined walls [15, 109, 110, 120], sliding drops on slightly inclined planes [138, 137],
and transversal instabilities of sliding liquid ridges [135].
We seek periodic travelling waves of wavelength λ, in the form of stationary 2D
solutions in a frame of reference moving downstream at velocity c [103]. Introducing
h(x, t) = h(ξ) with ξ = x− c t, (2.10) can be integrated once to yield

−c h+
h3

3
−Q+

2

15
h6h′ + Ka

h3

3
h′′′ − Ct

h3

3
h′ +

h2

2

BiMah′

(1 + Bih)2
= 0, (2.21)

where the prime denotes the derivative with respect to ξ. Q is the integration constant
and represents the flow rate in the moving frame of reference, as shown in the following
by (2.27). Its value is negative because the phase speed c of surface waves is generally
larger than the mean velocity of the film (three times at criticality). Assuming that
no dry spots are possible (h 6= 0), (2.21) can be divided by −Ka h3/3 to get

h′′′ = F [h, h′] =
1

Ka

(
3

h3
(Q+ c h) − 1 − 2

5
h3h′ + Cth′ − 3

2

BiMah′

h(1 + Bih)2

)
. (2.22)
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The differential equation (2.22) is recast into a dynamical system, i.e. a system of
first order differential equations,





U ′
1 = U2

U ′
2 = U3

U ′
3 = F [U1, U2]

(2.23)

where U1 = h, U2 = h′ and U3 = h′′.

To determine iteratively the periodic solutions of the dynamical system (2.23), we use
the continuation and bifurcation tools for ordinary differential equations Auto97 [30].
During computations the periodicity of the solution is enforced, the phase is fixed by
U1|ξ=0 = hN and the total volume

∫ 1

0
U1 dξ = 〈h〉

ξ
will be fixed by the flow condition as

explained in §2.4. This amounts to one integral and four boundary conditions, hence
the continuation requires three free parameters [74]. Fixing the set of parameters
{Ka,Ma,Bi,Ct, hN} the free parameters are {k, c,Q}. The continuation is started
from the neutral mode corresponding to the Hopf bifurcation point with kc and c

L
.

The starting value of Q is fixed by the Nusselt solution h(ξ) = hN such that at kc

from (2.21), Q
L

= h3
N/3−hN cL

; the initial solution being given on the following forms





U1 = hN + η sin(2πnξ)
U2 = 2πnη cos(2πnξ)
U3 = −4π2n2η sin(2πnξ),

(2.24)

where η = 5 × 10−4.

As announced in §2.1, the aspect ratio† ε = hN/λ is obtained a posteriori through the
wavenumber k = 2π/λ of the stationary wave solution, and reads

ε =
hNk

2π
. (2.25)

Contrary to several previous works [53, 54, 120], the aspect ratio is not defined a
priori. However, doing so results solely in a rescaling of λ. Thereby, in Joo et al. [53],
the wavenumber is defined as k

JDB
= hNk/0.2 where the factor 0.2 originated from an

a priori assignment of the aspect ratio ε.

The reference model

A new model valid in a wider range of Reynolds number than the Benney equation
will be developed in chapter 5. This model will be obtained combining a gradient
expansion with a weighted residual method, as applied by Ruyer-Quil & Manneville
[109] for an isothermal layer. Let us write here the first-order model including the

†Note that ε must not be confused with the film parameter ε which is a formal parameter and
accounts for the local slope of the wave surface. Indeed this latter might be quite different from the
aspect ratio ε, as it is evidently the case for solitary-like waves.
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Marangoni effect (refer to chapter 5 for the complete derivation):

∂th = −∂xq, (2.26a)

∂tq =
5

6
h− 5

2

q

h2
+

9

7

q2

h2
∂xh−

17

7

q

h
∂xq −

5

6
Cth∂xh+

5

6
Kah∂xxxh

+
5

4

Ma Bi ∂xh

(1 + Bih)2
, (2.26b)

where q is the local flow rate. Equation (2.26a) is the conservation equation. The
terms on the right-hand side of (2.26b) account, from the left to the right, for grav-
ity, viscous dissipation, inertia (two terms), hydrostatic effect, surface tension and
thermocapillary effect. As announced previously, the above model will be referred to
as the first-order WIBL model and will be used as our reference model to define the
validity of the Benney equation. Indeed, it will be shown later in this chapter and in
chapter 6 that the first-order WIBL model does not experience any singularity.
In a moving frame of reference ξ = x− c t, (2.26a) and (2.26b) can be integrated to
yield

q = c h+Q. (2.27)

and assuming as before h 6= 0

h′′′ = F
WIBL

[h, h′] =
1

Ka

(
3

h3
(Q+ c h) − 1 − 54

35

Q2h′

h2
+

6

35

c h′

h2
(c h −Q)

+Cth′ − 3

2

BiMah′

h(1 + Bih)2

)
. (2.28)

The value of the integration constant Q represents as in 2.3 the (negative) mean flow
rate in the moving frame of reference. The periodic stationary solutions of (2.28)
are determined using the dynamical system (2.23) by simply replacing F by F

WIBL
.

Remark that only the terms accounting for inertia differ between (2.22) and (2.28).
And this change is a key point since it will prevent the finite-time blow-up for any
Re as demonstrated in the following.

2.4 Closed and open flow conditions

To compute travelling periodic waves stationary in their frame of reference an addi-
tional constraint is required that specifies the ‘flow condition’ in the moving frame.
It is related to the choice of the conserved quantity. The closed flow condition corre-
sponds to the conservation of the mass in a given domain and the open flow condition,
to the conservation of the flow rate. Chang [15] already mentioned this condition
speaking about constant-average thickness or constant-flux formulation. Many au-
thors, as for instance [53, 115, 98, 120], implicitly prescribed the closed flow condition.
This is inherent to time-dependent numerical simulations using spectral method, as
usual for such problems. Indeed, it forces periodic boundary conditions for which the
amount of liquid leaving the domain downstream is reinjected upstream. However,
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the open flow condition is the only one that is experimentally meaningful for a flow
on an inclined plate independently whether a periodic forcing is imposed at the inlet
[69, 83, 82] or a noise [65]. Recently, Ruyer-Quil & Manneville [109] found satisfactory
agreement with the phase speeds of travelling waves from experiment using the open
flow condition, whereas the closed flow condition resulted in deviations of up to 15%.
We shall formally represent both conditions using the conservation equation (2.26a).
The space average of (2.26a) gives

d

dt
〈h〉

x
= 0 (2.29)

where 〈·〉
x

= 1
λ

∫ λ

0
·dx; it means that the amount of liquid in the domain of length λ

is identical at any time t. Indeed, from (2.29), we have 〈h〉
x

= 〈h〉
x
|t=0 ∀t. Thereby,

it corresponds to the closed flow condition for which the travelling waves are periodic
in space, i.e. h|x=λ = h|x=0. In a moving frame of reference with the spatial variable
ξ, the closed flow condition reads

〈h〉
ξ

= hN. (2.30)

Now, the time average of (2.26a) gives

d

dx
〈q〉

t
= 0, (2.31)

where 〈·〉
t

= 1
T

∫ T

0
·dt; it means that the flow rate in a period of time T is identical

at any location x. Indeed, from (2.31), we have 〈q〉
t

= 〈q〉
t
|x=0 ∀x. Thereby, it

corresponds to the open flow condition for which the travelling waves are periodic in
time, i.e. h|t=T = h|t=0. In a moving frame of reference, the open flow condition reads

〈q〉
ξ

= qN. (2.32)

The consequence in the choice of the flow condition appears now by averaging (2.27)
as

〈h〉
ξ

=
〈q〉

ξ
−Q

c
. (2.33)

In experiments, the control parameter is the flow rate qN at the inlet whose dimen-
sionless value corresponds to the Reynolds number (1.36). Then using the open flow
condition (2.32) with (2.33) shows that the average film thickness 〈h〉

ξ
= (qN −Q)/c

will be influenced by the wave features c and Q. For instance, Alekseenko et al. [1] have
observed experimentally a decrease of the average film thickness downstream related
to an increase of the phase speed of travelling waves. On the contrary, if we impose
the closed flow condition, the insertion of (2.30) into (2.33) gives 〈q〉

ξ
= chN+Q. This

implies that the effective flow rate 〈q〉
ξ

will deviate from the imposed one qN = h3
N/3

(say Re) depending on the development of the travelling wave. Generally, an increase
of the phase speed leads to an underestimation of the Reynolds number qN < 〈q〉

ξ
.
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We conclude that the open flow condition is the only one that is experimentally
meaningful. Nevertheless, we will continue to compare both conditions because of
the intensive use of the closed flow condition in the literature [53, 115, 98, 120].

Having described our methodology and terminology, the parameters, and the used
equations, next we describe the families of solutions of interest and relate our results
for isothermal vertical films to the work performed by Salamon et al. [115] and Oron
& Gottlieb [98].

2.5 Blow-up for closed flows

Salamon et al. [115] computed travelling wave solutions of the Navier-Stokes equations
for a film falling on a vertical (Ct = 0) and isothermal (Ma = 0) wall varying Re
at fixed We = 1000 and ε = 0.04/2π. They imposed the closed flow condition
(2.30). The solid line in figure 2.1 shows their results for the reduced maximal film
thickness hmax/hN of the solutions‡. Using the dynamical system (2.23) with (2.28),
we computed the curve corresponding to the WIBL model (dot-dashed line) and
observe that it is quite close to the exact result. We conclude that the WIBL model
(2.26) is suitable as reference model in this range of Reynolds numbers. At the
contrary, the curve computed for the BE with (2.22) (dashed line) shows a fold at
Re∗ ' 4.8.

Oron & Gottlieb [98] computed corresponding travelling wave solutions performing
time-dependent simulations of the BE. They only found stable solutions for the small
amplitude part of the solid line (circles in figure 2.1). Those solutions are bounded
and exist only for Re < Re∗. For Re > Re∗, the BE exhibits no stationary wave
solution and any perturbation of the flat film is unbounded, i.e. it yields a finite-time
blow-up: h(x∗, t) →∞ at some point x∗ as t→ t∗ <∞.
Now, we will calculate families of stationary solutions of the BE and the WIBL
model and characterize the blow-up of the BE in the whole spectrum of unstable
wavenumbers by varying the Reynolds number.

2.5.1 Families of stationary solutions

For a vertically falling and isothermal film, Chang et al. [19] constructed the travelling
waves bifurcating from the neutral stability curve as a function of their wavenumber
for the boundary-layer equation at moderate Reynolds number. They distinguished
two main families of waves. The first one, referred to as holed waves and denoted
by γ1, terminates at small wavenumbers by slow solitary-like waves with a dominant
depression, i.e. hmax − hN < hN − hmin. The second family, called humped waves and

‡Note that the two parameters We and ε (the dimensionless wavenumber) depend on hN as shown
by the relations (1.38) and (2.25); remember that hN = (3Re)1/3. Therefore when reading figure
2.1 for increasing Re, the wavenumber k of the travelling wave solution decreases proportionally
to Re−1/3 and Ka increases proportionally to Re2/3. The physical interpretation of the curves is
therefore less intuitive for the base state set of parameters than for the natural one where Re accounts
alone for the dimensionless Nusselt film thickness (1.37).
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Figure 2.1: maximal thickness of travelling waves hmax/hN as a function of Re, com-
puted with the BE (dashed curve) and the WIBL model (dot-dashed curve) under
the closed flow condition for a film falling on a vertical (Ct = 0) and isothermal
(Ma = 0) wall with ε = 0.04/2π, see (2.25), and We = 1000. For comparison, results
of the Navier-Stokes equations (solid curve) obtained by Salamon et al. [115] as well
as results from time-dependent simulations of the BE (circles) obtained by Oron &
Gottlieb [98] are displayed.

denoted by γ2, corresponds to fast waves with a dominant elevation. Both families
can bifurcate either from a Hopf bifurcation and a period doubling bifurcation, or vice
versa. Actually, the bifurcations of the families may be reversed if the dispersion of the
waves is modified [115]. The Kawahara equation (2.14) that contains such dispersion
terms has been studied by Chang et al. [19]. They showed that the existence of the
two families of slow and fast waves bifurcate in an imperfect pitchfork bifurcation
[31] from a family of standing waves (that travel at exactly three times the average
velocity of the flow). Such a bifurcation is very sensitive to the dispersive effects, as
shown below.

The bifurcation diagram in figure 2.2 shows as solid lines two wave families of the BE
not much above onset, characterized by the reduced maximal wave thickness hmax/hN

and the phase speed c/c
L

as a function of the wavenumber k. The parameters are
Re = 2.0667, Ka = 3375, Ct = 0 and Ma = 0. They correspond to a vertically falling,
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isothermal film of water at 20◦C§ (see appendix C). The closed flow condition (2.30)
is enforced. The first wave family as described by the BE, γ2 fast waves, starts at the
critical wavenumber kc given by (2.20) corresponding to the Hopf bifurcation point
(HB). This bifurcation is supercritical, so the wavelength of solutions is larger than
the one at threshold 2π/kc. It leads to stationary one-humped waves that become
increasingly nonlinear and have faster phase speed for decreasing k. The wave shape is
illustrated in the upper inset of figure 2.2. In the limit k → 0, the solutions correspond
to homoclinic orbits in the phase space and will be referred to as homoclines. A second
family of waves, γ1 slow waves, appears through a period doubling (PD). They have
a slower phase speed and become one-holed on the upper branch of γ1, i.e. after its
fold (saddle-node). They are illustrated in the lower inset of figure 2.2.

As the wavenumber decreases, higher harmonics become linearly unstable, at kn =
kc/n with n = 2, 3, . . . . The resulting families γ1,2(kn) for n >1 correspond therefore
to n-humped or n-holed travelling waves. They are not displayed in figure 2.2 because
they are homothetic in k, i.e. given that γ(kn) = γ(k1) it follows that γ(kn/r) =
γ(k1/r) for all real r > 1. The individual solutions correspond simply to n identical
solutions of the n = 1 family placed in a domain of size 2nπ/k.

The dashed lines in figure 2.2 represent the wave families computed using the WIBL
model. Contrary to the BE, the family γ2 of fast humped waves appears by period
doubling while the family γ1 of slow holed waves emerges by Hopf bifurcation. This
disagreement can be understood considering the sensitivity of the imperfect pitchfork
bifurcation to slightly different dispersions which originate from the different accounts
for the inertial effects (compare 2.22 with 2.28).

The differences between the maximum of humped solutions obtained by the BE and
the WIBL model do not exceed 10% and are even much smaller for holed solutions.
The comparison of profiles of one-humped travelling waves is displayed in figure 2.3.
The corresponding wavenumbers are indicated by arrows at the top of figure 2.2.
The solid and dashed lines correspond to wave profiles obtained with the BE and
the WIBL model, respectively. We can conclude that for the given parameters, the
agreement between BE and WIBL model is satisfactory in the whole spectrum of
wavenumbers.

Because the humped solutions have a larger hmax than the holed ones they are more
susceptible to blow up at a given k. This is due to the nature of the nonlinear term
∼ ∂x(h

6∂xh) responsible for singularities. For the same reason, at a given k the one-
humped solutions are also more susceptible to blow up than the multi-humped ones
as was checked by Pumir et al. [103]. In the following we will therefore concentrate on
the family γ2 of one-humped travelling waves, in order to discuss the validity domain
of the BE. The stability of those solutions will be addressed in §2.7.

§Some articles we refer to [115, 98] define a Reynolds number Rs related to the film Reynolds
number by Rs = 3Re/2, i.e. Rs = 3.1 for Re = 2.0667. They base their Reynolds number on the
surface velocity rather than on the mean velocity. Furthermore, Ka = 3375 corresponds to the value
of We = 1000 for the fixed value of Re = 2.0667 (hN = 1.8371) as related by (1.38).
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Figure 2.2: Bifurcation diagram showing the phase speed c/c
L

and maximal amplitude
hmax/hN of travelling waves versus the wavenumber k. The parameters are Ct = 0,
Ma = 0 (vertical and isothermal wall), Re = 2.0667 and Ka = 3375. The closed
flow condition is imposed. The solid (dashed) lines are families obtained with the
BE (WIBL) model. The families γ2 correspond to fast one-humped waves and γ1 to
slow one-holed waves, as illustrated by the two insets. The arrows and letters refer
to solutions plotted in figure 2.3. HB: Hopf Bifurcation - PD: Period Doubling. The
HB bifurcates from the Nusselt flat film solution while the PD bifurcates from the
families of subharmonic solutions for n = 2 (not drawn on the picture).

2.5.2 Blow-up versus wavenumber

In this section, we obtain the blow-up boundary of the Benney equation, by varying
the Reynolds number, in the whole spectrum of wavenumbers, i.e. from neutrally
unstable modes to infinite wavelength solitary waves. This is used to describe the
transition from the linear wave regime close to the marginal stability curve to the
solitary wave regime at small wavenumber and also to precise how the validity do-
main of the Benney equation in the parameter space is modified by the type of wave
considered.

We will analyse the occurrence of the blow-up in the BE and confirm the link between
the absence of the γ2 wave family and the unbounded behaviour reported by Oron
& Gottlieb [98]. The bifurcation diagram in figure 2.4 shows in solid lines families
of one-humped travelling waves computed with the BE for several Re. The chosen
parameters are Ct = 0, Ma = 0 and Ka = 2950 correspond to a vertically falling,
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Figure 2.3: Profiles of one-humped travelling waves computed for Ct = 0, Ma = 0,
Re = 2.0667 and Ka = 3375 and various values of the wavenumber k: (a) k = 0.0256,
(b) k = 0.0169, (c) k = 0.0128, (d) k = 0.0084. The closed flow condition (2.30) was
imposed. The solid and dashed curves are solutions computed with the BE and the
WIBL model, respectively.

isothermal film of water at 15◦C (see table C.1) as in the experiments by Kapitza &
Kapitza [69]. The closed flow condition (2.30) has been used. The dashed curves are
the corresponding wave families computed with the WIBL model. For Re & 3, the
BE wave families feature a saddle-node¶ bifurcation at k∗, indicated by an asterisk
in figure 2.4. This implies that for k < k∗ the BE has no stationary solution of γ2

fast wave type. For k > k∗, two stationary solution branches coexist but only the one
with the smallest amplitude has a physical meaning as found from the WIBL model.
The bifurcation at kc is supercritical for Re ≤ 5. However, the interval [k∗, kc] shrinks
at increasing Re until it vanishes. For larger Re = 7, 8 the bifurcation is subcritical.
Note that the transition from supercritical to subcritical has an intrinsic structure as
can be seen for Re = 5.75 and 6. There the families contain two saddle-nodes, the
second one being indicated by a cross. There may be then three solutions of the BE
in some small range of k.
In figure 2.5 we plot the locus k∗ of the saddle-node bifurcation of the BE family γ2

as a function of Re (dashed line), together with the critical wavenumber kc (solid line,
see (2.20)). The flat film is linearly stable above kc, one-humped γ2 travelling waves
can be found between the solid and the dashed line only. The asterisks and crosses
indicate the saddle-node bifurcations obtained in figure 2.4 (see also the zoom in the
inset of figure 2.5).
Oron & Gottlieb [98] performed time-dependent simulations of travelling waves for

¶This bifurcation corresponds qualitatively to the transition from zero to two solutions by chang-
ing the control parameter (here k).
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Figure 2.4: Bifurcation diagram showing families of solutions for various Re computed
with the BE in solid lines, considering the vertical and isothermal case (Ct = 0,
Ma = 0) with Ka = 2950 and the closed flow condition (2.30). A = (hmax − hmin)/hN

is the reduced wave amplitude. The dashed lines are the branches computed with
the WIBL model for Re = 2, 3, 4, 5, 6. Asterisks and crosses indicate saddle-node
bifurcations. Their loci are followed through parameter space in figure 2.5.

various k and obtained the corresponding boundaries for blow-up shown by circles in
figure 2.5. These points agree with the locus of k∗ (dashed line) except the lowest one
that most probably corresponds to the blow-up of a two-humped solution (n = 2)
because it fits perfectly with the corresponding blow-up boundary computed with our
method (dotted line in figure 2.5). Nevertheless, the simulations of Oron & Gottlieb
[98] confirm that the one-humped solutions are the most “dangerous” ones because
they blow up at smaller Reynolds numbers than multi-humped ones. Therefore, our
results clearly confirm the connection between the occurrence of blow-up and the
absence of γ2 one-humped fast waves. Indeed, time-dependent simulations of the
spatial evolution of the film using the BE equation showed the formation of one-
humped solitary-like structures though no stationary wave solutions can be reached,
thus leading to blow-up [103]. It seems that whenever any γ2 humped waves cannot
be attained, blow-up occurs.

The inset of figure 2.5 shows that the Benney equation experiences a subcritical be-
haviour already in a region where it can still yield bounded solutions. This subcritical
behaviour is most likely non physical and has not been observed at least with our
reference model. This behaviour will be discussed in more details in §2.6.4.
We define two particular values of the Reynolds number as indicated in figure 2.5:
Re∗h for k∗ → 0 and Re∗c for k∗ = kc. They correspond, respectively, to the Reynolds
number where only homoclines blow up and where none of the linearly unstable modes
is bounded. Re∗h and Re∗c (in addition to another characteristics defined later on) will
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Figure 2.5: Stability diagram computed with the BE for thin water films (same param-
eters as for figure 2.4). The solid line is the neutral curve, i.e. the critical wavenumber
kc. The dashed line is the blow-up boundary separating bounded solutions (on the
left) and unbounded ones (on the right). The circles are blow-up boundaries obtained
by Oron & Gottlieb [98] using simulations in time. Re∗h indicates the Reynolds number
where only homoclines blow up and Re∗c the Reynolds number where all the linearly
unstable modes blow up. The asterisks and crosses correspond to the saddle-node
bifurcations shown in figure 2.4. The inset zooms in on the parameter range where
the Hopf bifurcation is subcritical, i.e. where k∗ > kc. The dotted line is the blow-up
boundary for two-humped solutions (n = 2).

be used to globally characterize the blow-up.

2.6 Parametric study for closed and open flows

In this section, the nonlinear set of parameters introduced in §1.6 is used in order to
facilitate the parametric study. Then, we track the blow-up boundary through the
parameter space investigating successively the influence of the surface tension, the
inclination and the thermocapillarity. Below the blow-up boundary the accuracy of
the Benney equation is determined checking the wave amplitudes against the reference
model. The influence of the Marangoni effect on the subcritical behaviour is also
analysed in order to determine whether it has a physical meaning or not.

2.6.1 Reduced systems and parameters

Keeping track of the domain boundaries in parameter space where bounded solutions
exist is quite involved. Indeed, five parameters can be varied, namely the inclination
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of the plane (Ct), surface tension (Ka), its sensitivity to temperature (Ma), the heat
transfer at the interface (Bi) and finally the inlet flow rate (Re). Fortunately at
first order, this number can be reduced by one applying a transformation proposed
first by Shkadov [127], which introduces the nonlinear set of parameters 1.105. The
number can even be reduced to three in the reasonable limit of small Biot number
(see appendix C).
Using the Shkadov’s transformation T (1.103), the BE (2.10) then becomes for parallel
flow (∂z = 0)

∂th+ ∂x

(
h3

3
+

2

15
Rh6 ∂xh− Ch

3

3
∂xh+

h3

3
∂xxxh+

h2

2

MB ∂xh

(1 + Bh)2

)
= 0, (2.34)

where the nonlinear set of parameters appears. Since the study here is limited to the
first-order, the parameter η that measures the second-order viscous effects does not
appear. This is why the number of independent parameters is reduced by one. In
this scaling, the Nusselt solution is h = 1 and the Hopf bifurcation is characterized
by

kc =

(
2

5
R− C +

3

2

MB

(1 + B)2

)1/2

, c
L

= 1 and Q
L

=
1

3
− c

L
= −2

3
.(2.35)

The wavenumber is rescaled as k → k/L where L = (KahN)1/3. Note, that rescaling
t by 1

3
shows the equivalence between (2.34) and (2.1) for C = 0 and M = 0 when

Φ = 2R/5 and m = 6.
Using the transformations T and q → h3

Nq, the WIBL model (2.26) becomes

∂th = −∂xq, (2.36)

R ∂tq =
5

2
h − 5

2

q

h2
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h2
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7
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∂xq
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h∂xxxh+
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4

MB ∂xh

(1 + Bh)2
. (2.37)

2.6.2 Vertical and isothermal films

Open and closed flows

Figure 2.6 shows the stability diagram in the (k,R)–plane for a vertically falling,
isothermal film, i.e. M = C = 0. The solid line is the neutral curve kc computed
with (2.35). The dashed and dot-dashed lines are the blow-up boundaries computed
using, respectively, the closed flow condition 〈h〉

ξ
= 1 and the open flow condition

〈h〉
ξ

= (1/3−Q)/c, defined with the new scaling. A major difference can be observed
between both flow conditions. As displayed in the inset of figure 2.5, for the closed flow
condition the Hopf bifurcation can become subcritical. For the open flow condition
the Hopf bifurcation is always supercritical, i.e. for all R. This implies that close
to criticality the BE always gives bounded solutions. However, figure 2.6 also shows
that for R > R∗

c|OP
the corresponding region of k is very small. The inset of this

figure shows the blow-up boundary for open flow in the vicinity of R∗
c|OP

.
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Figure 2.6: Stability diagram in the (k,R)–plane for a vertically falling, isothermal
film, i.e. C = M = 0. The solid line is the neutral stability curve. The dashed
(dot-dashed) line is the blow-up boundary corresponding to the closed (open) flow
condition. The dotted line is the boundary where the amplitude of solutions of the
BE exceed by about 10% the one of the WIBL model. The inset zooms in on the
behaviour of the blow-up boundary in the vicinity of R∗

c|OP
.

The specific reduced Reynolds numbers (as introduced in §2.5.2) that can be extracted
from figure 2.6 are

R∗
h = 0.986, R∗

c|CL
= 2.358 and R∗

c|OP
= 5.401,

where the subscripts CL and OP indicate the corresponding flow condition. Note that
homoclines being solutions of infinite wavelength, they are by essence independent
on the flow condition. Back to the natural set of parameters for sinβ = 1, the one-
humped solitary waves – that tend to blow up first, i.e. at the smallest Reynolds
number – are bounded only if Re < 0.330Ka3/11

⊥
(remember from §1.2 that Ka⊥ is

the Kapitza number for a film falling vertically, i.e. sinβ = 1, and then depending
only on the fluid properties). To check, for instance, the validity of the BE in the
particular case of a water film at 20◦C (see table C.1) we use (1.105a) to obtain the
specific Reynolds numbers Re∗h = 3.0, Re∗c|CL = 6.2 and Re∗c|OP = 12.2. It is therefore
clear that for the open flow condition, the validity domain of the Benney equation is
larger than for the closed flow condition. Nevertheless, the stability of the solution
should be taken into account for completion (see §2.7).

Accuracy of the bounded solutions: BE versus WIBL

The dotted line in figure 2.6 indicates the loci of bounded solutions of the BE where
the amplitude exceeds by about 10% the one computed with the WIBL model. At
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the same point the phase speed is overestimated by about 20%. This boundary is
approximately identical for both flow conditions. To the right of this boundary, the
difference of the amplitudes of BE and WIBL model increases to reach about 100%
at the respective blow-up boundaries. Even though the open flow condition gives
bounded solutions for larger R than the closed flow condition, the wave amplitudes
become much larger than for the WIBL model. So the 10%-accuracy limit is a good
gauge for both flow conditions.
The 10%-accuracy limit approaches asymptotically the neutral stability curve. This
can already be seen in figure 2.4 where for Re = 4, 5 and 6 the discrepancy between the
BE and the WIBL model becomes already large quite close to the Hopf bifurcation.
The accuracy limit in figure 2.6 intersects the R-axis at R10%

h . This point corresponds
to a deviation of 10% of the amplitudes of the respective homoclines, the value of
which being

R10%

h = 0.68.

Back to the natural set of parameters with sinβ = 1, the accuracy of the amplitude of
solitary wave computed with the BE will be better than 10% for Re < 0.243Ka3/11

⊥
,

which corresponds for water at 20◦C to Re = 2.23. Finally, using (1.105a), we con-
clude that the range of validity of the BE decreases as the Kapitza number decreases,
proportional to the surface tension.

2.6.3 Influence of the inclination

Figure 2.7 shows the stability diagram of the BE in the (C,R)–plane using (2.34)
for an isothermal film, i.e. M = 0. The heavy solid line corresponds to the neutral
stability curve kc = 0, i.e. C = 2R/5. Above the flat film is stable, “s”, and below it is
unstable, “u”. The heavy dashed line indicates the boundary where homoclines blow
up (R∗

h), whereas at the dashed and the long dashed lines all the linearly unstable
modes blow up (R∗

c) for closed and nearly all for open flow conditions, respectively.
The solutions in the region “uk” are bounded only in the range of wavenumbers [k∗, kc]
and unbounded in the range [0, k∗]. In the region “b”, waves blow up unconditionally
at any wavenumber (except very near threshold for open flow conditions). Finally,
the dotted line is the locus of the parameter R10%

h defined in §2.6.2.
The dot-dashed lines in figure 2.7 correspond to fixed experimental properties of some
common liquids (see table C.1) for two different inclinations of the wall, namely 10
and 30 degrees. These curves are obtained by eliminating Re from C and R using
(1.105a,1.105b). This leads to the relation

C = C

(
R2

S10Ka3
⊥

)1/11

, (2.38)

where the natural set of parameters with sinβ = 1 has been used explicitely to isolate
the effect of the wall inclination. Increasing C, i.e. decreasing S and/or Ka⊥, reduces
the range of validity of the BE in the linearly unstable domain.
Joo et al. [53] have performed time-dependent simulations of the BE for isothermal
falling films under the closed flow condition. Their figures 5-9 present the respective
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Figure 2.7: Stability diagram in the (C,R)–plane for an isothermal film, i.e. M = 0.
The solid line is the neutral stability curve. The different regions from the left to
the right are: s, the linearly stable region; u, the linearly unstable region where the
BE gives bounded solutions in the whole range of unstable wavenumbers kc > k > 0;
uk|CL

, the linearly unstable region where the BE gives bounded solutions only in the
range kc > k > k∗ when the closed flow condition is enforced; uk|OP

, the same when
the open flow condition is enforced; b, the region where all the linearly unstable modes
are unbounded and yield finite-time blow-up. For the meaning of the dot-dashed lines
see main text.

wave evolutions for increasing domain size, i.e. decreasing wavenumber. The param-
eters are β = 45◦, Re = 1.179, Ka⊥ = 4.386 and Ma⊥ = 0. This corresponds to
(R, C) = (2.751, 0.778) in the reduced scaling, i.e. to a point in the region “uk|CL

”
of figure 2.7 indicating that solutions are only bounded for k > k∗. This agrees with
the stationary travelling waves found in figures 5, 6 and 7 of Joo et al. [53]. On the
contrary, figures 8 and 9 of their paper show ‘catastrophic behaviour’, i.e. wave am-
plitudes growing ‘explosively’ in finite-time. Our explanation is that k < k∗ for these
simulations. Using their scaling we computed the value of the blow-up boundary to
be k∗

JDB
= 1.236. In conclusion, we are now able to explain and predict the ‘catas-

trophic behaviour’ found by Joo et al. [53] which results from the blow-up character
of the Benney equation and is not associated to a secondary instability as conjectured
by these authors. By coincidence, due to the choice of the parameter values in their
paper, the transition for the secondary instability at ks ≈ kc/2, found initially by
Gjevik [41] using weakly nonlinear analysis, is very close to the blow-up transition for
nonlinear solutions found here. Joo et al. [53] suggested that waves never equilibrate
for k < ks. Yet, the present study shows that waves are bounded in this region, either
for R < R∗

h, or if k > k∗. Having also studied the Benney equation with strong
Marangoni effect, Joo et al. conjectured that the Marangoni effect prevents the trav-
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elling waves to be bounded. However, the present work shows a region of bounded
solutions for moderate Marangoni number as shown in what follows.

2.6.4 Influence of the Marangoni effect

Limit of small Biot number: Bi � 1

The influence of the Marangoni effect is studied in this section in the case of a uni-
form temperature imposed at the wall (Temperature Condition). Furthermore, for
common liquids, the Biot number is usually small (see table C.1). Therefore we use
the approximation

MB

(1 + Bh)2
≈ MB (2.39)

in (2.34) and (2.37) to study the Marangoni effect with MB as a single parameter.
In this limit, the Marangoni term approximately behaves as a m = 2 term in (2.1).
It should therefore not yield to blow-up itself but influence the domain of validity of
the BE.
Figure 2.8 represents the stability diagram of the BE in the (MB,R)–plane for a
vertical wall, i.e. C = 0. Line styles are as presented for figure 2.7. Note that there
exists no linearly stable region. The dot-dashed lines in figure 2.8 correspond again
to fixed liquid properties (table C.1). They are calculated using

MB = MaBi

(
1

S6Ka4R

)1/11

, (2.40)

obtained by eliminating Re from MB and R with (1.105a,1.105e).
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Figure 2.8: Stability diagram in the (MB,R)–plane for a vertically falling film, i.e.
C = 0. Line styles and small letters are as for figure 2.7.
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The domain of existence for homoclines obtained with the BE nearly vanishes for
large MB. However, as table C.1 indicates, the product Ma⊥Bi⊥ remains small for
common liquids [120]. For instance, for a vertically falling water film at 20◦C the
value Ma⊥Bi⊥ = 2 corresponds to ∆T = 28K when α = 100W/m2K. In this case,
the BE can be used with satisfactory accuracy up to Re = 1.8 (R10%

h = 0.52).

Joo et al. [53] have performed time-dependent simulations of the BE for large Biot
number. Considering the case of figure 14 in their paper, for β = 45◦, Re = 1.179,
Ka⊥ = 4.386, Ma⊥ = 11.696 and Bi⊥ = 5.848, they observed blow-up of the travelling
wave. This result is expected given that even for Ma⊥ = 0 blow-up is observed (see
§2.6.3), and that the Marangoni effect further decreases the validity domain of the
BE (see figure 2.8). However, at least a small region possessing bounded solutions is
present whatever the value of MB.

Subcritical behaviour of the Benney equation

For the isothermal case we have seen in figure 2.4 that the Hopf bifurcation computed
with the BE is always subcritical for Re > Re∗c. However, the bifurcation can become
subcritical even slightly before that the saddle-node wavenumber k∗ reaches kc at Re∗c
as shown by the inset of figure 2.5. If this is the case, the family has not only one but
two saddle-nodes or turning points. We will study now the influence of the strength
of the Marangoni effect of the size of the corresponding region.

Figure 2.9 displays the stability diagram for different values of MB for closed (dashed
lines) and open (dot-dashed lines) flow conditions. The corresponding neutral stabil-
ity curves are plotted as dotted lines. The figure shows that for closed flow the region
where subcritical bifurcations are found extends towards smaller R < R∗

c for increas-
ing MB. A somehow similar observation is made also for the open flow condition.
Although there the bifurcation is always supercritical, the family has an additional
turning point slightly above the bifurcation, as illustrated by the inset of figure 2.9.
The resulting three turning points allow for a similar shape of the large amplitude
part of the bifurcation diagram as for the closed flow condition.

So in both cases, solutions with k > kc exist already for R < R∗
c. In short we will call

this behaviour subcritical. On the one hand, the subcritical behaviour seems to agree
with results on the Marangoni instability for horizontal films obtained by VanHook
et al. [141] and Thiele & Knobloch [136] also for the slighlty inclined case. On the
other hand, we find that for vertically falling films the WIBL model does never yield
subcritical behaviour in the considered parameter range. This is illustrated in the
inset of figure 2.9. A study by Thiele & Knobloch [136] of the behaviour of a thin
film on a slightly inclined heated plane using an equation similar to equation (2.10)
without the Benney term proved that for sufficiently large (but in our scaling still
small) plate inclinations from the horizontal, the bifurcation is always supercritical.

Therefore, we conjecture that the subcritical behaviour of the Benney equation includ-
ing the Marangoni effect described above is unphysical, in contrast to the subcritical
instabilities known for horizontal and slightly inclined planes. Evaluating again figure
2.9 for the closed flow condition, we find that the bifurcation is subcritical for all R
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Figure 2.9: Stability diagram in the (k,R)–plane for a vertically falling film, i.e.
C = 0 and different values of MB = 0, 0.25, 0.5, 0.75 and 1. The dotted lines are
the corresponding neutral curves kc and the dashed lines are the blow-up boundaries
obtained with the closed flow condition. The dot-dashed lines are a selection of
the blow-up boundaries obtained with the open flow condition. The inset shows
bifurcation diagrams for MB = 0.5 and R = 1.8 (R = 5) with the closed (open) flow
condition. The thin lines are computed with the WIBL model.

when

MB ≈ 1.

This implies that above this value the Benney equation fails to describe the physics
for vertically falling films even quite close to criticality.
We did not investigate the combination of Marangoni effect and wall inclination.
However, combining our results with the ones of Thiele & Knobloch [136] indicates
that the subcritical behaviour of the Benney equation will only be physically mean-
ingful for very small or vanishing inclination angles. In other words, travelling waves
emerge even in the presence of the Marangoni effect always from supercritical bifur-
cation unless the inclination angle is so small that the film behaves like a ‘horizontal
layer’. However, then Re � 1 and the Benney term ≈ ∂x(h

6∂xh) may be neglected.

2.7 Stability of stationary solutions

This section analyses the two-dimensional stability of the stationary humped solutions
discussed up to now. We focus especially on the range [R∗

h,R∗
c] where only part of the

linearly unstable modes results in bounded stationary solutions. We will determine
the stability of those solutions to disturbances of larger period that may induce the
coalescence of humps. This is done performing a Floquet analysis following, for
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instance, Chang et al. [19]. Let h0(ξ) be the stationary solution of wavenumber k in
its moving frame of reference. Then the film thickness h is written as the superposition
of this solution and a small disturbance

h = h0(ξ) + ηh1(ξ) exp{iςkξ + Γt}, (2.41)

where η � 1 and h1 is a real function with the same period as h0. The real (imag-
inary) part of Γ corresponds to the growth rate s (relative phase velocity c) of the
disturbance. The detuning parameter (often called Floquet coefficient) ς represents
the ratio of the wavenumbers of the disturbance and of the stationary wave h0(ξ).
For ς = 0 the instability has the same wavelength than the wave, and for 0 < ς ≤ 1

2

the instability is sub-harmonic. For instance, ς = 1
2

implies that the disturbance has
twice the period of the wave. According to Chang et al. [15], when ς is close to zero,
the instability is called side-band. Substituting (2.41) into (2.10) and linearizing in
η, we obtain an eigenvalue problem of the form Γh1 = L(h0, c,Q, ς)h1 where L is a
linear operator.

Figure 2.10 shows the growth rate smax of the most amplified disturbance and the
corresponding detuning parameter ςmax versus the wavenumber of the unperturbed
travelling waves, for R = 1.5 and 3, with C = M = 0. The heavy and thin lines result
from the BE and WIBL model, respectively, whereas solid and dashed lines stand for
closed and open flow condition, respectively. The blow-up boundary at k∗ is indicated
by an asterisk and the neutral mode by a “c”. The loci of the stationary solutions
analysed here can be found in figure 2.6. For the value of R considered, the growth
rate smax is positive for all k implying that none of the bounded solutions emerging
from the Hopf bifurcation is stable to sub-harmonic disturbances. If the imaginary
part of Γ (not shown in figure 2.10) is equal to zero the waves coarse steadily by a
relative translation of the humps and by volume transfer between the humps [17].
This is the case for the WIBL model. In contrast, for the BE the imaginary part
of s is non-zero. This indicates that the instability leads to oscillating behaviour
that may or may not lead to coarsening. Only time-dependent simulations of the
BE can clarify this point. An example is presented in figure 2.11. Two periods of
a stationary solution calculated with the closed flow condition and corresponding to
the point (R, k) = (1.5, 0.5) in figure 2.6 with additional noise are used as initial
condition. The time series for the amplitude at a fixed point in space (figure 2.11)
shows that the ongoing process comprises growing sinusoidal oscillations of the relative
amplitudes of the two humps that lead to a coalescence mediated finite-time blow-up.
We propose to call this type of coalescence oscillation mediated coalescence.

The importance of the result of the stability analysis lies in the fact that physically
relevant domains are always at least twice larger than the wavelength of the stationary
solution. Thereby, sub-harmonics will develop, and for R ≥ R∗

h (figure 2.6) this leads
finally to blow-up as illustrated in figure 2.11. For instance, looking at the blow-up
boundary for the closed flow condition on figure 2.6, at any R larger than ∼1.4, a
bounded one-humped travelling wave put twice in a domain of doubled size is unstable
and yields a finite-time blow-up. The same happens for the open flow condition at
any R larger than ∼1.8. It means even though the Benney equation gives bounded
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solutions beyond the blow-up boundary for homoclines, R∗
h, those solutions should

be considered with special care independently of the used flow condition.
In conclusion, the stability of stationary solutions that are conditionally bounded,
depending on the wavenumber, are all found to be unstable to disturbances of higher
periodicity. This gives the possibility to the sub-harmonics to develop and in conse-
quence yields finite-time blow-up promoted by wave coalescence.

2.8 Further discussion about the Benney equation

At this stage, let us present an interesting result obtained from a time-dependent
simulation of the Benney equation (2.34), using a finite-difference implicit scheme
[107]. Figure 2.12 displays the nonlinear response of a vertically falling and isothermal
film submitted to a periodic forcing with small noise at the inlet (left border). The
reduced Reynolds number R = 0.9 has been chosen to lie before R∗

h, i.e. for bounded
homoclines. It is of main interest to observe that at a given position, still a singularity
appears in a finite-time, leading to the blow-up of the film thickness. The blow-up
is preceeded by a succession of coalescence between adjacent travelling waves. We
think the local coalescence of humps in an extended system induces a local increase
of the flow rate that locally “pushes” the system beyond the blow-up boundary in
the stability diagram of figure 2.6. In conclusion, special care has to be taken since
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Figure 2.11: Time simulation starting from two periods of a stationary solution of
the Benney equation for R = 1.5 and k = 0.5, put into a domain of size 8π. A noise
of amplitude 10−3 is added at t = 0. The main plot represents the time series of the
film thickness recorded at the point ξ = 7π. The upper insets show, respectively, the
two travelling waves at t ≈ 100 and the coalesced wave at t ≈ 850. The lower inset
gives a zoom on a part of the time series showing oscillatory mode.

blow-up of travelling waves may occur even slightly before the blow-up boundary.
To conclude, one of the advantages of the Benney equation is to describe with a
single evolution equation the different physical effects in a falling film, namely in
our case, viscosity, gravity, surface tension and thermocapillarity. We believe this
ensures that the Benney equation will remain a helpful model to study thin film
flows, especially to identify new phenomena but also in a limited parameter range for
quantitative predictions. Actually, many other effects may be added to the Benney
equation like evaporation [53], Van der Waals force [134], chemical reaction [139],
topographic effects [66], non-uniform heating [87, 64, 120], etc. The validity of the
Benney equation should in the future also be addressed including these additional
effects.
The weighted integral boundary layer model used in this chapter as the reference
model does not suffer any singularity and can be accurate for larger Reynolds number
than the Benney equation [109, 110]. Furthermore, the study of stationary solutions
with the WIBL model does not require much supplementary effort than the BE. So
although for the ranges of validity defined in this chapter, the BE can be used safely,
the WIBL represent a promising alternative. This will be the purpose of the second
part of this work. However, before that, the two following chapters will be dedicated
to the study of non-uniform heating, still using the BE inside its range of validity.
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Figure 2.12: Space-time plot showing the evolution of a solution of the Benney equa-
tion (2.34) for R = 0.9 in the vertical and isothermal case, i.e. C = M = 0. The film
thickness is plotted at regular time intervals. The flow is oriented from left to right.
A periodic forcing with noise is imposed at x = 0. Courtesy of Ruyer-Quil [107].



Chapter 3

Periodic heating

The present chapter focuses on the evolution of a thin liquid film flowing down an
inclined plate along which a periodic array of heaters is embedded. Since it induces
perturbations that may remain steady in the laboratory reference frame, we may
expect new phenomena triggered by the presence of two frequencies, the one orig-
inating from the wave instability and the one corresponding to a periodic array of
heaters. The Marangoni effect acts on two levels: on the dispersion and amplification
of the travelling waves as for the uniform heating case and on the amplitude of the
steady-state deformations induced by the non-uniformities. The coupling between
such travelling waves and steady-state deformations causes a variety of nonlinear
phenomena, such as oscillatory, quasi-periodic or chaotic regimes depending on the
amplitude of the imposed temperature gradient. If this latter is high enough, we may
even expect a total suppression of the wave instability, as seen in this chapter.

It can be mentioned here that in industrial applications, one generally uses topog-
raphy changes to create region of thinning that can enhance the heat transfer. Our
aim here, as initially proposed by Kabov [57], is to propose an alternative to topo-
graphical obstacles with “thermal obstacles”, which can lead to similar heat transfer
enhancement.

After a brief presentation of the evolution equation accounting for a non-uniform
heating (§3.1), stationary solutions of this equation are calculated either in a moving
reference frame in the case of uniform heating or in a fixed reference frame in the case
of non-uniform heating (§3.2). The first case allows for travelling wave solutions, as in
chapter 2, while the second one gives steady-state deformations. To describe the full
dynamics of the film, we solve numerically the two-dimensional evolution equation
using the Newton-Kantorovich method (§3.3). The periodic temperature distribution
at the plate is chosen to be sinusoidal and the resulting dynamics is compared to the
case of a uniform heating with the same average temperature. Finally, we estimate
the enhancement of the heat transfer due to the presence of steady-state deformations
(§3.4).

79
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3.1 Non-uniform heating

Tan et al. [134] examined the steady thermocapillary flow in thin liquid layers on a
non-uniformly heated horizontal plate. They showed that a continuous steady profile
of the liquid layer can be sustained depending on the sign of the Van der Waals (VdW)
forces. Indeed, in their analysis, for very thin film, VdW forces may either lead to
spontaneous film rupture, or at the contrary prevent the occurrence of any dry spot
at the microscopic scale, depending on the attractive or repulsive character of this
force, hence on the nature of liquid and substrate. Small perturbations of uniform
heating and their effect on the dynamics of the film were also studied by Van Hook et
al. [141] for a horizontal layer (β = 0). They showed that non-uniformity in heating
produces a steady-state deformation for any temperature difference across the layer.
This steady-state deformation becomes unstable to the long-wavelength instability
for smaller Marangoni number than in the absence of non-uniformity. Moreover, the
non-uniformity of the plate temperature determines the location of the dry spot and
the elevated region to form at the minimum and maximum of the steady-state defor-
mation, respectively. This should not be true anymore when the plate is inclined since
the long-wave instability results in travelling waves instead of steady patterns. To our
knowledge, few theoretical studies exist about non-uniformly heated falling films (see
e.g. Marchuk & Kabov [85]), and actually none on periodic heating. Miladinova et al.
[87, 88] considered the effect of a constant temperature gradient imposed at the plate
for an adiabatic liquid-gas interface (Bi = 0) and high Marangoni number. They stud-
ied the influence of thermocapillarity on the amplitudes and phase speeds of surface
waves resulting from instability and found from linear analysis that a weak increase in
heating along the flow direction produces a decrease in the stability threshold, while
a decrease of the temperature plays a stabilizing role. In the nonlinear regime, they
found finite-amplitude waves, the shape of which depends mostly on the mean flow
velocity, while the amplitude itself is influenced by the thermocapillarity.

In the case of an horizontal layer, Or et al. [94] found a way to damp out the long-
wavelength disturbances by applying a feedback control to the temperature at the
substrate. In the same manner, for an inclined layer, we may expect that the non-
uniform heating can modify or even kill the wave instability. Analogous works about
non-uniform boundary conditions have been reported in literature, e.g. in the case of
a vertical plate periodically oscillating in its own plane. Oron & Gottlieb [96] found
that periodic planar boundary excitation does not alter the fundamental unforced
bifurcation structure and the spatial topological structure of the interfacial waves.
The film evolution as described by their temporally modulated Benney equation is
found to result in mostly quasiperiodic tori complemented by several types of strange
attractors. Oron & Gottlieb found that an increase of either the amplitude or the
frequency of wall oscillation results in significant decrease of the peak-to-trough size
of interfacial waves. Lin & Jiang [80] have further elucidated the physical mechanism
of stabilizing an inherently unstable vertical film flow by use of plate oscillations.
This was done in the case of very viscous thin films (of thickness of order 100 µm
and Re = 0.03) for which the mechanical energy dissipation is increased several
times when the plate is oscillated appropriately. Interestingly, in the window of two-
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dimensional wave suppression, Lin & Jiang found that the work done by the Reynolds
stress tensor enhanced by plate oscillation may cause a falling liquid film, which is
stable with respect to two-dimensional waves, to become unstable with respect to
three-dimensional disturbances, violating the Squire’s theorem.
Let us now turn to a thin liquid film falling down a planar plate maintained at the
non-uniform temperature Tw(x) with T̂w the average plate temperature (see figure 3.1).
We focus on the two-dimensional problem considering only the temperature condition

wall
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h(x, t)
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g

T̃w(x)

∆Tw

T∞

T̂w

θ(x, t)

l̄w

x

y

Figure 3.1: Sketch of a falling film in the case of a sinusoidal temperature distribu-
tion Tw(x) imposed at the wall with its average component T̂w and its non-uniform
component T̃w(x). ∆Tw is the characteristic temperature difference applied along the
length l̄w. θ(x, t) is the film surface temperature.

(TC). In this problem, a second characteristic temperature difference applies along
the wall on a characteristic distance l̄w, and is defined as

∆Tw = Twmax − Twmin. (3.1)

The ratio between the two characteristic temperature differences along the wall and
across the layer yields the control parameter for non-uniformities and reads

δw =
∆Tw

∆T
. (3.2)

The dimensionless non-uniform component of the temperature distribution at the
wall in (1.23a) then becomes

Fw(x) =
T̃w(x)

∆T
= δwf(x), (3.3)
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where f(x) is a continuous function with values in the interval [-1
2
, 1

2
]. The zeroth-

order solution (2.5a) for the film surface temperature combined with (3.3) becomes

θ(0)(x, t) =
1 + δwf(x)

1 + Bih(x, t)
. (3.4)

Substituting θ(0) into the Benney equation (2.10) by considering the two-dimensional
case (∂z = 0) yields

∂th+ h2∂xh+
2

15
∂x(h

6∂xh) + ∂x

[
Ka

h3

3
∂xxxh− Ct

h3

3
∂xh

+BiMa
h2

2

(1 + δwf)∂xh

(1 + Bih)2
− δwMa

h2

2

∂xf

1 + Bih

]
= 0, (3.5)

The two last terms of (3.5) show that thermocapillarity can act in two different ways.
The first one is due to perturbations of the interface temperature induced by variations
of h, when heat transfer to the gas phase takes place (Bi 6= 0). The second one is due
to the non-uniformity of the heating conditions applied at the plate and, as it will
be shown below, can lead the film surface to steady-state deformations. The main
purpose of the present chapter is to investigate the effect of coupling between these
two mechanisms, both arising from a non-uniformity of the interface temperature.
Note that cancelling δw reduces (3.5) to the Benney equation with uniform heating
already studied in chapter 2. In the following, the temperature distribution at the
wall is chosen sinusoidal as

f(x) =
1

2
sin

(
2πnwx

Lx

)
=

1

2
sin

(
πx

lw

)
(3.6)

where nw is the number of ‘temperature wave’ in the periodic domain Lx, and

lw =
Lx

2nw

(3.7)

is the distance along which the temperature difference ∆Tw is imposed at the wall.
With the use of f(x), the last term of (3.5) brings in a new Marangoni number defined
as followed,

Maw =
δwMa

lw
=
γ
(
∆Tw/l̄w

)
l2ν

ρν2
, (3.8)

which represents the relevant parameter for non-uniform heating since it involves the
characteristic temperature gradient imposed along the wall, i.e. ∆Tw/l̄w.
Figure 3.2 displays different cases as controlled by the parameter δw. Small pertur-
bations of a uniform heating, i.e. for δw � 2, were already studied by Van Hook
et al. [141] in the different context of a horizontal layer. The difference between
the horizontal and inclined heated layers is profound (see §2.6.3), since in the latter
case the mean flow can prevent the inherent tendency of dry spot formation and allow
steady-state deformations of much higher amplitude, arising from the application of a
non-uniform heating. When δw > 2, a section of the whole domain is cooled below the
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Figure 3.2: Balance between uniform and non-uniform heating as controlled by the
parameter δw. The temperature distribution at the wall is given by (3.6) with nw = 1.

ambient temperature T∞, while the remaining of the domain remains heated. When
δw = 2, the minimum of the imposed temperature fits with ambient air temperature
T∞. The remaining of this chapter will focus on this latter case in order to illustrate
the coupling between the two thermocapillary mechanisms when the two character-
istic temperature differences, ∆T and ∆Tw, are of the same order of magnitude.

3.2 Stationary solutions

Along with the numerical study of the spatio-temporal dynamics of the film, as de-
scribed by (3.5) and presented in §3.3, we investigate stationary states of the system.
In the case of a uniform heating, one can find stationary solutions in the reference
frame moving downstream with the phase speed of travelling waves. In the case of a
non-uniform heating, the x-dependent temperature distribution imposed at the wall
does not allow to seek for travelling waves straightforwardly, because it breaks the
translational invariance of the problem. Therefore, we need to split the analysis and
to look for stationary solutions either in a moving reference frame with a uniform
heating or in the fixed reference frame with a non-uniform heating.
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3.2.1 Moving reference frame - Uniform heating

We first seek for stationary solutions of (3.5) with δw = 0 in the reference frame moving
downstream at a certain velocity c, as already performed in §2.3, that is by introducing
h(x, t) = h(ξ) with ξ = x − c t. The closed flow condition is enforced (see §2.4).
Figure 3.3 presents several stationary wave solutions in the [hNk,Ma]−plane. The
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Figure 3.3: Wavenumber of disturbances versus the Marangoni number in the case of
uniform heated vertical wall for Re = 0.5, Ka = 497 and Bi = 0.087. The solid line
represents the cut-off wavenumber kc, the dot-dashed line k = kc/

√
2 represents the

most amplified linear mode and the dotted line k = kc/2 is the limit below which the
second harmonic mode becomes linearly unstable. The insets display the travelling
waves calculated for the fundamental wavenumber k1 = 2π/175 and various values of
Ma: (a) 2.2, (b) 6.6, (c) 13.1 and (d) 17.5. The phase speeds c/cL for these solutions
are, respectively, 1.0001, 1.0043, [0.9989;1.0217] and 0.9981.

parameters are fixed to Re = 0.5, Ka = 497 and Bi = 0.087 (see tables of parameters
in appendix C). The stationary wave solutions are presented for the fundamental
wavenumber k1 = 2π/Lx in the domain of fixed size Lx = 175. By increasing Ma
one observes the change of the solution shape from one hump at Ma = 2.2 (a), to
two humps at Ma = 17.5 (d), going through the development of a small amplitude
secondary hump at Ma = 6.6 (b) and the coexistence between one and two-humped
waves at Ma = 13.1 (c). Indeed, in this latter case, two stationary wave solutions
are found to yield an oscillatory regime between the one-humped solution obtained
by continuation from a single wave at kc, and the two-humped solution obtained by
continuation from a double wave at kc/2. The phase speed c increases from its critical
value for a single humped wave and decreases for a two-humped wave.
Figure 3.4 shows the wave amplitude peak-to-trough A = (hmax−hmin)/hN versus Ma
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for the interfacial waves with one and two humps, labeled as “1” and “2”, respectively.
The slight fold of the curve “1” at Ma ≈ 6.38 indicates the appearance of a secondary
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Figure 3.4: Diagram displaying the wave amplitude A = (hmax −hmin)/hN versus the
Marangoni number Ma for the same parameters as for figure 3.3. The line labeled
“1” corresponds to a one-humped wave solution with the fundamental wavenumber
k1 = 2π/175, and the one labeled “2” corresponds to a two-humped interfacial wave,
i.e. k2 = 4π/175. The thick lines indicate that the solution is stable, thin lines that
it is unstable, while the dashed area corresponds to oscillatory mode.

small amplitude hump, as seen in figure 3.3b. The curve “2” emerges at Ma = 9.45,
where the second mode k2 = 2k1 loses its linear stability. The stability of the solutions
corresponding to the curves “1” and “2” was determined by solving the evolution
equation (3.5), see §3.3. Three different zones are delineated in figure 3.4: in zone
I, the thick solid line represents stable one-humped solutions (see figures 3.3a, 3.3b),
in zone II for Ma > 12.1 the two solution branches coexist and compete inside the
dashed area (see figure 3.3c), while in zone III for Ma > 16.8 the two-humped solution
becomes stable (see figure 3.3d). The transitions I-II and II-III were determined by
convergence of numerical time integrations (see §3.3) and with an accuracy of 10−1

on the Marangoni number.
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3.2.2 Fixed reference frame - Non-uniform heating

The dynamical system in this case is obtained by recasting (3.5) into the set of
differential equations

U ′
1 = U2

U ′
2 = U3 (3.9)

U ′
3 =

1

Ka

(
3

U3
1

Q− 1 − 2

5
U3

1U2 + CtU2 −
3

2

BiMa(1 + δwf)U2

U1(1 + BiU1)2
+

3

2

δwMaf ′

U1(1 + BiU1)

)
,

where the prime denotes here derivative with respect to x. The stationary solutions
of the dynamical system (3.9) are calculated using the same method as in §2.3, but
now in the fixed reference frame. Therefore, they describe steady-state deformations
of the film surface. The size of the domain is chosen to match with an integer nw of
wavelengths corresponding to the function f . We start here the continuation search
with a non-perturbed flat film, enforcing the boundary conditions h = hN, h′ → 0,
h′′′ → 0 and f ′ → 0 and determine the value of the integration constant as Q = h3

N/3.
The solutions obtained with (3.6) in a fixed frame of reference will be presented below
in §3.3 and compared to the results of the time-dependent calculations based on (3.5),
see for instance figure 3.8.

3.3 2D computations

In this section we study the spatiotemporal dynamics of the falling liquid film, as
governed by the evolution equation (3.5) amended with periodic temperature distri-
bution and boundary conditions in the domain 0 ≤ x ≤ Lx. The cases of uniform
and non-uniform heating will be separately studied in the framework of (3.5) and the
results will be compared with the stationary solutions computed in §3.2.
The initial condition used in this investigation in the case of a uniform heating is

h = hN

[
1 + 0.05 cos

(
2π

Lx
x

)]
, (3.10)

while in the case of a non-uniform heating the initial condition is chosen as

h = hN. (3.11)

In the former case stationary travelling waves are always found, while in the latter,
either oscillatory modes or pure steady-state deformations of the film interface may
be observed.

3.3.1 Numerical method

The numerical method used here to solve the evolution equation (3.5) is based on
the Newton-Kantorovich method, as described by Oron [96]. Equation (3.5) can be
written in the form

∂th+ F (h) = 0, (3.12)
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where

F (h) ≡ ∂x

[
h3

3
(1 − Ct∂xh+ Ka∂xxxh) +

2

15
h6∂xh− Ma

h2

2
∂xθ

(0)

]
,

provided that both θ(0) and h are periodic in the given domain. Equation (3.12) is
discretized in time using the implicit backward Euler method in the form

h(n+1) − h(n)

∆t
= −F (h(n+1)), (3.13)

where ∆t is the time step and h(n) is the solution of the evolution equation obtained
at the time tn = n∆t. The right-hand side of (3.13) is linearized by

F (h(n+1)) = F (h(n)) + F
(n)

h (h(n+1) − h(n)), (3.14)

where F
(n)

h is the Frechet differential operator evaluated at the time tn.
Introducing the difference between the solutions calculated for consecutive times u ≡
h(n+1) − h(n), and using the definition of the Frechet derivative

F
(n)

h u = lim
ε→0

F (h(n) + εu)− F (h(n))

ε
, (3.15)

(3.13) and (3.14) are combined into

(I + ∆tF
(n)

h )u = −∆tF (h(n)), (3.16)

where

Fhu = ∂x(h
2u) +

{
2

15
∂x(h

6∂xu+ 6h5∂xhu) +
Ka

3
∂x

(
h3∂xxxu+ 3h2u∂xxxh

)

−Ma∂x

(
hu∂xθ

(0)
)
− BiMa∂x

[
h2

2
∂x

(
uθ(0)

1 + Bih

)]}
,

I is the identity operator and θ(0) is given by (3.4) in the case of a temperature
condition at the wall. Equation (3.16) constitutes a linear differential equation in
terms of the variable u(x, t). Discretization of F (h) and Fh are both carried out
using a central difference scheme and linear interpolation for half-nodes accurate to
O(∆x2), where ∆x is the spatial step. Nx denotes the number of grid-points in the
spatial domain. Furthermore, the conservative forms (i.e. ∂x in front of all terms in
F (h) and Fh) have been proven to have better convergence properties [47]. Since we
impose periodic boundaries, the closed flow condition is naturally enforced (see §2.4).
The sets of simultaneous linear algebraic equations resulting from the discretization
of (3.16) are solved at each step directly for u ≡ uj (j = 1, ...Nx) using the generalized
Thomas algorithm [34] applied to the pentadiagonal∗ sets with three corner elements

∗Because of the third-order derivatives that need five mesh points to be discretized at second-
order.
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that arise due to spatial periodicity. The computations were typically performed with
Nx = 500 to 1000 grid points to ensure spatial convergence of the solutions.

As already mentioned, the results are presented for fixed parameter values Re = 0.5,
Ka = 497, Bi = 0.087 and δw = 2. These values are calculated from the material prop-
erties of a 25% ethyl-alcohol aqueous solution in water given in Table C.2. Further-
more, we arbitrarily consider a moderate heat transfer coefficient of α = 500W/m2K
and fix the mean film thickness to h̄N = 100µm.

The computations are carried out for a sinusoidal temperature distribution given by
(3.6), focusing primarily on the influence of the imposed temperature gradient by
varying Ma and nw (the number of periods of the temperature distribution in the
domain). Next, the influence of the average temperature on the dynamics is studied
by varying the value of the parameter δw. The results are compared to those obtained
in the case of a uniform heating by using (3.5) in the limit of δw → 0 and with (3.10)
as the initial condition. We found that no noticeable differences were observed when
other initial conditions, such as a random perturbation of the flat film h ≡ hN, were
employed.

3.3.2 Influence of the imposed temperature gradient

Figure 3.5 shows the early stage of the evolution of the film thickness in the case of
one “temperature wave” (nw = 1) imposed at the wall for Ma = 2.2. The evolution
is presented over one period characterized by the time t

L
= Lx/cL

, where c
L

is the
phase speed of interfacial waves given by (2.18). The flat film is deformed first by
the thermocapillary stress that induces a flow from a hotter point to a colder one.
This flow creates a trough in the left half of the domain and a crest in the right half
of the domain, as shown in figure 3.5a. This deformation is then advected by the
flow as shown in figure 3.5b, and grows quickly to reach its maximum at t ≈ tL/2, as
indicated by the thick long-dashed curve. This quick increase of the amplitude occurs
when the phase of the travelling wave matches that of the steady-state deformation.
Further, the wave disintegrates into two waves and its amplitude significantly reduces
until reaching its minimum at t ≈ tL, as shown by the thick dotted curve. Overall,
one observes that the travelling wave is modulated by a well-defined envelope. The
presence of this envelope is the direct consequence of the periodic temperature profile
imposed at the wall. Figure 3.6a shows that an oscillatory regime is reached in the
long time limit. Again a sequence of events of total duration tL is displayed and
clearly shows the presence of a steady-state envelope.

The fixed stationary solution calculated from the dynamical system (3.9) is also dis-
played in figure 3.6a. It appears to be in the middle of the above-mentioned envelope
(dotted line). Figure 3.6b shows the corresponding evolution in the case of a uniform
heating (δw = 0) giving rise to a travelling wave. This travelling wave was also cal-
culated as a stationary solution in the moving frame of reference from the dynamical
system (2.23) (dotted line). The phase space portraits in both cases of uniform and
non-uniform heating, shown in figure 3.6c, demonstrate the similarity between the
two waves and suggest that for small non-uniformities of the temperature profile, the
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Figure 3.5: Film evolution at the outset as described by (3.5) for Ma = 2.2, δw = 2,
Re = 0.5, Ka = 497, Bi = 0.087 and Lx = 175. (a) Deformed film surface from the
flat film at time t = 0.5hN (thick line). The location of the temperature distribution
is also drawn (dotted line). (b) Evolution of the film surface at the early stage from
t = 0.5hN to t = 13.5hN shown with increments of 0.5hN. The factor hN = 1.147 here
is used for convenience to handle with rounded-off numbers. The time scale is still
the one of the natural set, namely lν.

oscillatory mode can be expressed as

hs(x, t) ≈ h1(x) + h2(x− ct) − hN, (3.17)

representing a superposition of the fixed and travelling stationary waves, h1 and h2,
respectively. Figure 3.6d demonstrates an excellent agreement between the superpo-
sition of the two above-mentioned stationary solutions and the wave computed with
time-dependent simulations (solid line).
This superposition is found to be valid for sufficiently small Marangoni number how-
ever. Figure 3.7a presents the modulated wave, i.e. the oscillatory regime, obtained
for Ma = 6.6, nw = 1 and δw = 2, while figure 3.7b shows the corresponding case of
a uniformly heated wall for δw = 0. The apparently thick line region in both cases is
the locus of the fold between two humps already mentioned above (see figure 3.3b).
This reflects the fact that in these conditions the wave preserves its characteristics,
whatever is the temperature gradient applied at the wall. Nevertheless, the phase
space portrait shown in figure 3.7c now exhibits some differences which reveal the
non-exactness of the superposition of h1 and h2 in (3.17). When nw = 2, i.e. the
strength of the imposed temperature gradient is doubled, the film surface becomes
steady (fixed point in the phase plane) instead of a propagating wave (limit cycle),
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Figure 3.6: Film evolution at steady-state as described by (3.5) for Ma = 2.2, δw = 2,
Re = 0.5, Ka = 497, Bi = 0.087 and Lx = 175. (a) Oscillatory mode from t =
3486.5hN (dashed line) to t = 3500hN shown with increments of 0.5hN. (b) Same as
(a) but for a uniform heating, δw = 0. (c) The evolution of the cases shown in (a) and
(b) at the fixed location x = Lx/2 projected onto the phase plane. (d) Superposition
of stationary solutions (dot-dashed line) that almost coincides with the computed
steady-state solution for t = 3498hN (solid line).

as depicted by figure 3.7d. This result suggests that a sufficiently strong temperature
gradient along the wall can suppress the wave instability. Figure 3.8 displays a com-
parison between the cases of a steady film surface obtained from numerical solution of
(3.5) (solid line) and the stationary solution calculated in the fixed frame of reference
using the dynamical system (3.9) (dashed line). The excellent agreement evident from
figure 3.8 provides also a verification of our numerics, since the solutions were calcu-
lated by two totally different numerical methods. It is found by comparing graphs
in figure 3.8, that the amplitude of the emerging wave is approximately proportional
to the value of the imposed temperature gradient along the wall. This can be made
explicit by taking the limit of small Biot number (Bi � 1) and small deformations of
the film surface, which implies also f ′ � 1. Indeed, under those conditions, (3.5) has
an approximated steady-state solution of the form

h ≈ hN +
1

2
δwMaf ′ = hN +

π

2
Maw cos

(
πx

lw

)
, (3.18)

where (3.6) and (3.8) have been used. The value of Maw in figure 3.8 varies from 0.1
(a) to 1.2 (e) and is directly proportional to nwMa. The amplitude of the steady-
state deformations follows this rule with an excellent agreement. Nevertheless, the
departure from the sinusoidal shape is observed in figure 3.8e through the slight
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Figure 3.7: The film evolution at steady-state as described by (3.5) for Ma = 6.6,
δw = 2, Re = 0.5, Ka = 497, Bi = 0.087 and Lx = 175. (a) Film evolution from
t = 3486.5hN (dashed line) to t = 3500hN shown by increments of 0.5hN. (b) Same as
(a) for the case of a uniform wall temperature with δw = 0. The arrow indicates the
direction of propagation. (c) Phase plane portraits corresponding to (a) and (b) at the
location x = Lx/2. (d) Same as (a) for the case of two “temperature waves”, nw = 2.
In this case the deformation of the interface is steady in time (no oscillations).

asymmetry of the troughs. This is a clear manifestation of nonlinearities neglected in
(3.18).

Figure 3.9 presents the film evolution for Ma = 17.5 that corresponds to the case
of a uniform heating with δw = 0 belonging to the zone III in figure 3.4. Hence
the emergence of a two-humped travelling wave is expected, as shown in figure 3.9b.
This two-humped wave persists when the wall temperature is non-uniform (figure
3.9a). However, the phase velocity slightly decreases by 1.3% with respect to the case
of a uniform heating, as if the presence of the steady-state deformation induced a
slowdown of the wave propagation. This effect is even more pronounced for larger
temperature gradients, actually, the phase velocity decreases by 5.3% when nw =
2, see figure 3.9c. Finally, the propagation becomes quasi-periodic when nw = 4
(figure 3.9d). These evolutions are summarized in the phase plane portraits presented
in figure 3.9e where (a,b,c) corresponds to limit cycle and (d) to a quasi-periodic
behaviour (see figure 3.10). The time series of the film thickness recorded in the middle
of the periodic domain x = Lx/2 are plotted in figures 3.10a and 3.10c and correspond
to the cases presented in figure 3.7 for Ma = 6.6 and figure 3.9 for Ma = 17.5,
respectively. These cases belong to zones I and III in figure 3.4. The time series are
marked by the number of temperature waves nw and by “0” for the case of a uniform
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Figure 3.8: Steady solutions obtained by time integration (solid lines) and stationary
solutions calculated in the fixed reference frame from the dynamical system (3.9)
(dashed lines). The parameter values are Lx = 175, δw = 2, Re = 0.5, Ka = 497 and
Bi = 0.087. (a) Ma = 2.2, nw = 2; (b) Ma = 6.6, nw = 2; (c) Ma = 2.2, nw = 4; (d)
Ma = 6.6, nw = 4; (e) Ma = 13.1, nw = 4.

heating on the right side of each plot. Figure 3.10b shows the modulated time series
for Ma = 13.1 corresponding to zone II in figure 3.4, where the film surface oscillates
between two competing modes. This modulation is sustained for nw = 1, while for
nw = 2 the two-humped wave is dominant. In the case of nw = 4 the wavy dynamics
of the film surface is even suppressed giving rise to a steady-state deformation.

In summary, the non-uniform heating can affect significantly the wave dynamics (with
respect to the uniform heating case) in different ways: (i) by decreasing the phase
speed of waves, (ii) by modifying the wave regime, for instance, from oscillatory to
stationary waves, or from stationary to quasi-periodic waves, (iii) by suppressing
waves. Nevertheless, these conclusions hold in the situation where the temperature
differences across the film and along the wall are of the same order of magnitude.
The next section will briefly present other situations.
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Figure 3.9: The film evolution as described by (3.5) for Ma = 17.5, δw = 2, Re = 0.5,
Ka = 497 and Bi = 0.087. (a) Film evolution from t = 3486.5hN (dashed line) to
t = 3500hN shown by increments of 0.5hN. The dotted line indicates the corresponding
stationary solution calculated in the fixed reference frame. (b) Same as (a) for the
case of the uniform wall temperature with δw = 0. (c) Same as (a) for the case of
two “temperature waves” nw = 2. (d) Same as (a) for the case of four “temperature
waves” nw = 4. (e) Phase plane portraits corresponding to (a), (b), (c) and (d) at
x = Lx/2.

3.3.3 Non-uniform versus uniform heating.

Up to now, the parameter δw as given by (3.2) was fixed. Let us explore different cases
as classified in figure 3.2. Figure 3.11 displays on the left the envelopes of the surface
oscillations and on the right the corresponding time series for Ma = 6.6 and various
values of nw and δw (recall that δw is the ratio between the temperature drop along the
solid wall and the one across the layer). The width of the envelopes decreases when
increasing δw, showing the damping effect of the non-uniformities on the development
of travelling waves. However, changing δw does not change the shape of the envelopes
that is only determined by nw (for fixed Lx) and therefore by the steady-state profile
calculated in a fixed reference frame (thick dot-dashed line).

Figure 3.11b shows the transition from a one-humped to a two-humped modulated
wave with a decrease of δw. When the value of nw is doubled (figure 3.11c-d) a
large non-uniformity as compared to the average temperature (δw = 6.25) acts in
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Figure 3.10: Time series of the film thickness at x = Lx/2 for δw = 2, Re = 0.5,
Ka = 497, Bi = 0.087, Lx = 175. On the right side of each plot the value of
nw = 0, 1, 2, 4 is displayed. Here nw = 0 corresponds to the case of the uniform wall
temperature (δw = 0). The corresponding Marangoni numbers are (a) Ma = 6.6, (b)
Ma = 13.1 and (c) Ma = 17.5.

suppressing interfacial travelling waves. The same is observed in figures 3.11e-f for
nw = 4, even for a smaller value of δw = 1. In this case, the evolution of the interface
for δw = 0.5 becomes aperiodic due to strong nonlinearities involved in the dynamics.

3.4 Heat transfer

In the area of heat transfer enhancement a non-uniform heating of falling liquid films
is thought to be a promising solution since it induces steady-state deformations of the
liquid-gas interface which are beneficial to the heat transfer process [55]. It is then
essential to understand the influence of non-uniformities in heating and how they can
improve the heat transfer through the film.
For this purpose, we define a reduced heat transfer coefficient, based on the dimen-
sionless temperature difference between the wall and the interface, so that using the
zeroth-order solution for the temperature field given by (2.4e), it reads

α̃(x, t) =
−∂yT

T |y=0 − T |y=h
=

1

h(x, t)
. (3.19)

This reduced coefficient α̃ gives locally the deviation due to a change of the film
thickness, from the heat transfer coefficient of the Nusselt flat film (αN = λ/hN). In
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Figure 3.11: The envelopes and time series of the film thickness calculated for Ma =
6.6 and (a,b) nw = 1; (c,d) nw = 2; (e,f) nw = 4. In the left column the dotted,
dashed and solid curves correspond to the envelopes for δw = 6.5, δw = 1, and δw = 0.5,
respectively. The dot-dashed curves depicts the corresponding steady-state solutions
calculated in the fixed frame of reference. In the right column the corresponding time
series recorded at x = Lx/2 are shifted one with respect to the other for clarity.

order to estimate the heat transfer enhancement induced by surface deformations, α̃
should be averaged over one period Lx of the domain as

α̂ =
1

Lx

Lx∫

0

1

h
dx. (3.20)

Therefore, the enhancement of the heat transfer is expected only if α̂ > 1. For α̂ = 1,
the heat transfer coefficient at the interface is simply the one predetermined for the
Nusselt flat film solution αN.
The reduced coefficients α̃ and α̂ – that can also be obtained for HFC – merely
claim that at leading-order, the heat transfer is inversely proportional to the film
thickness. Moreover, it also shows that the free-surface deformation is not a sufficient
condition for the enhancement of the heat transfer. To achieve such an enhancement
the deformation must induce a sufficiently large zone of thinning.
Figure 3.12 presents the average reduced heat transfer coefficient given by (3.20)
for the steady-state deformations calculated in the fixed reference frame using the
dynamical system (3.9), with the temperature distribution at the wall (3.6) for nw =
1, 2 and 4. We also represent the same result for an artificial sinusoidal film surface
(dot-dashed line). It appears that the deviation from the sinusoidal shape strongly
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diminishes the heat transfer efficiency. Nevertheless, the heat transfer coefficient
cannot diverges like in our artificial case since the flow should be maintained anywhere
(at least in a 2D flow). As a consequence, the minima cannot be zero and α̂ keeps
finite values.
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Figure 3.12: Average reduced heat transfer coefficient α̂ versus the maximal deviation
of the film thickness from the flat state h = hN for the case of steady deformations.
The solid, dotted and dashed lines are calculated for the stationary solutions in the
fixed reference frame for the sinusoidal temperature distribution with nw = 1, 2 and
4, respectively. The parameter values are δw = 2, Re = 0.5, Ka = 497, Bi = 0.087
and Lx = 175. The dot-dashed line corresponds to the artificial case of a sinusoidal
shape of the film surface. The inset is a zoom in for small values of α̂. Note that the
dotted curve almost coincides with the solid one.

Figure 3.13 displays α̂ plotted versus Maw for steady-state deformations calculated
with the Benney equation (3.5) in a fixed reference frame. It presents also the results
obtained from time-dependent numerical simulations of (3.5). As shown in §3.3, they
correspond to oscillatory regimes in the form of travelling waves modulated by the
steady-state deformation. It appears that the coefficient α̂ of these regimes is only
slightly enhanced by the travelling waves and its main contribution comes from the
steady-state deformations induced by the non-uniform heating.
The situation can differ however if the average wall temperature is increased, this is
for decreasing δw. Figure 3.14 shows the coefficient α̂ as a function of δw. The white
symbols correspond to the cases studied in figure 3.11 when Ma = 6.6 and the black
ones when Ma = 13.1. It appears that the value of δw does not significantly affect
the heat transfer coefficient, except for small value of δw for which the temperature
difference across the film is much higher than the temperature difference along the
wall, i.e. ∆T � ∆Tw. This effect is further increased with Ma and nw.

We can conclude, therefore, that steady-state deformations induced by a non-uniform
heating are the main agent of heat transfer enhancement, while the amplitude of
travelling waves depending on the average wall temperature does not play a significant
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Figure 3.13: Average heat transfer coefficient for stationary solutions versus Maw.
The parameters are δw = 2, Re = 0.5, Ka = 497, Bi = 0.087 and Lx = 175. The
curves correspond to steady-state solutions calculated in the fixed reference frame,
while the symbols correspond to the related oscillatory regimes obtained by time
integration (see Sec.3.3). The results shown are nw = 1 (solid line and diamond),
nw = 2 (dotted line and black circle) and nw = 4 (dashed line and black square).

role, except when the average temperature is much larger than the amplitude of the
non-uniform temperature distribution.
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Figure 3.14: Average heat transfer coefficient as a function of the parameter δw for
Re = 0.5, Ka = 497, Bi = 0.087 and Lx = 175. The white symbols denote the results
for Ma = 6.6, while the black ones correspond to Ma = 13.1. The squares correspond
to nw = 1, the diamonds to nw = 2 and the circles to nw = 4.



Chapter 4

Local heating

We have seen in the previous chapter that sinusoidal distribution of the imposed
wall temperature induced periodic and steady-state deformations due to Marangoni
effect. In the present chapter, we will focus on experiments designed in order to study
the effect of non-uniform heating. The simplest configuration is a heater embedded
into the wall and inducing therefore a local temperature gradient. The concomitant
surface tension gradient produces a thermocapillary flow opposed to the gravitational
driven flow (for a fluid that has the surface tension decreasing with temperature). The
first related experiment was built-up by Kabov [55]. He reported that the competing
flow produces a permanent deformation, i.e. that remains steady in the laboratory
reference frame. Indeed, the thermocapillary counter flow slows down the film surface
velocity and it results in a horizontal bump of increased film thickness as shown on
the left picture of figure 4.1. This bump occurs at the upper edge of the heater

y

x

Bump Rivulet

H

z

x

g

Heater

Figure 4.1: Two pictures of the inhomogeneously heated falling film viewed from
the y−direction (perpendicular to the plate), obtained using the Schlieren technique.
Below some threshold, for Ma < Mac, the bump forms at the upper edge of the heater
(left), whereas beyond it, for Ma > Mac, the rivulet structure appears (right). The
liquid consists of a 25% ethyl-alcohol aqueous solution, Re = 0.25.
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where the temperature gradient is maximal. Above some threshold, say Mac, this
two-dimensional base state becomes unstable with respect to spanwise disturbances.
A three-dimensional pattern takes place in the form of rivulets aligned with the
flow, which are periodic in the transverse direction as shown on the right picture of
figure 4.1. This instability was called rivulet instability by Kabov who mentioned
this instability for the first time in 1994 [55]. Since then, Kabov and co-workers
have worked extensively on this problem, understanding the likely benefit of the new
structure on the enhancement of the heat transfer [61, 56, 59, 65]. Indeed, the film
thinning occurring between the rivulets may increase drastically the heat transfer,
even though it can also be the siege of dry patch formation. Thereby controlling
the onset of instability and the development of the resulting nonlinear pattern has
became a challenging issue.

In the frame of this work, an experimental set-up has been built up in order to study
the bump formation and the rivulet instability. We developed an optical apparatus
based on a Schlieren technique for measuring the free surface deformations. The
details of this apparatus are reported in [119]. Measurements of bump shapes were
reported in [116, 64] and the ones for the temperature field at the film surface using an
infrared scanner as well as the velocity field using a high speed camera were reported
in [117]. The main experimental results of those works will be compared hereafter
with the theoretical approach.

In §4.1 the experimental set-up is presented as well as the main arguments that were
used to select the most appropriate design. Then, based on long-wave theory, we
calculate the bump profiles (base state) and compare them with experimental data
(§4.2). Next, we analyse the linear stability of this base state with regards to spanwise
disturbances (§4.3). We perform an energy analysis following the method of Spaid
& Homsy [131] to elucidate the instability mechanism. Finally, we performed 3D
time-dependent simulations using a pseudo-spectral method in order to describe the
dynamics beyond the instability threshold and the formation of the rivulet pattern
(§4.5).

4.1 Experimental test section

Figure 4.2 shows the design of the experimental test section to study the case when
a local heating is imposed at the wall. The working liquid is a 25%ethyl-alcohol
aqueous solution which is injected at constant flow rate q̄N. The Reynolds number is
therefore a control parameter through the relation (1.36). At the inlet the liquid film
is generated from the transition between a Poiseuille flow (parabolic velocity profile)
and a Nusselt flow (semi-parabolic velocity profile). The heater should therefore be
embedded after the distance Lh from the nozzle necessary for the falling film to be
fully developed, i.e. with a constant film thickness h̄N.

Three zones corresponding to three different regimes are indicated in figure 4.2:

I A thermal boundary layer takes place in the film from the upper edge of the
heater. An analytical expression for the length Lb necessary for the boundary
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Figure 4.2: Design of the experimental test section. 1: nozzle, 2: heater, 3: ther-
mal boundary layer, T0: initial temperature, Tw: wall temperature, Ts: film surface
temperature, qv: heat flux density. Courtesy of Kabov [62].

layer to reach the film surface was obtained by Gimbutis [40] and reads

Lb = 0.139lνPrRe3/4. (4.1)

Since the Reynolds numbers considered in the experiments are relatively small,
the heater length L � Lb in all cases (e.g. for Re = 1, Lb = 0.27mm while
L ≥ 4mm). Moreover, we may expect the Marangoni counter flow to cause a
significant decrease of Lb. For Re � 1, the heated liquid could even rise up
along the film surface over the heating element. It means that the real thermal
boundary layer can be curved upstream and will be mainly determined by the
Marangoni effect, (4.1) becoming irrelevant.

II The thermal boundary layer has reached the film surface. Since the heat flux
density qv is maintained constant, the wall temperature Tw should increase along
the x−coordinate. However, the heating element being highly conducting, we
can expect Tw to be rather homogeneous in this zone.

III As mentioned by several authors (see for example the work by Alekseenko et
al. [1]), a given distance Lv from the nozzle is necessary for the hydrodynamic
waves to develop and reach finite amplitude. This distance Lv is nonlinearly
related to Re. It decreases first and then, for Re > 20, increases quickly with
Re.
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In order to have a test section with a steady layer on both thermal and hydrodynamic
point of view, we must therefore place the heating element at a distance from the noz-
zle larger than Lh and smaller than Lv. In our experiments, the previous requirement
was fulfilled by placing the upper edge of the heater at 35 mm from the nozzle. Two
different heater lengths of L = 4 and 6.7 mm have been used. Hence, Lv was found
to be always larger than 41.7 mm, at least for Re ≤ 2, which lies in the range used
for experiments.
In experiments the heating is controlled by imposing a constant heat flux qv at the
plate. Marchuk & Kabov [86] calculated the heat flux distribution along a local
heat source, solving the Fourier equations in the wall, and showed that it cannot be
considered as constant along the plate. This non-uniformity is due to the dependence
of the heat flux on the characteristics of the flow, which is found to be particularly
strong when the Reynolds number is small. They found an intense heat flux in the
first quarter of the heater, starting from its upper edge (where the thermal gradients
are the highest), and then a slight decrease until the downstream edge. Since the heat
flux is far to be constant, and as the heat flux condition requires one more parameter
Biw (see §1.3.2), we chose in the following to use the temperature condition at the
wall. We must then find the most appropriate temperature distribution. For this
purpose, we may start from the temperature profile at the film surface measured
by infrared scanner as shown in figure 4.3. This can be justified by considering the
liquid-gas interface to be a poor conductor, hence rather well insulated from the gas,
Bi � 1. Therefore, the leading order film surface temperature (3.4) ensures that
f ∼ (θ − 1)/δw. The temperature profiles shown in figure 4.3 demonstrate a strong

Figure 4.3: Temperature profiles measured at the film surface by infrared scanner for
Re = 0.3. The numbers in the legend are the average heat flux density qv given in
W/cm2. The coordinate x = 0 indicates the upper edge of the heater with L = 4mm.

temperature jump at the upper edge of the heater and then a small decrease after the
heater indicating that the heat transfer at the liquid-gas interface is not very intense.
The Biot number should therefore be taken sufficiently small (Bi � 1) indeed. The
temperature jump in figure 4.3 can be identified to ∆Tw and the heater length L to
the length l̄w along with ∆Tw applies. This provides us the characteristic temperature
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gradient ∆Tw/l̄w necessary to estimate the wall Marangoni number as defined in (3.8),
even though an other way to infer the Marangoni number is presented in the next
section.

4.2 Base state: comparison with experiments

The Reynolds number being small in the experiments, the long-wave theory applies
and the evolution equation (3.5) remains valid. Let us check this statement in the light
of §2.6 where the validity of the Benney equation was studied. Given that the wall is
vertical in the experiments (Ct = 0), and looking at table C.1, the Kapitza number
of the working liquid is Ka⊥ = 500, the maximal ∆T ∼ 10K (see figure 4.3) and
Ma⊥ ∼ 15. Let us fix the Biot number to Bi⊥ = 0.1. The product Bi⊥Ma⊥ ∼ 2 such
that we read in figure 2.8 that R < 0.4 should be verified, using the Benney equation,
to keep a good accuracy. This corresponds to Re < 0.8. The rivulet instability has
been observed in experiments for smaller Re than this limit and the Benney equation
can therefore be used safely. Nevertheless, the above condition is obtained in the case
of a uniform heating and it should be used with care for a non-uniform heating by
taking care that the amplitudes of the solutions do not exceed by far the ones of the
travelling waves computed in the uniform heating case (to avoid blow-up).
Using the evolution equation (3.5), the temperature distribution should still be given.
Based on figure 4.3, let us choose the temperature distribution as follows

f(x) =
1

2

(
tanh

[
π

lw

(
x− 1

4
Lx

)]
− tanh

[
π

0.4Lx

(
x− 5

8
Lx

)]
− 1

)
, (4.2)

which is represented on figure 4.2, as an example, for Lx = 20 and lw = 1. It actually

0 5 10 15 20
x

-0.4

-0.2

0
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0.4

T
w

Figure 4.4: Non-uniform component of the temperature distribution, as described by
(4.2). The length of the domain is Lx = 20 and the length of the positive temperature
gradient is lw = 1.

models the strong temperature increase at the upper edge of the localized heater,
appearing along the length lw � Lx, and centered at the first quarter of the domain
Lx (at x = 5 on figure 4.4). Because we want to impose periodic boundary conditions
for numerical computations, the condition f(0) = f(Lx) must be satisfied. This is the
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reason why (4.2) includes a smooth negative temperature gradient along the length
equal to 40% of Lx and centered at 5

8
of it. Therefore, the negative temperature

gradient decreases with increase of the size of the periodic domain Lx. One then
expects that for sufficiently large Lx the temperature profile tends to that of the
experimental situation.
Figure 4.5 compares the base state calculated with the dynamical system (3.9) (thin
lines) with the profiles measured in experiments. Since the temperature gradient im-
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Figure 4.5: Comparison between the profiles of the film thickness measured in the
experiments (thick lines), and calculated from (3.9) (thin lines). The parameters are
Ka = 500, Bi = 0.087 and δw = 2. In the legend, the factor of Mac indicates how
far the Marangoni number is from the onset of the rivulet instability as observed
experimentally.

posed at the wall ∆Tw/lw is not known accurately, we must infer the experimental
Marangoni number. We used the experimentally measured lengthscale of the bump
to determine lw. Then we calculated theoretically the maximal height as a function of
∆Tw. We take the experimental ∆Tw to be where this height matches the experimen-
tally measured maximal height. This fitting procedure was only performed once (for
each Reynolds number) for the bump with the highest amplitude. Then, we decreased
the Marangoni number using the ratios given in the legend of figure 4.5 to calculate
the bumps of smaller amplitude. The theoretical and experimental profiles are in
good agreement, as far as their ascending side and the small depression upstream due
to the surface tension effect are concerned. The discrepancy observed at the down-
stream tail of the bump can be attributed to the accumulating error associated with
the integration method used for processing experimental data.
However, to explain this discrepancy, Kabov et al. [85, 64] have rather proposed a



4.2. BASE STATE: COMPARISON WITH EXPERIMENTS 105

model taking into account the temperature dependence of the viscosity. Indeed, this
effect could explain at least the decrease of the film thickness below its initial mean
value hN due to an increase of the fluid mobility – the flow rate being conserved
– induced by the temperature decrease of the liquid viscosity. Kabov et al. [85,
64] obtained a better quantitative agreement with some of the experimental curves,
especially in the downstream tail of the bump. Remember also that the temperature
distribution (4.2) is merely an approximation and the heat transfer coefficient at the
wall and at the free surface are not known and could also influence the free surface
shape.

Figure 4.6 shows the maximal height of the bump hmax/hN calculated by continuation
using the Marangoni number Ma as the continuation parameter. The amplitude of the
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Figure 4.6: Maximal departure of the film surface from its mean dimensionless value
hN as a function of the Marangoni number Ma for various values of the Reynolds
number Re, for δw = 2, Ka = 500 and Bi = 0.087. Circles correspond to the maximal
height of the bump at which the instability onset has been experimentally observed.

deformation decreases with an increase of Re when Ma is fixed. This is due to the main
flow that counteracts the thermocapillary flow. The circles on figure 4.6 correspond to
the maximal height of the bump at which the instability onset has been observed for
each Reynolds number. The critical Marangoni number for the experimental rivulet
instability denoted by Mac is therefore deduced from figure 4.6. In other words, we
identify from this figure which is the Marangoni number that produces theoretically
a bump whose the size fits with the one measured experimentally at the instability
onset.
The instability threshold Mac is found first to increase and then to decrease with Re,
the transition being at Re ≈ 0.25 (see figure 4.6). Since such a decrease of Mac with
Re has not been observed experimentally, we conjecture here that our model fails in
describing the dynamics of the flow for Re > 0.25. The reason mainly is that the
convection of heat becomes large enough to modify significatively the film surface
temperature and therefore modify the instability behaviour; actually, the Prandtl
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number Pr = 21.8 is quite large for ethyl-alcohol aqueous solution (see table C.2)
while our model is written for PrRe = O(1). Therefore, we will restrict the remaining
of the study to the case of Re = 0.13 for which our model still can be valid.

4.3 Linear stability analysis

We now study the linear stability of the base state, i.e. the bump profile, with re-
spect to spanwise disturbances. For this purpose, the three-dimensional version of
the Benney equation (2.10) should be considered together with (3.4) and (4.2). To
analyze the spanwise stability of this base state, denoted by h0, we consider small
perturbations h2 of the free surface shape such as

h(x, z, t) = h0(x) + h2(x, z, t) (4.3)

and use the normal mode form

h2(x, z, t) = ηh1(x) exp{ikzz + σt} (4.4)

where σ (= s+ iσi) is the complex growth rate of the disturbance, kz is the spanwise
wavenumber and η � 1. Substituting (4.3) and (4.4) into the expression of the film
surface temperature (3.4) and expanding at first-order with respect to η yields

Ts(x, z, t) = Ts0(x)

(
1 − η

Bih1(x) exp{ikzz + σt}
1 + Bih0(x)

)
(4.5)

where

Ts0(x) =
1 + δwf(x)

1 + Bih0(x)
(4.6)

is the base state film surface temperature. Substituting (4.3), (4.4) and (4.5) into
(2.10) and linearizing with respect to η leads to the following fourth-order eigenvalue
problem for the eigenfunction h1(x),

σh1 = −L[h1] (4.7)

where the right-hand side of (4.7) can be explicitely written as a sum of thirteen
terms

−L[h1] = −
13∑

m=1

Lm[h1] = −
13∑

m=1

Tm (4.8)

and each term may be associated with a perturbation of the base flow in either the
streamwise x or spanwise z−direction. They depend nonlinearly on the base state
solution h0(x), and are listed with their physical meaning in table 4.3.
Spaid & Homsy [131] studied the stability of a capillary ridge (that corresponds to the
base state solution) at a moving contact line by using the long-wave evolution equation
and performing a similar decomposition of the r.h.s. of the eigenvalue problem (4.7).
Since they did not consider heating, they only had the six terms T2,3,4,5,6,7 similar than
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Tm Terms Physical meaning

T1

(
−δwMah0h1T

′
s0

)′ Thermocapillary flow in x−direction due to
the base state temperature gradient (Bi = 0)

T2

(
1

3
Kah3

0h
′′′
1

)′
Capillary flow in x−direction induced by per-
turbation curvature in x

T3

(
−1

3
k2

zKah3
0h

′
1

)′
Capillary flow in x−direction induced by per-
turbation curvature in z

T4

(
h2

0h1

)′
Flow in x−direction due to gravity

T5

(
Kah2

0h
′′′
0 h1

)′ Capillary flow in x−direction due to pertur-
bation of the base state pressure gradient

T6 −1

3
k2

zKah3
0h

′′
1

Capillary flow in z−direction induced by per-
turbation of curvature along x

T7
1

3
k4

zKah3
0h1

Capillary flow in z−direction induced by per-
turbation of curvature along z

T8

(
BiδwMah2

0h1T
′
s0

2(1 + Bih0)

)′
Thermocapillary flow in x−direction due to
the base state temperature gradient (Bi 6= 0)

T9

(
1

2
BiδwMah2

0Ts0

(
h1

1 + Bih0

)′)′
Thermocapillary flow in x−direction due to
perturbation of the film thickness

T10 −BiδwMak2
zh

2
0h1Ts0

2(1 + Bih0)

Thermocapillary flow in z−direction due to
perturbation of the film thickness

T11

(
2

15
h6

0h1

)′′

Flow in x−direction due to inertia

T12

(
−1

3
Cth6

0h1

)′′
Flow in x−direction due to hydrostatic pres-
sure

T13
1

3
Ctk2

zh
3
0h1

Flow in x−direction due to hydrostatic pres-
sure

Table 4.1: Terms of the eigenvalue problem of (4.7) and their physical interpretation
(the primes indicate the derivative with respect to x)
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above (see Table 4.3) and one more term introduced by the precursor film model they
used. Their interpretation is that terms Tm of the linear operator that yield positive
(negative) contributions to the growth rate are destabilizing (stabilizing). The total
energy of the base state perturbation h2 is defined by

E =
1

2

∫

Lx

|h2|2 dx =
1

2
< h2, h2 > (4.9)

Following Spaid & Homsy [131], the expression for the rate of energy change may be
obtained by forming the inner product of the eigenvalue problem given by (4.7) with
the eigenfunction h1, such as

dE

dt
= σ < h1, h1 >=< −L[h1], h1 > . (4.10)

For convenience, the time derivative of the energy is normalized such that the total
‘removal’ rate E∗ is equal to the eigenvalue σ associated with the eigenmode,

E∗ =
< h1,−L[h1] >

< h1, h1 >
= σ. (4.11)

Finally the energy analysis consists in the analysis of the energy contribution E∗
m of

the disturbances corresponding to each term Tm expressed as

E∗
m =

< h1,−Lm[h1] >

< h1, h1 >
. (4.12)

The eigenfunction h1 as well as the eigenvalue σ are determined from (4.7). Once
thus is done, (4.11) and (4.12) can be evaluated. The results can be cross-checked
easily with the relation

∑
m

E∗
m = σ.

Figure 4.7 depicts the energy contribution of the disturbances provided by each term
Tm for the case of a vertical wall, i.e. T12 = T13 = 0. Various E∗

m are non-zero for
kz = 0; however they always balance to yield a neutrally stable state (σ = 0), as
a characteristics of the long-wave instability. Consequently, interpreting the terms
E∗

m > 0 to be destabilizing and terms E∗
m < 0 to be stabilizing, might not reveal

the instability mechanism. The stabilization/destabilization of the marginally stable
state arises rather as a result of deviations of the values of E∗

m from their values at
kz = 0. This is like each effect listed in table 4.3 was a candidate for a long-wave
instability. Hence, the most important instability mechanisms are those in which
the associated E∗

m deviate most from their values at kz = 0 as plotted in figure 4.8.
This new interpretation was introduced by Skotheim et al. [128] to resolve some of
the discrepancies between the various physical systems studied by Spaid & Homsy
[131] and Kataoka & Troian [70, 71] to elucidate the physical nature of the fingering
instability of liquid rims that accompany moving contact lines. We see that term 5,
which was previously interpreted as the most destabilizing is now a stabilizing factor
while the contrary for term 2.
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Figure 4.7: Energy contribution E∗ of the disturbances corresponding to each term
as referenced in Table 4.3 (corresponding to the numbering in the legend) versus the
wavenumber kz . The parameters are Re = 0.13, Ka = 500, Bi = 0.1, Lx = 850,
lw = 94, δw = 2 and Ma = 5.8. The perturbating flows in x−direction are represented
by the black curves and in z−direction by the grey curves. The thicker black curve
is the total growth rate σ.

The most destabilizing factor appears to be the pure thermocapillary effect in the
z−directions (T10). It corresponds to the S-mode describes in §1.4.1 and identified
by Joo et al. [54] to generate rivulets aligned with the flow and leading in time to
spontaneous rupture. As for fingering instability in contact lines on an inclined plate,
gravity contributes also in destabilizing the bump. The destabilizing mechanism akin
to T4, proposed by Spaid & Homsy [131], is twofold: since the thicker disturbed regions
are more massive, they will be pushed forward more rapidly by the body force, thus
causing the fingering instability. Along the same lines, the thick regions will be less
affected by the viscous drag of the solid plate, resulting in a higher mobility in thicker
regions of the perturbed base state. Accordingly, the fluid will tend to follow the path
of least resistance, contributing to the formation of rivulets.

Term 7 is of course always stabilizing (see figure 4.8) and represents the main re-
sponse of the system to spanwise long-wave instabilities, acting to damp the shorter
wavelength perturbations. This term corresponds to the second type of Rayleigh-like
term in fluid jets [131]. Terms 3 and 5 are also stabilizing since capillary terms are
here diminishing the change in the curvature of the bump in both the spanwise and
streamwise directions, thereby flattening the film.

The Marangoni number Ma = 5.8 in figure 4.8 has been chosen to produce a bump
height slightly larger than the critical one observed in experiments and corresponding
to Mac ≈ 5 (see figures 4.5a and 4.6). The maximal growth rate, that corresponds
to the most amplified mode, was found to have a small but non-zero imaginary part.



110 CHAPTER 4. LOCAL HEATING

0 0.01 0.02 0.03 0.04 0.05
-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

1
2
3
4
5
6
7
8
9
10
11

E∗

kz

s

Figure 4.8: Contributions to the largest eigenvalue of the various terms of the operator
L relative to their contributions to the marginally stable state at kz = 0 plotted as a
function of the wavenumber. The parameters are the same as for figure 4.7.

It means that the base state should be unstable to oscillatory perturbations as well.
However oscillations were scarcely observed in experiments [116]. Skotheim et al. [128]
found that this oscillatory behaviour vanishes for zero Biot number. Yet, we know
from experiments that the Biot number is much smaller than unity [64]. An other
explanation can be that the oscillatory mode is damped in the nonlinear regime,
immediately after the onset. Moreover, we found that increasing the Marangoni
number cancels also the imaginary part of the maximal growth rate. In order to
understand this change of behaviour when increasing the Marangoni number, we
analyse the shape of the eigenfunctions of the most unstable modes as plotted in
figure 4.9. The mid-domain corresponds to the location of the upper edge of the
heater. For small Marangoni numbers, the eigenfunctions extend over the entire
period and the eigenvalue is complex. We will refer to as the non-localized regime.
On the contrary, when increasing Ma, the eigenfunction is more localized in the region
of the steady-state bump and the eigenvalue is real. We will refer to as the localized
regime. The localized regime only exist for a sufficiently large domain, i.e. Lx � lw.
Since we are most interested in the limiting case of a local heater, we will focus on
the localized real mode.

Figure 4.10a shows the dependence of the most unstable mode on Ma as well as the
corresponding real eigenvalue (thick lines). It appears that the wavenumber kzmax first
increases and then decreases with raising Ma, as found initially by Skotheim et al.
[128]. The transition is rather well distinguishable at Matr ≈ 16.3 (see dashed lines)
and corresponds to a drastic increase of the growth rate. On figure 4.10a are also
plotted the curves corresponding to the pure spanwise thermocapillary instability and
computed for a flat film with h0 = hN (thin solid lines). It corresponds therefore to the
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Figure 4.9: Eigenfunctions of the most unstable modes for Re = 0.13, Ka = 500,
Bi = 0.1, Lx = 850, lw = 94, δw = 2 and increasing Ma as indicated in the legend.

S-mode. Interestingly, the presence of the steady-state bump affects significatively
the features of the S-mode only when Ma > Matr. We could therefore associate
this transition to the bump instability leading to rivulet pattern, as proposed by
Skotheim et al. [128]. However, the picture is not as simple as it appears since the
computations indicate (see figure 4.8) that the growth rate is always positive for a
vertical wall. Consequently, the rivulet instability should develop for Ma < Matr even
though with a much smaller growth rate.

In an attempt to clarify the interpretation, we will analyze the destabilizing factors
when the Marangoni number lies just above the transition at Matr. But before doing
so, let us remark the dotted lines on figure 4.10a that behave in a singular way, for
Ma > 20, due to term 11 corresponding to the streamwise inertia effect. Figure 4.10b
shows that the maximal height of the bump is larger than 2 for Ma > 20. We know
from chapter 2 that the risk for this term (originating from the Benney term) to
bring singularity is highest when the film thickness is large. Therefore, for large Ma,
the validity of the Benney equation should be violated. Since we are interested in
the spanwise instability, we cancel T11 in the following (as for thick lines in figure
4.10) to avoid singularities. Interestingly enough, doing so results in suppressing the
sinusoidal shape of the eigenfunction for Ma = 5.8 in figure 4.8. Note that neglecting
T11 is similar to the assumption Re � 1 which holds in the case analysed here since
Re = 0.13. This assumption had been also adopted by Skotheim et al. [128].

Figure 4.11 shows now the contribution to the growth rate of the different terms Ti

for Ma = 16.4, i.e. just above the transition Matr. The non-localized and localized
regime (referring to the eigenfunction on figure 4.9) are clearly distinguished by the
roles of terms 2 and 5: term 2 changes from destabilizing to stabilizing, and term
5 changes from stabilizing to destabilizing as the Marangoni number is increased
(compare figure 4.8 and 4.11). At the onset of the instability gravity (term 4) acts with
capillary flow in the x−direction induced by perturbation thickness variations (term
5) to destabilize the flow. The maxima of E∗

4(kz) and E∗
5(kz) shift with increasing
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Figure 4.10: (a) The wavenumber kzmax and the growth rate smax of the most unstable
mode, for Re = 0.13, Ka = 500, Bi = 0.1, Lx = 850, lw = 94 and δw = 2. The thick
solid lines correspond to T11 = 0, the dotted lines to T11 6= 0 and the thin solid lines
to h0 = hN. (b) Maximal departure of the steady-state bump solution h0(x) from the
average film thickness hN.

Ma towards larger and smaller wavenumbers respectively. The change in the relative
destabilizing influence of the two terms causes the wavenumber of the fastest growing
mode to increase with Ma in the non-localized regime and decrease with Ma in the
localized regime (as already shown in figure 4.10). Here, thermocapillarity (term 10)
remains a destabilizing mechanism even though less pronounced than in the non-
localized regime (figure 4.8). This is in the case of Bi 6= 0; indeed, when Bi = 0, term
10 vanishes, as well as term 8 and 9 that are also destabilizing. However, in both the
Bi = 0 and Bi 6= 0 cases, the main stabilizing influence is the thermocapillary flow
in the x−direction due to the base state temperature gradient. This can possibly
explain what was found in the previous chapter, namely that the travelling waves
are suppressed for sufficiently large imposed temperature gradient at the wall in the
x−direction.
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Figure 4.11: Same as for figure 4.8 with Ma = 16.4 and T11 = 0.

4.4 Linear stability: comparison with experiments

The rivulet instability of a falling film due to localized heating has been initially
reported by Kabov [55]. Figure 4.12a shows a sequence of pictures obtained by
an optical Schlieren technique [119] and putting in evidence the bump formation
(qv = 1.87W/cm2), the instability onset (qvc = 2.38W/cm2) and the development of
the rivulet structure for increasing heat flux density qv (say Ma). The streamwise
heater length was L = 6.7mm. As mentioned in the previous section, the transition
Matr at which the instability growth rate increases drastically can be associated to
the onset of the rivulet instability observed in experiments at Mac. Nevertheless,
the Schlieren imaging does not yield any trace of instability before the transition
contrarily to the theory that predicts a small positive growth rate for Ma < Matr

(see figure 4.10). The reason of discrepancy can be attributed to the sensibility of
the Schlieren picture that does not capture small amplitude deformations. Actually,
infrared imaging shown on figure 4.12b has detected a regular structure for heat
fluxes smaller than the threshold for rivulet instability identified at qvc = 4.8W/cm2

for a streamwise heater length of L = 4mm. Furthermore, the regular structure of
small amplitude has a wavelength (inversely proportional to kz) that first decreases
by raising the heat flux, and then increases after the threshold yielding to large
amplitude rivulets. These features are qualitatively in excellent agreement with the
linear stability analysis.

Nevertheless, quantitative discrepancies exist: firstly, the minimum wavelength that
is about 10mm in theory (= 2πlν/kzmax) and 7mm in experiments [116]. Secondly,
for Re = 0.13 and δw = 2, figure 4.6 shows that Mac ≈ 5 and the maximal height of
the bump at instability onset is about 1.5hN. For the same parameters, the stability
analysis provides a transition at Matr ≈ 16.3 where the maximal height of the bump
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Heater

(a) (b)

Figure 4.12: Falling liquid film locally heated for a 25% ethyl-alcohol aqueous solution,
Re = 1. (a) Schlieren images of size 20 × 30mm, in the case of L = 6.7mm. The
threshold for rivulet instability is at qvc = 2.38W/cm2. (b) Infrared images of size
45 × 50mm, in the case of L = 4mm. The threshold for rivulet instability is at
qvc = 4.8W/cm2. The typical distance between two rivulets is 10mm.



4.4. LINEAR STABILITY: COMPARISON WITH EXPERIMENTS 115

is about 2hN (see figure 4.10). Interestingly, the instability threshold in experiments
is changed by the streamwise length L of the heater. Actually, figure 4.12 shows that
the critical heat flux (say Mac) is increased by a factor two when L decreases from
6.7 to 4 mm between figures 4.12 a and b. However, remember that we already fit
the length L in our model with the shape of the steady-state bump. It cannot be
therefore the reason for the discrepancy between Mac and Matr. It must be rather
something that trigger the rivulet instability in experiments before the theoretical
transition. We will invoke here two different causes of this discrepancy.
First, our stability analysis indicates that the steady-state bump is always unstable
with respect to spanwise disturbances, even for Ma < Matr. Actually the S-mode is
always present, i.e. for all Ma, and destabilizes the film in the transverse (spanwise)
direction (see figure 4.12b). Therefore, the rivulet instability observed in experiments
does not emerge from infinitesimal perturbations of the two-dimensional steady-state
bump (as performed in our linear stability analysis) but rather from perturbations of
a three-dimensional regular structure of small but finite amplitude. This structure
represents a good triggering pattern for the rivulet instability to develop.
Secondly, in the experiments the heater has a finite size in the spanwise direction
and as a result, the rivulet instability starts from the sides of the heater as shown in
figure 4.13a. Indeed, a temperature gradient exists at the sides of the heater and the
concomitant thermocapillary effect always induces a lateral standing “wave”. The
amplitude of this deformation is always larger than the one of the bump (see figure
4.13b) since the thermocapillary flow is here perpendicular to the gravity driven flow
and does not counteract it. Therefore, this lateral standing “wave” can trigger the
instability, producing a so-called ‘perturbed’ or ‘imperfect’ bifurcation, in contrast
with ‘perfect’ laterally infinite case studied in the theory. Due to this forcing, the
spanwise modes can start from the sides earlier than the threshold and then fill the
domain in the transverse direction. Such finite size effects due to lateral boundary
conditions at or near criticality are discussed by Fauve [32].
Finally note that the convection of heat has been neglected in the long-wave equation,
compared to heat diffusion. However, the Prandtl number for a 25% ethyl alcohol
aqueous solution at 20◦C is rather large Pr = 21.8 such that, for Re = 0.13, the
Péclet number is Pe = 2.8 (= PrRe). Evidently, the convective terms in the energy
equation ∂tT + v∇T is a non-negligible effect and should therefore be considered.
Kalliadasis et al. [67] have studied a model for Re � 1 and Pe = O(1). They got two
coupled equations: (i) one for the film thickness which is equivalent to the long-wave
equation (2.10) where Ct = 0 (vertical film) and the Benney term 2

15
∂x(h

6∂xh) has
been neglected; (ii) one for the film surface temperature θ using the integral boundary
layer approximation (similar to the one performed in chapter 5). Kalliadasis et al.
[67] observed that small Péclet numbers decrease the critical Marangoni number for
the rivulet instability and hence destabilizes the bump more easily. This statement
indicates therefore that taking into account for the convection of heat should decrease
the temperature gradient at the film surface and therefore increase the instability
threshold. Thus it would not help in explaining the discrepancy between Matr and
Mac.
We have seen in this section that quantitative comparisons between the stability
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(a)

(b)

Figure 4.13: (a) Lateral standing “wave” at the side of the heater for a 10% ethyl-
alcohol aqueous solution, Re = 1 and L = 6.7mm. (b) Cross-section showing a
typical measured profile in the transverse (spanwise) direction.
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analysis and the experimental data are quite difficult since we don’t know accurately
neither the temperature distribution at the wall, nor the heat transfer coefficient
at the film surface. Furthermore, our analysis considers an infinite domain, with
heaters distributed periodically in the streamwise direction, which is rather far from
the experimental conditions of a local heater with edge effects. Despite of that, the
main features of the rivulet instability could be captured here and suggest that we
can proceed further with three-dimensional simulations.

4.5 3D simulations

The goal of this section is to find qualitative similarities between numerical simulations
and experimental data in the nonlinear regime, i.e. beyond the instability threshold.
For this purpose, we integrate the evolution equation (2.10) using the backward Euler
scheme for the time derivative and a spectral method based on Fast Fourier Transform
(FFT) for the space derivatives∗. We define Nx and Nz as the number of space steps
∆x and ∆z used to discretize the domain. They should be taken as an integer power
of 2 in order to take advantage of the FFT algorithm [102]. The smaller wavenumbers
resolved in the grid are thus

kx =
2π

Lx
and kz =

2π

Lz
, (4.13)

with Lx = Nx∆x and Lz = Nz∆z the length and width of the computational domain.
The film thickness h can be expressed in terms of Fourier series as

hi,j(t) ≡ h(xi, zj, t) =
Nx∑

p=−Nx

Nz∑

q=−Nz

ap,q(t) exp{i (pkxxi + qkzzj)} (4.14)

where xi = i∆x and zj = j∆z are the coordinates of the regularly spaced grid points;
ap,q(t) is a complex amplitude of the corresponding harmonic. Because h must be
real, and the Fourier modes are linearly independent, we have

ap,q(t) = a∗−p,−q(t), ∀p, q,

where the star denotes the complex conjugate.
The method consists in evaluating the nonlinear terms of (2.10) in the real space
after calculating h and its space-derivatives separately in the Fourier space. As just
mentioned, the time increment is performed in the Fourier space using the backward
Euler scheme:

a
(n+1)
p,q − a

(n)
p,q

∆t
= −f(a(n)

p,q ), (4.15)

where ∆t is the time step and a
(n)
p,q is the complex Fourier coefficient obtained at time

tn = n∆t. The function f(a
(n)
p,q ) contains all the terms involving the space derivatives

∗The FFT algorithm decreases sensitively the number of operations from N2 to N log N , where
N is the number of spatial discretization points (or Fourier modes) of the periodic domain.
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resulting from the substitution of (4.14) into (2.10). In order to improve the stability

of the numerical scheme (4.15), the linear part of f(a
(n)
p,q ) can be evaluated implicitly.

Actually, this linear part can be expressed in the Fourier space as an operator F linear
p,q

acting on a
(n)
p,q . In this case, (4.15) is rewritten as

(1 + ∆tF linear
p,q )a(n+1)

p,q = a(n)
p,q − ∆t

(
f(a(n)

p,q ) − F linear
p,q a(n)

p,q

)
. (4.16)

Practically, the experience showed that the surface tension term is the stiffest in terms
of numerical convergence. Its linearized form is

F linear
p,q = −Ka

3
k4

p,q (4.17)

where kp,q =

√(
k

(p)
x

)2

+
(
k

(q)
z

)2

is the modulus of the two-dimensional wavevector.

Finally, we evaluate a
(n+1)
p,q from (4.16) and determine the film thickness h

(n)
i,j by inverse

Fourier transform.
Some results of simulations using the evolution equation (2.10), are presented below
for a film flowing along a vertical plate (Ct = 0) where a periodic array of heaters is
embedded. The temperature distribution in one period is given by (4.2). Because this
f(x) produces permanent deformations, but is z-invariant, we first ran the code in two
dimensions with Nz = 1. Moreover, it allowed us to check the validity of the 2D sim-
ulated profiles with those obtained by continuation using Auto97 [30] and presented
in figure 4.5. The 2D-profile once steady, is extended in the z−direction, and the 3D
simulation is then started with additional random perturbations of 10−2 amplitude
at each grid point. A good convergence was found in the simulation presented below
with Nx = Nz = 128 and ∆t = 10−2.
As already said, the experimental Biot number should be much smaller than unity
by two or three orders of magnitude [64]. However, changing its value does not
change significantly neither the bump shape, nor the instability threshold. On the
contrary, small values of Bi lead to considerable slowing down of the manifestation of
the thermocapillary instability. Indeed, the linear growth rate of the most unstable
disturbance, among pure spanwise thermocapillary modes in a vertical film flow, is
proportional to Bi2 (see sm given by (1.88) with Ct = Re = 0, together with (1.46)).
Therefore, we increased the Bi in simulations in order to save computational time.
In figure 4.14, the evolution of a vertical film with non-uniform heating is shown for
Re = 0.5, Ma = 10, δw = 2, Ka = 500, Bi = 0.4, Lx = 200, Lz = 400 and Lw = 10.
The random perturbations are damped during the initial period and the film profile
looks invariant spanwise at t = 50. As the liquid drains downward, the surface-wave
instability (H-mode) dominates as shown at time t = 100 and t = 200. Here, the
local phase speed of the interfacial wave is proportional to its thickness as predicted
by linear theory (see 2.18). As time progresses, the thinning of the liquid layer
becomes more pronounced in some places and thermocapillarity begins to determine
the growth of deformations by displacing the fluid from hotter troughs to colder crests
(t = 300). The Marangoni number has been chosen for the system to lie in the non-
localized regime, i.e. Ma < Matr. It is therefore non surprising if the instability starts
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downstream the bump since there the eigenfunction of the linear problem is non-zero.
In the non-localized regime, the bump itself keeps its initial shape at this stage and
doesn’t seem to play a role at the instability onset. Furthermore, at t = 400 the
resulting three-dimensional pattern develops nearly isotropically as for an horizontal
layer (see Oron [95]). This occurs even in the second half of the domain where the
imposed temperature decreases streamwise. Next, in the absence of the main flow
in the spanwise direction, the liquid is displaced laterally due to thermocapillarity
(t = 500). Consequently, the previous pattern evolves in rivulets aligned with the
flow (t = 600). Those rivulets connect quickly with the bump (t = 700, 800) and
continue to get amplified in the spanwise direction (t = 900), up to spontaneous
rupture, as described by Joo et al. [54] for uniform heating (see also §7.3.3).
The simulation are stopped for h < 10−3 where the molecular forces should be taken
into account near very thin parts of the film. We consider in this case that the film
ruptures and forms dry spots. The last snapshot before this rupture is presented in
figure 4.15a. A secondary structure can be observed here in the form of small rivulets
in the valley between main ones. A cross section in the spanwise direction at mid-
domain shows clearly this secondary structure in figure 4.15b. Note that this structure
is also visible in experiments (see figure 4.12a). This process is similar to the evolution
of a horizontal thin film heated from below [76]. Boos & Thess [11] identified the
mechanism of this secondary stage as a cascade of similar thermocapillary instability
but at a different scale. The mechanism proposed by Boos & Thess is as follows: due
to the presence of the bottom plate the viscous force under the depressed parts of
the surface is larger than in higher regions. By contrast, the thermocapillary force
on the lateral surfaces of the valley is larger than on its bottom surface. At some
distance from the bottom this difference in acting forces causes the film surface near
the trough to flatten. This flat zone increases and can be unstable exactly as the
initial flat film was at the onset of the primary instability (at least in the spanwise
direction and if Bi 6= 0). However, there are some differences. In contrast to the
initial deformation the new structure is located between two elevated regions which
have an influence on its behaviour (say an ‘imperfect boundary bifurcation’).
Figure 4.15c presents cross-sections in the streamwise direction at different positions
of the left-side rivulet of figure 4.15a. The similarity between profiles is noticeable.
Nevertheless, we see that the amplitude hmax − hmin is minimum at the crest of the
rivulet (dotted line) and maximum at the trough (solid line). Moreover, the latter
profile indicates the imminent formation of a dry spot where the downstream side of
the bump is approaching the wall.
Figure 4.16a shows the value of the slope at the film surface for the same case
as for figure 4.15a. The ‘absolute’ slope is calculated from the relation ∂nh =√

(∂xh)2 + (∂zh)2. The grey scale indicates the amplitude of the slope. The white
zones are flat. A direct comparison can be made with experimental 2D Schlieren
picture [117] as shown in figure 4.16b. To each grey level corresponds an absolute
slope as for figure 4.16a. The shape and size of rivulets, the secondary structure
and the location of initial film breakdown are qualitatively similar between the ex-
perimental picture and the simulation. Nevertheless, the absence of periodicity in
experiments, done for one localized heater, brings a significant difference at the level
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Figure 4.14: Time-dependent simulations for Re = 0.5, Ma = 10, δw = 2, Ka = 500,
Bi = 0.4, Lx = 200, Lz = 400 and Lw = 10. The spatial grid is 128×128 points. The
film flows from the right top border to the left bottom border of each pictures.
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Figure 4.15: (a) Snapshot corresponding to the case of figure 4.14 at t = 920. It
corresponds to the moment just before the film ruptures. (b) Cross-section of (a) in
the spanwise direction at the mid-domain in x. (c) Cross-section in the streamwise
direction corresponding to different positions around the left-side rivulet of (a).
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of the horizontal bump.

(a) (b)

Figure 4.16: (a) Absolute slope |∂nh| of the interfacial deformations corresponding
to the case of figure 4.15a. The grey level quantifies the amplitude of the slope,
black means minimum and white maximum. (b) 2D Schlieren image providing the
experimental measurements of the slope at the film surface for the regime with rivulet
structure. The brighter zones corresponds to small deflections while the darker zones
to larger ones.

Finally, still in relation with the film thickness calculated in figure 4.15a, we recover
the temperature distribution and the velocity field at the film surface. Actually,
within the long-wave approximation, those quantities are slaved to the film thickness
and given by (2.2) together with (2.4) and (2.8) up to first-order. They read, at the
film surface y = h and for a vertical wall Ct = 0,

u
∣∣
h

=
h2

2
(1 + Ka(∂xxxh+ ∂xzzh)) − Mah∂xθ

(0) +
5

4
h5∂xh (4.18)

w
∣∣
h

=
h2

2
Ka(∂xxzh+ ∂zzzh)) −Mah∂zθ

(0) (4.19)

θ = θ(0) +
1

120
PrBih4 (θ(0))3 ∂xh (−15 + 7Bih) (4.20)

with θ(0) =
1 + δwf

1 + Bih

Figure 4.17 shows the temperature field. The maximal temperatures are located where
the film thinning is maximum, i.e. between two rivulets immediately downstream the
bump. Also, the liquid is colder in a rivulet than in a trough, what keeps up the
thermocapillary forces.
The surface velocity vectors represented in figure 4.18 evidence the lateral thermocap-
illary flow. Furthermore, a reverse flow takes place between rivulets and is maximum
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Figure 4.17: Temperature profile at the film surface given by (4.20) and corresponding
to the case of figure 4.15a

5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 4.18: Vector plot of the velocity field at the film surface given by (u,w)
(4.18,4.19) corresponding to the case of figure 4.15a. It shows a reverse flow between
rivulets, as well as stagnation points also observed experimentally [117, 64].
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along the crest of the secondary structure. It drains the liquid upstream, driven by
the thermocapillary flow existing on the downstream face of the bump. Consequently,
a stagnation point should exist at the crest of the bump where the gravity driven flow
counteracts this reverse thermocapillary flow (actually, this is possible by the negative
sign of the Marangoni term in (4.18)). The presence of a reverse flow has also been
evidenced experimentally [64]. Figure 4.19 shows the results of particle tracking at
the film surface [117]. Particles of aluminum powder are blown intermittently on the

Figure 4.19: Sequence of particle tracking evidencing the stagnation point at the top
of the horseshoe structure, the pattern of which is drawn on the top-right snapshot.
The white zone is the heater, Re = 1 and Ma > Mac.

film surface and follow the streamlines surrounding the horseshoe structures formed
by the bump and the rivulets (see the top-right snapshot). While all the particles
flow down, one of them, encircled, sits exactly at the top of the horseshoe structure,
showing the presence of the stagnation point. With time, and because the particle is
of finite size, it flows slowly, here towards the left rivulet. The distance between the
upstream edge of the heater and the stagnation point is about 1 mm in experiments
but near zero in simulations. Recently, Frank [35] has performed direct 3D numeri-
cal simulations, i.e. from the Navier-Stokes/Fourier equations. He used a numerical
“method of particles” [35] and studied the development of rivulet instability due to
localized heating. Among other, he obtained quantitatively the correct shift of 1 mm
between the heater and the stagnation point. This shift is attributed to the presence
of heat convection that is neglected in our model.
On a general point of view, the rivulet structures obtained in our simulations always
lead to film rupture. Nevertheless, structures obtained in experiments are steady
(except at larger heat fluxes where dry spots formation occurs), as for figure 4.16a.
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Frank [35] also obtained steady rivulet structures without dry spots in its direct
simulations, enforcing an open flow condition. The explanation can be found in the
difference between closed and open flows (see §2.4). Indeed, because we imposed
periodic boundary conditions (mainly to take benefit of the good convergence of the
spectral method) we have inherently imposed a closed flow condition. At the same
time, we have imposed a non-homogeneous temperature boundary condition at the
wall. Our system therefore corresponds to an infinite array of heaters placed in the
streamwise direction rather than to a localized heater. The liquid is thus heated
periodically, the destabilizing thermocapillary effect is maintained and the amplitude
of the rivulets increases until the film reaches its rupture. It happens roughly in the
same way than for the spontaneous rupture of a thin horizontal layer homogeneously
heated from below [76, 141, 95]. In experiments, the situation is rather different since
the flow is open and the fluid flows only over one localized heater. The heating stops
after the heater and the only reason why the rivulets keep their shape far downstream
the heater in the experiments is due to the poor heat transfers at the insulating wall
and at the liquid-gas interface; hence the temperature difference between the crests
and the troughs of rivulet vanishes slowly, still yielding a thermocapillary force on
the sides of the valley.
Since the results by Frank [35] using the Navier-Stokes/Fourier equations are in excel-
lent agreement with the experimental data (about the bump shapes, the instability
threshold, the wavelength increase with Ma, the steady rivulet structure, the sec-
ondary structure, and the reverse flow), we believe that using a numerical scheme
allowing for an open flow, i.e. non-periodic boundary conditions, could provide a
satisfactory agreement still using the Benney equation as performed in this chapter.
This will be the subject of a future work.
Let us finally remark that the ethyl-alcohol aqueous solution is a mixture rather
than a pure liquid. Therefore, the evaporation and solutocapillary effects, caused by
gradients of surface concentration, can contribute to the formation or not of the rivulet
pattern and of dry spots. The mixture in our experiments is ‘negative’. That means
that the more volatile fluid (alcohol) has the smallest surface tension (compared to
water). Therefore, since the evaporation is more intense in the troughs of depressions
than in the crests of elevations, the alcohol concentration is larger at the crests than
at the troughs. The concomitant solutocapillary effect would then act in the opposite
way than the thermocapillary effect. This argument ensures that evaporation is not
playing a significant role, at least at the onset of instability. On the contrary, it
might well be of crucial importance in the region of secondary structures where the
film thinning is maximum.
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Chapter 5

The weighted residual method

Within the context of integral boundary layer (IBL) model, thermocapillary effects
have been taken into account by Zeytounian [149] who derived a three-equations
model in terms of the local film thickness, the flow rate and the mean temperature
across the layer. However, since the coupling between the temperature and velocity
fields arises through the tangential stress balance at the interface, it is more appro-
priate to choose a weighted residuals approach (see §5.1) for the energy equation that
would give more importance on the interfacial temperature so that points near the
interface have a ‘larger weight’ than points near the solid boundary. Such a formula-
tion was proposed by Kalliadasis et al. [67] who also recovered the BE as a limit of
their IBL model for reasonably low Reynolds and Péclet numbers where the tempera-
ture and velocity field are effectively slaved to the kinematics of the flow through the
film thickness. Kalliadasis et al. showed that the onset of the long-wave instability,
of either H- or S-type, can be described by the Kuramoto-Sivashinsky equation or
the Kawahara equation (2.14) if dispersion is taken into account [72]. These authors
also demonstrated that the BE and IBL models give similar solitary wave solutions
up to an O(1) Reynolds number above which the BE is unrealistic with limit points
and branch multiplicity. IBL on the other hand has no limit points and predicts the
existence of solitary waves for all Reynolds numbers. Nevertheless, the IBL model
obtained by Kalliadasis et al. [67] for the heated falling film suffers from the same
limitations as the Shkadov IBL model for isothermal films, i.e. it does not predict
accurately the behaviour of the film close to criticality (and is qualitative in this
sense).

Our purpose here is to overcome the limitations of the model equations derived by
Kalliadasis et al. [67]. In addition, we wish to introduce the second-order dissipative
effects that are known to determine the amplitude of the front-running capillary
waves in the case of isothermal flows [109, 110]. These second-order viscous terms
were neglected in the formulation by Kalliadasis et al. [67] though they indeed play an
important role in the dispersion of waves for larger Reynolds numbers. The procedure
followed here is effectively an extension of the methodology applied in the case of
isothermal flows by Ruyer-Quil & Manneville [109, 110] and is based on a high-
order weighted residual approach with polynomial expansions for both velocity and
temperature fields (§5.1). This leads to two model equations at first (§5.2) and second-
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order (§5.3) in the film parameter. However, these equations are complex and hence
not convenient for practical applications. A procedure is then described in §5.4 that
enables us to simplify our set of equations and to formulate models fully compatible
with the Benney expansion up to second order. This approach results in systems of
three coupled nonlinear partial differential equations for the evolution of the local
film thickness, the flow rate and the interfacial temperature. A discussion concludes
the chapter (§5.5).

5.1 Weighted residuals approach

We now apply the polynomial expansion approach developed by Ruyer-Quil & Man-
neville [109] for isothermal films. The basic idea is to separate the variables and to
expand the velocity and temperature fields on a set of test functions depending on
the reduced coordinate ȳ = y/h which is a natural reduced variable as it converts the
boundary-value problem in the interval [0, h] to a problem in [0, 1]. To satisfy the
boundary conditions

u
∣∣
0

= v
∣∣
0

= 0 and T
∣∣
0

= 1 (5.1)

defining the velocity and temperature distributions at the wall, we write

u(x, y, t) =

imax∑

i=0

ai(x, t)fi

(
y

h(x, t)

)
(5.2a)

T (x, y, t) = 1 +
imax∑

i=0

bi(x, t)gi

(
y

h(x, t)

)
(5.2b)

where fi(0) = gi(0) = 0.
It is appropriate to choose polynomial test functions for at least two reasons:

(i) our analysis is based on the assumption of slow modulations of the basic state
solution which corresponds to a parabolic velocity profile and a linear temper-
ature distribution. Therefore, it is necessary to introduce the flat film solu-
tion (1.43a,d) into the expansion. Note that polynomials as solutions are also
suggested by the zeroth and first-order solutions obtained from the long-wave
expansion (see 2.4 and 2.8);

(ii) polynomials form a closed set with respect to differentiations and products
appearing in the boundary layer model (1.101).

Let us therefore choose

f0 = ȳ − 1

2
ȳ2 (5.3a)

g0 = ȳ , (5.3b)

corresponding to the basic state (1.43a,d) and complete the set of test functions with

f1(ȳ) = ȳ, fi(ȳ) = ȳi+1, i ≥ 2 (5.3c)
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gi(ȳ) = ȳi+1, i ≥ 1 , (5.3d)

to obtain the polynomial bases for the projection. Note that the Dirichlet conditions
(5.1) are then automatically satisfied.
Since 2imax+3 unknowns have been introduced, namely h, ai and bi, 2imax+3 equations
should be written to determine them. The first one is the kinematic condition at
the interface (1.101d) which can be replaced by integrating the continuity equation
(1.101a) along the normal coordinate to give

∂th+ ∂xq = 0 , (5.4)

where q =
∫ h

0
u dy is the flow rate in the streamwise direction. Two additional

equations are the boundary conditions (1.101e,f). Defining the weight functions wj(ȳ),
1 ≤ j ≤ 2imax, the final equations are obtained by the vanishing residuals

Rq(wj) ≡
h∫

0

wj(ȳ) [∂tu+ u∂xu+ v∂yu− (∂yy + 2∂xx)u

−1 + Ct∂xh− ∂x[∂xu
∣∣
h
] − Ka∂xxxh

]
dy = 0 , (5.5a)

RT (wimax+j) ≡
h∫

0

wimax+j [Pr(∂tT + u∂xT + v∂yT ) − (∂xx + ∂yy)T ]dy = 0 , (5.5b)

where v = −
∫ y

0
∂xu dy and the velocity and temperature expansions (5.2) will be

substituted.
At this point, the method we are using is simply one of the numerous weighting resid-
ual strategies which differ from each other only by the specific choice of the weights
wj. As pointed out in previous studies dealing with the isothermal case (see Ruyer-
Quil & Manneville [109, 110]), it is not necessary to specify the weighted residuals
method we are applying on condition that the number (imax) of test functions and
residuals is large enough. Indeed, requiring the momentum and the energy equations
(1.101b) and (1.101c) to be satisfied everywhere – and not simply on average –, and
inserting the expansions (5.2,5.3) leads to the cancellation of two polynomials in the
reduced normal coordinate ȳ. Then it can be proven by examining the order of mag-
nitude with respect to ε of each term in (1.101b) and (1.101c) that the number of
independent conditions on the unknowns ai and bi provided by the cancellation of
these two polynomials would be equal to the number of the residuals (5.5) if imax is
precisely chosen large enough [110]. If so, any choice of the weighting functions would
lead to equivalent systems of equations and then to the same reduced model for the
dynamics of the flow, as was the case for an isothermal film [109].
Nevertheless, it is important to keep in mind that we are not simply applying a
numerical method to the problem at hand. Our approach is rather to combine some
well known numerical strategy (here, in essence, a Galerkin method as seen below)
with a perturbation technique to the flat film basic state (1.43a,d) corresponding to

a0 = h2 , b0 = −Bih/(1 + Bih) , ai = bi = 0 , i ≥ 1.
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It will thus be helpful to get some information about the different unknowns as
compared to the film parameter ε, knowing that any terms of order higher than ε2

may be dropped during the process.

5.2 Formulation at first order

To illustrate our procedure, let us temporarily restrict our problem to the first order,
that is to the formulation consistent at O(ε), with all terms of higher order neglected.
This is a helpful step for the choice of the simplest methodology to use for the pro-
jection of the velocity and temperature fields to the amplitudes of the polynomial
expansion appearing at first order. Thus the system of equation (1.101) at O(ε) is
simplified into

∂xu+ ∂yv = 0 (5.6a)

∂tu+ u∂xu+ v∂yu = ∂yyu+ 1 − Ct∂xh+ Ka∂xxxh (5.6b)

Pr (∂tT + u∂xT + v∂yT ) = ∂yyT (5.6c)

∂th + u∂xh = v
∣∣
h

(5.6d)

∂yu
∣∣
h

= −Ma∂x

[
T
∣∣
h

]
(5.6e)

∂yT
∣∣
h

= −BiT
∣∣
h
, (5.6f)

together with the Dirichlet conditions (5.1). Thus, the residuals to evaluate are
simplified to

h∫

0

wj(ȳ) [∂tu+ u∂xu+ v∂yu− ∂yyu] dy

+h [−1 + Ct∂xh− Ka∂xxxh]

1∫

0

wj(ȳ)dȳ = 0 , (5.7a)

h∫

0

wimax+j(ȳ) [Pr(∂tT + u∂xT + v∂yT )− ∂yyT ] dy = 0 , (5.7b)

where contributions from surface tension effects have been conserved. The amplitudes
ai and bi, i ≥ 1 result from the slow space and time modulations of the free surface
so that they are at least first-order quantities in ε. Therefore, the space and time
derivatives of ai and bi, i ≥ 1 are negligible. One then is led to a linear system for ai

and bi whose coefficients depend at most on a0, b0, h and with a right-hand-side that
depends on h, a0, b0 and their derivatives

2imax∑

j′=1

αjj′Aj′ = βj(h, a0, b0, ∂x,th, ∂x,ta0, ∂x,tb0), 1 ≤ j ≤ 2imax, (5.8)
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where Aj ≡ aj and Aimax+j ≡ bj, 1 ≤ j ≤ imax. Solving for the Aj leads to explicit
formulations of the amplitudes aj, bj as functions of a0, b0, h and their derivatives,
making clear their slaving to the dynamics of the film thickness, and of amplitudes
of the parabolic velocity profile and of the linear temperature distribution. Thus,
substituting these expressions for aj and bj (that will be explicitely formulated below)
would lead to a set of three evolution equations for h, a0 and b0 modelling the entire
dynamics of the film flow.
As was pointed out above, inserting the expansion (5.2, 5.3) in (5.6) leads to the
cancellation of two polynomials in the reduced normal coordinate ȳ, say P(ȳ) and
Q(ȳ), corresponding to the momentum and heat equation, respectively. Because the
advection terms ∂tu+u∂xu+v∂yu and ∂tT+u∂xT+v∂yT are first order quantities, their
truncation at O(ε) involves only the parabolic and linear profiles corresponding to a0

and b0. Consequently, it can be checked that the advection terms are polynomials in ȳ
of degree four and three only. Therefore, the monomials of highest degree appearing
in P(ȳ) and Q(ȳ) originate from the terms ∂yyu and ∂yyT so that P(ȳ) and Q(ȳ)
are of degree imax − 1. Cancelling those two polynomials give 2imax independent
relationships, i.e. the same as the number of residuals (5.7) so that they are equivalent
systems of equations leading to the same evolution equations for h, a0 and b0 through
its x−derivative (provided imax is large enough). Because each different weighting
residual technique only differs by its specific definitions for the weighting functions
wj, it is relevant to look for the best choice of wj that would simplify the algebraic
manipulations.
First, let us consider more specifically the residuals (5.7a). Because ∂tu+u∂xu+v∂yu
are first order terms, the unknowns ai, i ≥ 1 may enter into their evaluation only
through the integral

∫ h

0
wj∂yyu. Two integrations by parts give

h∫

0

wj

(y
h

)
∂yyu dy =

[
wj

(y
h

)
∂yu
]h
0
− 1

h

[
wj

′
(y
h

)
u
]h
0

+
1

h2

h∫

0

wj
′′
(y
h

)
u dy . (5.9)

Because ∂yu
∣∣
h

given by equation (5.6e) is proportional to ∂x[T
∣∣
h
], at first order it

may only involve h, a0 and b0. Making also use of the no-slip condition on the plate,

u
∣∣∣
0

= 0, only three terms are left to consider, namely wj(0)∂yu
∣∣∣
0
, wj

′(1)u
∣∣∣
h

and
∫ h

0
wj

′′ (y/h)u dy. With the introduction of the flow rate q ≡
∫ h

0
u dy, this suggests to

choose w0 to verify w0(0) = 0, w0
′(1) = 0 and w0

′′ a constant. Interestingly enough,
f0 (5.3a) shares exactly the same characteristics such that we can set merely∗ w0 ∝ f0.
Now it seems appropriate to relate the amplitude of the parabolic profile a0 to the
flow rate q, which is a physical quantity appearing explicitly in the integral form of

∗Remember that the parabolic profile f0 corresponds to the zeroth-order formulation of the
problem for the velocity:

∂yyu = −1 , u
∣∣∣
0

= 0 , ∂yu
∣∣∣
h

= 0 . (5.10)

Therefore, considering the two integrations by parts performed in (5.9), such a similitude – between
the weight function w0 and the test function f0 – is obviously related to the fact that the linear
operator L ≡ ∂yy is self adjoint in the space of functions satisfying the boundary conditions (5.10).
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the kinematic condition (5.4). To introduce q explicitly into our expansion let us
integrate (5.2) between 0 and h to obtain the expression

a0 = 3
q

h
− 3

2
a1 −

imax∑

i=2

3

i+ 2
ai . (5.11)

Therefore, evaluating the residual (5.7a) corresponding to j = 0 with w0 ∝ f0 leads
to

2

5
∂tq −

23

40

q

h
∂th−

18

35

q2

h2
∂xh+

111

280

q

h
∂xq +

q

h2

+
1

2
Ma∂x

[
T
∣∣
h

]
+

1

3
h [−1 + Ct∂xh− Ka∂xxxh] = 0 , (5.12)

where the unknowns ai do not appear (as a consequence of our weighting strategy).
Choosing the weight functions to be the test functions themselves is the essence of the
Galerkin method which is equivalent to a variational method, whenever a variational
formulation is available (Finlayson [33]).
Turning to the weighted residuals for the heat equation (5.7b) and with the same ar-

guments, the unknowns bi, i ≥ 1 may only play a role through the integral
∫ h

0
wj∂yyT .

Two integrations by parts give

h∫

0

wj

(y
h

)
∂yyT dy =

[
wj

(y
h

)
∂yT

]h
0
− 1

h

[
wj

′
(y
h

)
T
]h
0
+

1

h2

h∫

0

wj
′′
(y
h

)
T dy . (5.13)

Making use of the boundary condition at the surface (5.6f) and the constant temper-

ature distribution at the wall T
∣∣∣
0

= 1 we get

h∫

0

wj

(y
h

)
∂yyT dy = −Biwj(1)T

∣∣
h
− wj(0)∂yT

∣∣∣
0

+
1

h

[
wj

′(0) − wj
′(1)T

∣∣∣
h

]
+

1

h2

h∫

0

wj
′′
(y
h

)
T dy . (5.14)

Following exactly the same approach as before would lead to the choice for the first
weight function wimax(0) = 0, wimax

′(1) = 0 and setting wimax
′′ to a constant would

introduce the average temperature across the flow, (1/h)
∫ h

0
T dy. This choice would

obviously be problematic since the term involving T
∣∣
h

would remain in (5.14) and in
(5.12) through the Marangoni term. On the other hand, it is rather the exchanged

heat flux at the surface ∂yT
∣∣∣
h

or the temperature at the surface T
∣∣∣
h

which have a

physical significance. Thus, because it appears in (5.12), we will prefer to put the

emphasis on θ ≡ T
∣∣∣
h

by choosing wimax(0) = 0, wimax
′′ = 0 so that wimax ∝ ȳ = g0.

This choice has the obvious advantage to dissociate the coupling term 1
2
Ma∂x

[
T
∣∣
h

]
in
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(5.12) from the definition of any other amplitudes needed to describe the temperature
distribution. Again, we find that the Galerkin method is the most effective one,
requiring less algebra. It is therefore appropriate to replace the physically meaningless
unknown b0 by θ through the substitution

b0 = θ − 1 −
imax∑

i=1

bi . (5.15)

From the residual (5.7b) corresponding to wimax = g0 = ȳ, we then get

Pr

[
1 − θ

3
∂th+

1

3
h∂tθ +

11

40
(1 − θ)∂xq +

9

20
q∂xθ

]
+
θ − 1

h
+ Biθ = 0 . (5.16)

Now using the equivalence ∂th = −∂xq given by the integral formulation of the
kinematic condition at the surface (5.4), a model consistent at O(ε) can be formulated
in terms of three coupled evolution equations for h, q and θ

∂th = −∂xq , (5.17a)

∂tq =
5

6
h− 5

2

q

h2
− 17

7

q

h
∂xq +

(
9

7

q2

h2
− 5

6
Cth

)
∂xh

−5

4
Ma∂xθ +

5

6
Kah∂xxxh , (5.17b)

Pr∂tθ = 3
[1 − (1 + Bih)θ]

h2
+ Pr

[
7

40

(1 − θ)

h
∂xq −

27

20

q

h
∂xθ

]
. (5.17c)

This set of equations (5.17) is quite similar to the model derived by Kalliadasis et al.
[68, 67]. In fact, the first-order averaged heat equation (5.17c) is nearly identical to
the corresponding equation derived in these studies. Noticeable differences originate
only from a different choice of the scaling of the temperature. The two approaches
differ by the treatment of the momentum equation. Equation (5.17b) contains the
same terms as in the corresponding equation in Kalliadasis et al. [68, 67] but with
different coefficients. These modifications originate from a more complete description
of the perturbed velocity field which is not limited in the present approach to remain
parabolic as in Kalliadasis [68, 67]. In addition, the present approach is based on
a Galerkin projection with weight functions as the test functions themselves unlike
the Shkadov IBL treatment of the momentum equation in Kalliadasis [68, 67] which
is effectively a weighted residual approach using a single test function (the parabolic
profile) and a weight function equal to 1.
We now demonstrate that the more systematic procedure employed here enables to
recover the correct prediction of the instability threshold obtained by Goussis &
Kelly [46]. Recall that resolving the instability threshold inaccurately is the principal
drawback of the model analyzed in Kalliadasis et al. [67]. The starting point of the
linear stability analysis is to introduce in (5.17) perturbations of the Nusselt solution
in the form of normal modes with wavenumber k (taken to be real) and complex
pulsation Γ,


h
q
θ


 =




hN

h3
N/3

1/(1 + BihN)


+ η




1
Aq

Aθ


 exp{i(kx− Γt)}, (5.18)
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and to linearize for η � 1. For the resulting system of linear algebraic equations to
have non trivial solutions it is a necessary and sufficient condition that its principal
determinant be equal to zero. This gives the dispersion relation that we can write
formally as D(k, Γ).
In order to compare our linear stability analysis with the one performed by Kalliadasis
et al. [67] we must introduce the scalings adopted by these authors. In their study,
lengthscales were non-dimensionalized with the Nusselt flat film solution hN instead
of the lengthscale for viscous gravitational drainage lν adopted here. Let us switch
then from the natural to the base state set of parameters as introduced in §1.6. Notice
that it implies the transformation k → k/hN and Γ → hNΓ that converts the phase
speed c = Γ/k as c → h2

Nc. With this scaling, the averaged velocity of the flat film
solution is then 1/3. The base state set of parameters is effectively the parameters
adopted by Kalliadasis et al. [67] except that they expressed the Weber number as the
ratio of surface tension over inertia forces instead of surface tension over gravitational
forces in (1.38).
Performing now a small wavenumber expansion up to first-order of the dispersion
relation D(k, Γ; Re,Ct, We, Pr, M?, B) similar to the one performed by Kalliadasis
et al. [67] leads to the following expression for the complex phase speed

c = 1 + ik

(
2

5
Re − Ct

3
+

M?

2(1 + B)

)
− ik3 We

3
+ O

(
k2
)

(5.19)

where We is considered to be large such that We k2 = O(1) (in thin film studies this
order of magnitude assignment is commonly referred to as ‘the strong surface tension
case’). Note that the above expansion only yields the root of the dispersion relation
that can become unstable. As was pointed out by Kalliadasis et al. [67] the other two
roots are always stable. The neutral stability condition is now easily found to be

c = 1, k =

√
1

We

(
6

5
Re − Ct +

3M?

2(1 + B)

)
= 0 , (5.20)

which is indeed identical to (1.85) at O(k), obtained from small wavenumber expan-
sion of the Orr-Sommerfeld eigenvalue problem of the basic Navier-Stokes/Fourier
equations. Therefore, the linear waves propagate with a velocity at three times the
averaged velocity or twice the interfacial velocity of the flat film. From (5.20) we also
notice that increasing the Reynolds number or Marangoni number enlarges the range
of unstable wavenumbers while decreasing β or increasing the Weber number has a
stabilizing effect.
The critical condition at instability onset (1.84a) has the same functional form as
the one derived by Kalliadasis et al. [67] for two-dimensional waves at criticality,
but some of the coefficients are different: 6

5
instead of 1 in front of the Reynolds

number, i.e. a 20% error and 3
2

in front of the Marangoni number instead of 1
2

due
to a factor of 3 introduced in the definition of the Marangoni number by Kalliadasis
et al. [67]. Notice that here we try as much as possible to avoid numerical factors
in the definitions of the dimensionless groups – an exception to this rule being the
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definition of the Reynolds number – so that numerical factors in the equations do not
change with different scalings. Now the discrepancy for the coefficient in front of the
Reynolds number corresponds exactly to the one observed using the Shkadov model
[126] in the case of an isothermal flow (M? = 0). This inaccuracy has been cured here
by using a more complete description of the velocity field [109], which fully corrects
the critical Reynolds number. Notice also that as was pointed out by Kalliadasis
et al. [67], the Benney long-wave lubrication model for the heated falling film yields
the correct critical condition (see 2.19). This is not surprising since the long-wave
expansion is exact close to criticality (see our discussion in §2.1).
Let us now consider a falling film whose inclination angle, temperatures at the wall
and in the air and all physical quantities are fixed such that the sole control parameter
is the liquid flux at the inlet or equivalently the Reynolds number Re ∝ h3

N. From the
base state set of parameters, one has M? ∝ 1/hN ∝ Re−1/3, We ∝ 1/h2

N ∝ Re−2/3 and
B ∝ Re1/3. Therefore, in the limit of a vanishing Reynolds number, inertia effects are
negligible and the Marangoni effect is very strong. This corresponds to the S-mode
described by Scriven & Sterling [125]. In this region of small film thicknesses the
destabilizing forces are interfacial forces due to the Marangoni effect (capillary forces
are always stabilizing). Since now M?/We ∝ Re1/3, the critical wavenumber tends to
zero as the Reynolds number tends to zero. This is in agreement with the findings by
Kalliadasis et al. [67] but seems to contradict the results obtained by Goussis & Kelly
[46] which predict the wavenumber to approach infinity in this limiting case. This
inconsistency is due to the fact that Goussis and Kelly based the definition of their
Marangoni number on the temperature difference across the flat film instead of the
temperature difference between the wall and the ambient gas phase. As a concequence
their Marangoni number should also depend on B (which in turn depends on Re) but
this dependence was not taken into account in their study. Conversely, if the flow
rate is large, inertia effects are large and the interfacial forces due to the Marangoni
effects are not important compared to the dominant inertia forces so that the H-mode
dominates in this region.

5.3 Formulation at second order

As we have already emphasized, for isothermal films, it is well known that the second-
order viscous dissipation plays an important role in the dispersion of the waves and
we expect this to be the case for non-isothermal films as well. The aim here is to
take into account the second order viscous and thermal diffusion terms of the Navier-
Stokes/energy equations and to obtain a model for the dynamics of the flow consistent
at this order. For this purpose, we will need the solution of equation (5.8) (this is at
first-order) for the amplitudes of the projections, which can be found as

a1 = −6

5
h∂x

[
q2

h

]
− h∂tq −Mah∂xθ (5.21a)

a2 = q∂xq +
1

2
h∂tq (5.21b)
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a3 = −3

4

q2

h
∂xh−

1

8
h∂tq (5.21c)

a4 = − 3

40
h6∂x

[
q2

h6

]
(5.21d)

a5 =
1

80
h6∂x

[
q2

h6

]
(5.21e)

b2 =
1

6
Prh ((θ − 1)∂xq + h∂tθ) (5.21f)

b3 =
1

8
Prh (−(θ − 1)∂xq + 2q∂xθ) (5.21g)

b4 =
1

40
Prh ((θ − 1)∂xq − 3q∂xθ) (5.21h)

b1 = 0 , ai = bj = 0 , i ≥ 6 , j ≥ 5 .

Note that the amplitudes ai of the monomials of degree greater or equal to seven
are identically equal to zero at first order. This could have been easily foreseen by
examining the degree of the polynomial in ȳ corresponding to the left-hand-side of
(5.6b), i.e. the inertial terms ∂tu + u∂xu + v∂yu. Because f0 is of degree two, this
polynomial is of degree four, so that the right-hand-side of (5.6b) is also a polynomial
of degree four. Hence, the amplitude an corresponding to fn = ȳn+1 is equal to zero
if n ≥ 6, the operator ∂yy decreasing its degree by two. The same argument can be
applied to (5.6c) where the inertial terms ∂tT +u∂xT +v∂yT at the left-hand-side are
a polynomial in ȳ of degree three only.
Consequently, the derivatives of the fields ai, i ≥ 6, bj, j ≥ 5 are of order higher than
ε2 and can be dropped at this stage of the approximation. Their dynamics are thus
slaved to the dynamics of the other unknowns.
Now, from expressions (5.21), it is easy to verify that a4 = −6a5, a2 = −4a3 + 40a5

and a1 = 8a3−96a5−Mah∂xθ so that, eliminating these amplitudes in (5.11), we get
a0 = (3q)/h − 48

5
a3 + 816

7
a5 + 3

2
Mah∂xθ. The velocity field at first order can then be

written as
u = 3

q

h
f0(ȳ) + Mah∂xθf̃1(ȳ) + a3f̃3(ȳ) + a5f̃5(ȳ) , (5.22)

where f̃1 = −3
4
ȳ2+ 1

2
ȳ, f̃3 = ȳ4−4ȳ3+ 24

5
ȳ2− 8

5
ȳ and f̃5 = ȳ6−6ȳ5+40ȳ3− 408

7
ȳ2+ 144

7
ȳ.

Therefore, u is a combination of four independent fields q/h, a3, a5 and h∂xθ rather
than six as could be expected at first. Similarly, T can be written at first order as a
combination of four independent fields, namely θ, b2, b3 and b4. As a consequence, a
consistent formulation of a model for the dynamics of the flow at second order would
require nine unknowns corresponding to the introduction of eight independent fields
to correctly represent the temperature and velocity distributions, plus of course the
film thickness h.
The degree of the polynomials fi, 0 ≤ i ≤ 5 and the second-order dissipative term ∂yyu
and quadratic nonlinearities of the Navier-Stokes equation, imply that the description
of the velocity field at O(ε2) involves polynomials of degree up to fourteen. Therefore,
the set of orthogonal test functions for the velocity field needs to be completed by ten
other functions in order to obtain a basis for the set of polynomials of degree up to
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fourteen satisfying the no-slip condition. Turning now to the modelling of the heat
equation at second order, a basis for the set of polynomials of degree up to thirteen
verifying the temperature condition at the wall is required at second-order to fully
describe the temperature field at that order. This means that ten corresponding
amplitudes for the velocity profile and nine for the temperature profile need to be
eliminated (through the slaving principle) to obtain a set of eight evolution equations
for the eight unknowns required to correctly describe the dynamics of the flow at
second-order. It is needless to say that such a task would require a cumbersome
calculation such that a short cut would be welcome.
Following the same approach as in the isothermal case, let us construct a new set of
polynomial test functions Fi satisfying the orthogonality condition

∫ 1

0
Fi Fjdȳ ∝ δij

with the help of a Gram-Schmidt orthogonalization procedure such that F0 ≡ f0, F1,
F2 and F3 are linear combinations of f0, f̃1, f̃3 and f̃5. The result is

F0 = ȳ − 1

2
ȳ2 , (5.23a)

F1 = ȳ − 17

6
ȳ2 +

7

3
ȳ3 − 7

12
ȳ4 , (5.23b)

F2 = ȳ − 13

2
ȳ2 +

57

4
ȳ3 − 111

8
ȳ4 +

99

16
ȳ5 − 33

32
ȳ6 , (5.23c)

F3 = ȳ − 531

62
ȳ2 +

2871

124
ȳ3 − 6369

248
ȳ4 +

29601

2480
ȳ5 − 9867

4960
ȳ6 . (5.23d)

The functions F1 and F2 have been chosen so that they correspond exactly to the
polynomials introduced in the isothermal case. The introduction of the polynomial
F3 is made necessary by the Marangoni effect which modifies the stress condition at
the interface (5.6e).
Similarly, a set of orthogonal test functions for the temperature field is constructed
from linear combinations of g0, g2, g3 and g4 such that G0 ≡ g0:

G0 = ȳ , (5.24a)

G1 = ȳ − 5

3
ȳ3 , (5.24b)

G2 = ȳ − 7ȳ3 +
32

5
ȳ4 , (5.24c)

G3 = ȳ − 56

3
ȳ3 +

192

5
ȳ4 − 21ȳ5 . (5.24d)

Therefore, the velocity field and the temperature field can be accurately described at
O(ε) from

u =
3

h
(q − s1 − s2 − s3)F0(ȳ) + 45

s1

h
F1(ȳ) + 210

s2

h
F2(ȳ) + 434

s3

h
F3(ȳ) ,(5.25a)

T = 1 + (θ − 1 − t1 − t2 − t3)G0(ȳ) −
3

2
t1G1(ȳ) +

5

2
t2G2(ȳ) −

15

4
t3G3(ȳ) . (5.25b)

In line with our previous derivation of a second-order consistent model for the isother-
mal case [109], the first-order fields si, 1 ≤ i ≤ 3 have been introduced such that u
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preserves the definition of the flow rate q, q =
∫ h

0
u dy, as it should. These fields

correspond to corrections to the amplitude of the parabolic velocity profile and at
the same time their role in the velocity profile is similar to that of q so that the final
evolution equations for q and si will be of similar functional forms. In the same spirit,
the introduction of the fields ti, 1 ≤ i ≤ 3 preserves the definition of the temperature
at the surface θ = T

∣∣
y=h

. Note that G0 and −3
2
G1 are Legendre polynomials. This is

quite fortuitous, the Legendre polynomials forming an orthogonal basis for the scalar
product

∫ 1

−1
·dȳ instead of

∫ 1

0
·dȳ. Completing our set of test functions in order to

obtain a basis for the set of polynomials of degree up to ten satisfying the no-slip
condition, we write

u =
3

h
(q − s1 − s2 − s3)F0(ȳ) + 45

s1

h
F1(ȳ) + 210

s2

h
F2(ȳ)

+
434

h

(
s3 −

9∑

i=4

si

)
F3(ȳ) +

9∑

i=4

1∫ 1

0
Fi(ȳ)dȳ

si

h
Fi(ȳ) (5.26)

Nevertheless, as it will be shown below, the explicit formulations of the polynomials
Fi, 4 ≤ i ≤ 9, will not be required so that in practice the Gram-Schmidt orthogonal-
ization procedure is limited to the determination of F1, F2 and F3.
We now apply the Galerkin method. Let us consider closely the first four residu-
als for the momentum equation. Being of O(ε2) or higher, the corrective fields si,
4 ≤ i ≤ 9 may enter into the calculus only through the evaluation of the zeroth
order viscous term

∫ h

0
Fi(y/h)∂yyu dy which after integrating twice by parts becomes∫ h

0
F ′′

i (y/h)u dy. Notice that F ′′
0 = −1, F ′′

1 = 14F0 − 17
3
, F ′′

2 = 1485
28
F1 + 909

28
F0 − 13

and F ′′
3 = 88803

868
F1 + 31779

868
F0 − 531

31
and are therefore linear combinations of 1, F0 and

F1. Consequently and making use of the orthogonality of the polynomials Fi, the
fields si, i ≥ 4 will not appear in the first four residuals of the momentum equation
Rq(Fi), 0 ≤ i ≤ 3. After some algebraic manipulation, they lead to a set of evolution
equations for q, s1, s2, s3 which has the formal expression

∂tUq = Mq Vq (5.27)

where Uq = (q, s1, s2, s3)
t, Vq = (h − 3q/h2 − Cth∂xh + Kah∂xxxh, s1, s2, s3,

q∂xq/h, q
2∂xh/h

2, s1∂xq/h, s2∂xq/h, s3∂xq/h, q∂xs1/h, q∂xs2/h, q∂xs3/h, qs1∂xh/h
2,

qs2∂xh/h
2, qs3∂xh/h

2, q(∂xh)
2/h2, ∂xq∂xh/h, q∂xxh/h, ∂xxq, Ma∂xθ)

t and Mq is a
4 × 20 matrix.
The same argument applies to the temperature fields so that the set of test functions
Gi must be completed at second order with nine polynomials of degree up up to
thirteen. Nevertheless, since G′′

i , 0 ≤ i ≤ 3 are not linear combinations of Gi,
0 ≤ i ≤ 3, the four first residuals do not form a closed set of equations for θ, t1,
t2 and t3. Yet, a basis for the set of polynomials of degree up to five satisfying the
temperature condition at the wall can be obtained by introducing only one polynomial
orthogonal to the first four Gi. This polynomial G4 is given explicitly by

G4(ȳ) = ȳ − 128

15
ȳ2 + 24ȳ3 − 192

7
ȳ4 + 11ȳ5 . (5.28)
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The temperature field can now be written at second-order as

T = 1 + (θ − 1 − t1 − t2 − t3 − t4)G0(ȳ) −
3

2
t1G1(ȳ) +

5

2
t2G2(ȳ)

−15

4

(
t3 −

8∑

i=5

ti

)
G3(ȳ) +

105

4
t4G4(ȳ) +

8∑

i=5

ti
Gi(ȳ)

Gi(1)
. (5.29)

The choice of this formulation ensures that the evaluation of
∫ h

0
G′′

j (ȳ)T dy, 0 ≤ j ≤ 4
does not require the definitions of Gi, j ≥ 5. By applying next the Galerkin method
to the heat equation, the five first residuals RT (Gi), 0 ≤ i ≤ 4 constitute a closed set.
Since the amplitude t4 is of O(ε2), its space and time derivatives can be neglected
at this order, so that an explicit formulation as function of h, θ, t1, t2 and t3 can
be obtained, thus expressing the slaving of the former to the latter. Therefore, after
some tedious algebraic manipulation, one gets a set of evolution equations for θ, t1,
t2, t3 which can be written formally as

Pr∂tUT = MT VT (5.30)

where UT = (θ, t1, t2, t3)
t, VT = ([1 − (1 + Bih)θ]/h2, t1/h

2, t2/h
2, t3/h

2, Pr (1 −
θ)∂xq/h, Pr t1∂xq/h, Pr t2∂xq/h, Pr t3∂xq/h, Pr q∂xθ/h, Pr q∂xt1/h, Pr q∂xt2/h,
Pr q∂xt3/h, Pr (1−θ)∂xs1/h, Pr (1−θ)∂xs2/h, Pr (1−θ)∂xs3/h, Pr s1∂xθ/h, Pr s2∂xθ/h,
Pr s3∂xθ/h, (1−θ)(∂xh)

2/h2 +∂xh∂xθ/h, Bi θ(∂xh)
2/h, (1−θ)∂xxh/h, ∂xxθ)

t, and MT

is a 4 × 21 matrix.
Finally, we obtain a set of nine coupled evolution equations, namely (5.4, 5.27, 5.30)
for nine unknowns, given in appendix D.1.

5.4 Reduced models

Clearly, our full second-order model is of little use because of its complexity. It is hence
necessary to obtain reduced models which also retain the dynamic characteristics of
the full-size model.
A significant reduction can be achieved expanding our unknowns in series of ε and
performing an appropriate gradient expansion of the full model (5.4, 5.27, 5.30), thus
writing formally

q = q(0) + εq(1) + ε2q(2) + O
(
ε3
)

θ = θ(0) + εθ(1) + ε2θ(2) + O
(
ε3
)

si = εs
(1)
i + ε2s

(2)
i + O

(
ε3
)

ti = εt
(1)
i + ε2t

(2)
i + O

(
ε3
)
.

One then obtains a single evolution equation that is exactly the one resulting from the
long-wave expansion presented in §2.2, namely the Benney-type equation at second-
order (2.11). This is because the derivation of the system of equations (5.27, 5.30)
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is coherent up to second-order, i.e. no terms of order O(ε2) or smaller have been
omitted.
However, as we have already pointed out in chapter 2, it is well known [103, 53]
that the Benney-type evolution equations exhibit non-physical finite-time blow-up
behaviour for sufficiently large Reynolds numbers. Therefore, the aim here is to
obtain a prototype set of equations of reduced dimensionality without the drawbacks
of Benney’s single evolution equation for the film thickness in (2.11) and hence, of
higher degree of complexity than Benney’s expansion. At the same time, it should be
of lower degree of complexity than the full-size system with nine unknowns in (5.4,
5.27, 5.30). This reduced model should fully resolve conditions near criticality (not
only correct all critical quantities but also give the full long-wave lubrication equation
with an appropriate expansion). Finally, we also expect that it should accurately
(i.e. better than the first-order model (5.17)) describe the dynamics of the film up
to moderate Reynolds and Péclet numbers, since it would capture the second-order
dissipative effects.
For this purpose, we consider the expansions for the velocity and temperature fields
given by (5.26) and (5.29). It is clear that the corrective fields si and ti correspond to
polynomials of increasing degrees and hence, they exhibit increasingly abrupt varia-
tions. Therefore, viscosity and thermal diffusivity will tend to damp them relatively
strongly. This can be observed for example by linearizing the model equations around
the flat film solution assuming no spatial dependency of the perturbations, i.e. set the
wavenumber equal to zero. With this hypothesis, dh/dt = 0 and the film thickness
is constant. Furthermore, both systems (5.27) and (5.30) are decoupled and writing
q = h3

N(1/3 + ηq̃), si = ηh3
Ns̃i, θ = (1 + ηθ̃)/(1 + BihN), ti = ηt̃i with η � 1, one

obtains two linear systems in the form

Re
dV

dt
= AV , PrRe

dW

dt
= BW , (5.31)

where V = (q̃, s̃1, s̃2, s̃3)
t, W = (θ̃, t̃1, t̃2, t̃3)

t and A and B are two square matrices of
dimensions 4 × 4. The eigenvalues of A and B are −63.6, −26.6, −7.42, −0.82 and
−89.1, −21.0, −7.40, −0.82, respectively. Therefore, there is a large gap between the
least stable (largest) eigenvalues and the other eigenvalues. The spectra are hence
well separated and the perturbations associated with the eigenvalues far from zero are
quickly damped. The dynamics of the flow in the limit of long waves is therefore dom-
inated by the eigenvectors corresponding to the eigenvalues closest to zero. These are
(q̃, s̃1, s̃2, s̃3)

t = (−1.00, 1.33 10−2, −1.38 10−4, 2.22 10−7) and (θ̃, t̃1, t̃2, t̃3)
t = (0.976,

−0.219, 8.08 10−3, 7.52 10−4). In both eigenvectors, the coefficients corresponding to
the corrections s̃i and t̃i are negligible except for t̃1 which is still four times smaller
than the coefficient corresponding to θ̃. It can then be conjectured that even if nine
amplitudes h, q, θ, si and ti, 1 ≤ i ≤ 3 are needed to describe the dynamics of the
flow at second order, only q, h and θ will play a significant role and the other ones will
virtually be slaved to their dynamics, at least for some range of Reynolds numbers.
Therefore, it seems possible to develop a reduced model in terms of h, q and θ only
reproducing reliably the dynamics of the film up to moderate Reynolds and Péclet
numbers.



5.4. REDUCED MODELS 143

The first idea that comes to mind is thus to simply consider the velocity distribution
to remain parabolic and the temperature field to be linear

u =
3q

h
F0(ȳ) , T = 1 + (θ − 1)G0(ȳ) (5.32)

so that the basic assumption here is that the flat film velocity/temperature distribu-
tions persist even when the interface is no longer flat. We then apply the Galerkin
method by averaging the second-order boundary-layer equation (1.101b) and the en-
ergy equation (1.101c) with the weights F0 and G0, a procedure exactly similar to
the derivation of the first model in §5.2, and which leads to

∂th = −∂xq , (5.33a)

∂tq =
5

6
h− 5

2

q

h2
− 17

7

q

h
∂xq +

(
9

7

q2

h2
− 5

6
Cth

)
∂xh

+4
q

h2
(∂xh)

2 − 9

2h
∂xq∂xh− 6

q

h
∂x2h+

9

2
∂x2q

−5

4
Ma∂xθ +

5

6
Kah∂xxxh , (5.33b)

Pr∂tθ = 3
(1 − θ − Bihθ)

h2
+ Pr

[
7

40

(1 − θ)

h
∂xq −

27

20

q

h
∂xθ

]

+

(
1 − θ − 3

2
Bihθ

)(
∂xh

h

)2

+
∂xh∂xθ

h
+ (1 − θ)

∂x2h

h
+ ∂x2θ .(5.33c)

In comparison with (5.17), the additional second-order terms are

Disq = 4
q

h2
(∂xh)

2 − 9

2h
∂xq∂xh− 6

q

h
∂x2h+

9

2
∂x2q (5.34a)

Disθ =

(
1 − θ − 3

2
Bihθ

)(
∂xh

h

)2

+
∂xh∂xθ

h
+ (1 − θ)

∂x2h

h
+ ∂xxθ . (5.34b)

The origin of Disq can be traced back to the viscous streamwise dissipative effects.
Similarly, Disθ originates from the streamwise diffusion of heat through thermal con-
duction. As for isothermal film flows, (5.33) can also be obtained making the as-
sumption that the unknowns si, ti are of higher order than ε. Their space and time
derivatives can thus be neglected in (5.27, 5.30) and after inversion of the equations,
expressions of si and ti as functions of h, q, θ and their derivatives can be obtained,
with the equations (5.33a, 5.33b) appearing as compatibility relations [109].
Nevertheless, it is clear that the model in (5.33) cannot agree with the second-order
gradient expansion (2.12c) since it does not take into account the second-order correc-
tions to the velocity and temperature distributions. For this reason, equations (5.33)
will be referred to as the “approximated” second-order model. The goal here is there-
fore to find a cure to this disagreement and formulate a model of reduced dimension-
ality – i.e. for the three unknowns h, q and θ only – that is in agreement with the
long-wave expansion. Such a set of equations will be called “reduced” second-order
model in contrast with the approximated model (5.33).
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Let us consider the two residuals corresponding to the parabolic velocity profile,
Rq(F0), and to the linear temperature distribution, RT (G0). These two residuals do
not involve the fields si and ti directly but only their space and time derivatives,
except in products with derivatives of h or q. Therefore, the fields si and ti can be
eliminated at second-order provided that explicit expressions of them as functions
of h, q and θ and their derivatives, are available at first order. Such relations can
easily be obtained by truncating at first order the eight evolution equations (5.27) and
(5.30) (or explicitely D.1). Indeed, since the fields si and ti are of O(ε), their time and
space-derivatives are of O(ε2) and thus disappear in the truncation. Consequently the
six unknowns si and ti can be solved algebraically and the two left equations of the
system (for q and θ) represent the compatibility conditions. These conditions being
of first-order, they should be equivalent to the first-order model (5.17) even though
their form are different due to the elimination of the fields si and ti. It comes out
that the expressions for the fields si and ti as functions of h, q and θ are not unique
and can be modified with the help of the two compatibility conditions. Here, we will
choose to express the fields si and ti such that we can obtain reduced models whose
first-order terms have the same form than the first-order model (5.17). Thus we get

s1 =
1

210
h2∂tq −

19

1925
q2∂xh+

74

5775
hq∂xq +

1

40
Mah2∂xθ , (5.35a)

s2 =
2

5775
q2∂xh−

2

17325
hq∂xq −

299

53760
Ma h2∂xθ , (5.35b)

s3 =
5

3584
Ma h2∂xθ , (5.35c)

t1 = Pr

(
1

15
h2∂tθ +

133

5760
h(θ − 1)∂xq +

73

960
hq∂xθ

)
, (5.35d)

t2 = Pr

(
− 111

22400
h(θ − 1)∂xq +

79

11200
hq∂xθ

)
, (5.35e)

t3 = Pr

(
− 1

3150
h(θ − 1)∂xq +

1

1050
hq∂xθ

)
, (5.35f)

Substituting the equations above into the residuals of the momentum and heat equa-
tions corresponding respectively to a parabolic and a linear weight, Rq(F0) and
RT (G0), and making use of the kinematic relation ∂th = −∂xq yields

∂tq =
5

6
h− 5

2

q

h2
− 17

7

q

h
∂xq +

(
9

7

q2

h2
− 5

6
Cth

)
∂xh

+4
q

h2
(∂xh)

2 − 9

2h
∂xq∂xh − 6

q

h
∂x2h+

9

2
∂x2q

−5

4
Ma∂xθ +

5

6
Kah∂xxxh+ Ineq[h, q, θ] + MaMarq[h, q, θ] , (5.36a)
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Pr∂tθ = 3
(1 − θ − Bihθ)

h2
+ Pr

[
7

40

(1 − θ)

h
∂xq −

27

20

q

h
∂xθ

]

+

(
1 − θ − 3

2
Bihθ

)(
∂xh

h

)2

+
∂xh∂xθ

h
+ (1 − θ)

∂x2h

h
+ ∂x2θ

+Pr Ineqθ[h, q, θ] + Pr2 Ineθ[h, q, θ] + MaPr Marθ[h, q, θ] , (5.36b)

where, hidden in Ineq, Marq, Ineqθ, Ineθ and Marθ, occur second-order inertial terms
induced by the corrections to the flat-film solution (5.35). Ineq contains terms pro-
duced in the momentum equation by the advection of the first-order corrections of
the velocity profile (5.35a–5.35c). Marq denotes the terms induced in the momen-
tum equation by the Marangoni flow produced by the gradient of temperature at
the free surface. Similarly, Ineθ contains inertial terms originating from the averaged
heat equation through the advection of the first-order corrections of the temperature
profile (5.35d–5.35f). The terms contained in Ineqθ and Marθ originate from the ad-
vection of the linear flat-film temperature distribution by the first-order corrections of
the velocity profile induced by the deformation of the free surface and the Marangoni
flow, respectively. They read explicitly

Ineq =
1

210
h2∂ttq +

17

630
hq∂xtq −

1

105
q∂xh∂tq

+
1

42
h∂xq∂tq −

26

231

q2∂xh∂xq

h
+

653

8085
q(∂xq)

2

+
386

8085
q2∂xxq +

104

2695

q3(∂xh)
2

h2
− 78

2695

q3∂xxh

h
, (5.37a)

Marq =
5

112
q∂xh∂xθ +

19

336
h∂xq∂xθ +

1

48
h2∂xtθ +

15

224
hq∂xxθ , (5.37b)

Ineqθ = − 19

1400
[(1 − θ)∂xh− h∂xθ] ∂tq −

19

2800
(1 − θ)∂xtq

+
47

4800
(1 − θ)

∂xh∂xq

h
− 613

33600
(1 − θ)

[
(∂xq)

2 + q∂xxq
]

− 157

1600

q2∂xh∂xθ

h
+

613

16800
q∂xq∂xθ +

157

11200

(1 − θ)q2∂xxh

h
, (5.37c)

Ineθ =
1

15
h2∂ttθ +

23

140
(qh∂xtθ + q∂xh∂tθ)

+
23

280
h∂tq∂xθ −

33

280
h∂xq∂tθ −

31

1680
(1 − θ)h∂xtq

− 491

22400
(1 − θ)

[
∂xh∂xq

h
+ q∂xxq

]
+

1391

67200
(1 − θ)(∂xq)

2

+
573

5600

[
q2∂xh∂xθ

h
+ q2∂xxθ

]
+

113

2800
q∂xq∂xθ , (5.37d)

Marθ =
3

40
h(∂xθ)

2 − 3

40
(1 − θ)∂xh∂xθ −

3

80
(1 − θ)h∂xxθ . (5.37e)
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5.5 Discussion

Although the explicit formulations of Ineq, Ineqθ, Ineθ, Marq and Marθ are complicated
and involve time derivatives, they can be drastically simplified using the relations
provided by the zeroth-order flat film solution q(0) and θ(0) such that

q =
h3

3
+ O(ε) and θ =

1

1 + Bih
+ O(ε) . (5.38)

Therefore, the second-order terms (5.37) appearing in (5.36) do not have a unique
formulation since a large number of asymptotically equivalent expressions is possible
by using the equalities (5.38). Moreover, as already pointed out, the first-order ex-
pressions of the fields si, ti as provided in (5.35) are not unique and can be changed by
using the two compatibility conditions given by the first-order model (5.17). Hence,
we end up not only with a single model fully compatible with the Benney long-wave lu-
brication expansion up to second order (2.11–2.12) but with a whole family of them.
These models as already mentioned will be called hereafter ‘reduced’ second-order
models since they are of reduced dimensionality as compared to the full second-order
model. Nevertheless, if all of them are asymptotically equivalent, they might not nec-
essarily behave in the same way at moderate Reynolds and Péclet numbers. Indeed,
the methodology presented here is principally based on the assumption that inertia
plays effectively a ‘secondary’ role, with all inertial terms being at least first-order in
the film parameter. Yet, in industrial applications, both Reynolds and Péclet num-
bers are generally large and a formulation that gives a hint on the way both H- and
S-modes interact in the high-Reynolds/Péclet numbers flow regimes remains an open
question.
In the context of isothermal film flows, the derivation of the Benney equation [7] also
requires the assumption of a ‘perturbative’ role of inertia. Indeed, as we pointed
out several times, at sufficiently large Reynolds numbers, a non-physical catastrophic
behaviour of the non-stationary solutions leading to blow-up in finite time is observed.
The occurrence of finite-time blow-up has been shown to be closely related to the
unboundedness of the single-hump solitary wave solutions [103] (see §2.5.2). Ooshida’s
regularization procedure of the Benney expansion on the other hand, leads to a single
evolution equation for the free surface h that does not exhibit this severe drawback
[93]. Another single evolution equation including the second-order dissipation effects
was recently introduced by Panga & Balakotaiah [99]. The inertial terms appearing
in the model equations offered by both Ooshida [93] and Panga & Balakotaiah [99]
can be shown to be equivalent to each other by using the lowest order expression
∂th = −h2∂xh + O(ε) provided by the flat film Nusselt solution (5.38) and the mass
conservation equation (see 2.6). Thus, Panga & Balakotaiah’s formulation can be
modified such that its inertial terms correspond to Ooshida’s equation. This simple
procedure was shown to cure the non-physical loss of the solitary-wave solutions and
thus to avoid the occurrence of finite-time blow-up [114]. Ooshida was then brought
to identify two regimes in the solitary-wave solution branch:

• The first one, so called drag-gravity regime corresponds to the balance of the
gravitational acceleration with the viscous drag and with inertia playing only a
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‘perturbative’ role. This regime is observable at threshold or for low amplitude
waves.

• The second one, so called drag-inertia regime appears at larger Reynolds num-
bers and corresponds to a noticeable jump of the speed and amplitude of the
observed solitary waves. In such a regime, inertia plays a dominant role, hence
the basic assumption of ‘perturbative’ role of inertia is clearly violated there.

In conclusion, even though the construction of the solitary-wave solutions of Ooshida’s
equation is still possible in the drag-inertia regime, this equation fails to describe accu-
rately the dynamics of the film since its solitary-wave solutions exhibit unrealistically
small amplitudes and speeds. In fact, quantitative agreement cannot be achieved in
such a regime using a single evolution equation. On the other hand, comparisons
of the wave characteristics obtained using the boundary-layer approximation or the
Shkadov model – i.e. the original integral-boundary-layer model – consisting of two
evolution equations for the film thickness h and the flow rate q, are in good agree-
ment even for large-amplitude waves [19]. However, we have already pointed out
the inability of the Shkadov’s model to predict accurately the instability threshold.
Furthermore, the Shkadov’s model being a first-order model, it does not take into
account the streamwise dissipative effects that were shown to play a predominant
role on the shape and the dispersion of solitary waves [107].
Therefore, it seems possible to select at least one formulation of the reduced second-
order model having the form (5.4, 5.36) that will enables us to describe with a better
qualitatively – and possibly quantitatively – agreement the wave dynamics in the
drag-inertia regime, as compared to Ooshida’s or Shkadov’s equations. This selection
is the subject of chapter 6.





Chapter 6

Linear stability and nonlinear
waves

We have seen in the previous chapter that a whole family of asymptotically equiva-
lent models can be obtained, making use of the zeroth-order equalities (5.38). These
models, whose generic form is given by (5.36), are called “reduced second-order mod-
els” because they are of reduced dimensionality as compared to the full second-order
model. By contrast, a model is called “approximated” if its gradient expansion does
not lead to the exact asymptotic answer∗.
Though a large number of asymptotically equivalent formulations exist to us, their so-
lutions might not behave equivalently if the assumptions leading to their derivations
are no longer verified. Indeed, the procedure described in chapter 5 is principally
based on the assumption that the in-depth coherence of the flow is ensured by viscos-
ity, inertia playing a ‘perturbative’ role. Therefore, our models must give results in
reasonable agreement with experiments only for a limited range of Reynolds Re and
Péclet numbers Pe = PrRe. Based on previous studies of isothermal flows [109, 110],
our hope is that this range of parameters covers the two-dimensional wave regime
that could be observed experimentally before the three-dimensional instabilities start
to show up. To this aim, a selection procedure will be followed in two steps:

§6.1 Comparisons of the linear stability analysis of the models to the results of the
Orr-Sommerfeld analysis of the linearized basic equations as computed from the
system (1.77);

§6.2 Construction of the single-hump solitary wave family – also called ‘the principal
homoclinic orbits’ by Balmforth et al. [4] – in order to check the boundedness of
solitary waves for the largest possible range of parameters and thus to prevent
the occurrence of the non-physical blow-up.

The different possible models investigated in this study are summarized in table 6.1.
Our strategy here is inspired from recent work by Ooshida [93] who formulated a

∗Remark that the “approximated” model given by (5.33) can be recovered from the “reduced”
model (5.36) by using (5.34) for the dissipative second-order terms and cancelling all the other
inertial second-order terms.
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Model Disq Disθ Ineq Marq Ineqθ Ineθ Marθ
first-order : null null null null null null null
second-order :
“approximated” (5.34a) (5.34b) null null null null null
“reduced” (case 0) | | (5.37a) (5.37b) (5.37c) (5.37d) (5.37e)
“reduced” (case 0’) | | (5.37a) (5.37b) null null null
“reduced” (case 1) | | (6.2) (6.4) | | |
“reduced” (case 2) | | | (6.8) | | |
“reduced” (case 3) | | | (6.9) | | |

Table 6.1: Summary of the different formulations investigated. The selected model is
in bold and reproduced in (6.10).

reduced evolution equation of film flows using Padé approximant technique. His work
showed that asymptotically equivalent equations coexist for film flows whose conver-
gence properties to physically acceptable solutions are not equivalent. In particular,
equivalent evolution equations might or might not present unrealistic behaviors of
their non stationary solutions provided highest nonlinearities – inertial terms – are
differently written.
In §6.3, the effect of the Reynolds and Prandtl numbers on the shape, speed, tem-
perature distribution and flow pattern in the waves is investigated. The purpose is
to understand how the thermocapillary S-mode and hydrodynamic H-mode influence
each other.

6.1 Linear stability results

Let us consider the linear stability of the basic Nusselt flow and compare the results
obtained using the different models to the exact answer given by the linearization of
the basic equations leading to the classical Orr-Sommerfeld equation (see §1.4.2 for
details). As performed previously, we again focus on the temporal stability analysis
such that the pulsation Γ is complex and the wavenumber k is real. The dispersion re-
lations corresponding to (5.36) with the different formulations tried here are obtained
introducing the normal mode disturbances expressed by (2.41) where η � 1, and then
cancelling the corresponding determinant. Similarly, the substitutions of (2.41), plus
si = ηAsi exp{i(kx − Γt)} and ti = ηAti exp{i(kx − Γt)} in the full-size model (see
appendix D.1 for an explicit formulation of this model) gives its dispersion relation.
This is formulated in terms of the base state set of parameters based on the Nusselt
flat film solution. We choose to present our results setting the inclination angle β
and the physical parameters to constant values – or equivalently – Ct, Ka, Ma, Bi
and Pr as in experiments where the inlet flow rate is the control parameter. There-
fore only the Nusselt film thickness hN, or equivalently, the Reynolds number Re is
varied. Figure 6.1 shows the neutral stability curves in the plane wavenumber versus
Reynolds number for Pr = 7, Ka = 250, Ct = 0, Ma = 50 and Bi = 1 computed from
different models. The parameters are chosen in a way to emphasize the differences
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existing between the models. Hence the choice of an unrealistically large Biot number
since setting Bi to order unity ensures that the Marangoni effect would be effective.
In the same spirit, we choose to plot the critical wavenumber kν defined through the
length-scale lν instead of hN. Indeed as Re goes to zero, the critical wavenumber k
given by (5.20) goes to zero as

√
M?/We ∝ h

1/6
N . Thus kν = k/hN ∝ h

−5/6
N goes to in-

finity in that limit and the different curves are more easily separated. The first-order
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Figure 6.1: Neutral stability curves for Ka = 250, Ct = 0, Pr = 7, Ma = 50 and
Bi = 1 from different models. Curve 1: Orr-Sommerfeld; curve 2: full-size second-
order model; curve 3: reduced second-order model (case 0); curve 4: first order model;
curve 5: reduced second-order model (case 0’); curve 6: “approximated” second-
order model; curve 7: reduced second-order model (case 1); curve 8: boundary layer
equations. For the sake of clarity, curves 6 and 8 are not plotted on (a) since they are
not distinguishable from curves 7 and 1, respectively, because of the scaling for kν .

model (curve 4) deviates already at small Reynolds number, because of the smallness
of the Kapitza number indicating that the second-order viscous effects are of primary
importance in this regime. The full-size second-order model (curve 2) compares very
well with the Orr-Sommerfeld results (curve 1) even though it decreases slightly at
high Reynolds numbers. However, the light discrepancy cannot be attributed to the
boundary layer approximation (curve 8) since the trend is inverted in this latter case.
We rather invoke the limited convergence radius of any approximated method to ex-
plain the small divergence at high Reynolds numbers. Nevertheless, note the excellent
agreement between the full-size model (curve 2) and the boundary layer equations
(curve 8) for Re < 10. Notice the saturation of the curves (1,2,8) for high Re.
The critical wavelength 2π/kν remains roughly constant at high Re and is independent
of the film thickness. This feature – that should be recovered experimentally – will
constitute the criterion 1 that should govern our choice of any formulation of a
reduced model. Actually, the reduced second-order model (curve 3) with (5.37) does
not agree with the criterion 1 while the “approximated” second-order model (curve
6) does, being close to the full-size model (curve 2) at high Re.
At low Reynolds numbers where the dynamics of the flow is slaved to its kinemat-
ics and the Benney expansion applies, every model does fit with the solution of the
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Orr-Sommerfeld analysis. The corresponding neutral stability curve (curve 1) admits
a minimum at R ≈ 5.6 which corresponds to the transition between the two main
long-wave instability modes identified by Goussis & Kelly [46]: The thermocapillary
mode (S-mode) which predominates at low Reynolds number and the classical hy-
drodynamic mode (H-mode) which rather prevails at larger Reynolds number. An
accurate recovery of the exact neutral stability curve in the transitional zone between
these two instability modes constitutes our criterion 2.
Again, the reduced model (curve 3) does not satisfy the criterion 2 as it deviates even
earlier than the first-order model. Quite surprisingly, the “approximated” model
does better fulfill criteria 1 and 2. Thus adding the second-order corrections (5.37)
corresponding to the modification of the velocity profile induced by inertia and the
Marangoni effect to the “approximated” model (curve 6) seems not to improve the
model at moderate Reynolds number even at linear stage. This statement does not
invalidate the whole methodology since the full second-order model fulfills very well
both criteria (curve 2). Nevertheless, it makes clear the main difficulty of any asymp-
totically correct elimination of the corrections to the basic velocity and temperature
profiles which is related to the limited radius of convergence of asymptotic expansions.
This problem is not particular to the Marangoni driven instability of film flows and
is encountered already for the isothermal flow.
In order to have some procedure to formulate properly the second-order terms, let
us first make a parenthesis in the linear stability analysis by considering the terms
Ineq. Actually, Ineq has the particularity to have a vanishing linear part such that it
does not contribute to the linear dispersion equation, i.e. cancelling this term does
not modify the results at linear stage. Indeed, using the zeroth-order equivalence
between q and h3/3 and with the relation between the time and space derivatives
through the mass-conservation (5.4), Ineq may reduce to

Ine(0)
q = − 1

630
h7(∂xh)

2, (6.1)

which is only nonlinear. However, (6.1) is strongly nonlinear similarly to the term
∂x(h

6∂xh) in the Benney equation (2.10) responsible to the finite-time blow-up. Then,
being too ‘dangerous’, one should look for an intermediate form of Ineq between
(5.37a) and (6.1). Let us get inspired from the study of Ruyer & Manneville [109,
110] who obtained very accurate comparisons with experiments in the drag-inertia
regime with their “approximated” model in isothermal conditions using the Galerkin
method with the assumption of a parabolic velocity profile. Therefore, we suggest
that the form of the second-order inertial corrections should not be far from the first-
order inertial terms present in the “approximated” model. Let us then look for an
asymptotically equivalent formulation of Ineq which contains explicitly the first-order
inertial terms such as

Ine(1)
q = Fac(h, q)

(
∂tq −

9

7

q2

h2
∂xh+

17

7

q

h
∂xq

)
. (6.2)

First-order inertial terms ∂tq − 9
7

q2

h2 ∂xh + 17
7

q
h
∂xq are asymptotically equivalent to

−1
3
h4∂xh. Therefore, to achieve asymptotic equivalence with (6.1), the possible form
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of Fac are 1
210
h3∂xh, or 1

70
q∂xh, or 1

210
h∂xq or finally 1

70
q∂xq/h

2. Each such possibility
has been checked by looking after the corresponding one-hump solitary wave family
and selecting the form of Fac that enables to recover a behaviour in the drag-inertia
regime that is in agreement with the boundary-layer equation and the “approximated”
model. This leads to the choice

Fac =
1

70
q∂xh. (6.3)

The corresponding model with (6.2) will be shown in chapter 7 to give very good
results and to enable an accurate description of the three-dimensional secondary in-
stabilities reported experimentally by Liu et al. [84]. Because the adopted formulation
should recover the already obtained model in the case of isothermal film (Ma = 0),
in the following, the expression (6.2) will be systematically substituted for Ineq.
Back to the formulation for non-isothermal case, a lot of effort were devoted in vain
to the search of correct expressions for the second-order inertial and thermocapillary
terms appearing in the heat balance Ineθ, Ineqθ and Marθ. But it seems not possible
to take into account the second-order corrections appearing in the heat equation and
induced by the deviations of the temperature and velocity profiles from the flat-film
Nusselt solution if the temperature field is assumed to be slaved to the free surface
temperature θ only. This failure suggests to describe the temperature field enabling at
least the first correction t1 to θ to have its own dynamics. Such a study however will
not be presented here but is a separate and later work even though some indications
will be given in chapter 8. Therefore, Ineqθ, Ineθ and Marθ will be put to zero in
the last part of this study. This crude assumption is still coherent with the gradient
expansion at second order since the surface temperature is only coupled to the local
flow rate through its gradient (already of ε−order). Yet, Ineq and Marq do contribute
to q(2) and should be kept.
Now setting Ineqθ = Ineθ = Marθ = 0 in (5.36) and keeping only Ineq and Marq

as given by (6.2) and (5.37b) (curve 5) does not lead to an acceptable formulation
in view of both criteria 1 and 2. Consequently, we make use of both equivalences
(5.38) to obtain asymptotically equivalent expressions of Marq. We also use the same
procedure as for Ineq and formulate Marq as a correction of the first-order inertial
terms such as for example:

Mar(1)
q =

5

56

1

h
∂xθ

(
∂tq −

9

7

q2

h2
∂xh+

17

7

q

h
∂xq

)
+

1

224
qh∂xxθ. (6.4)

Note that we introduce the superscript (1) since several formulations of Ineq and
Marq are possible; it refers also to the ‘case 1’ in table 6.1. Only the last term of
Marq brings a linear contribution such that equivalent form of the factor 5

56
∂xθ/h

would lead to the similar results at linear stage. The reduced model (5.36) where
Ineqθ = Ineθ = Marθ = 0 and Ineq and Marq are given by (6.2) and (6.4) does fulfill our
criteria as shown by figure 6.1 (curve 7). The reader should keep in mind that fulfilling
the two formulated linear criteria is not sufficient to select an acceptable formulation.
Indeed, one has to verify that the obtained nonlinear solutions do behave correctly,
i.e. do no exhibit catastrophic behaviour such as blow-up in finite time. This will be
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done in the next section. Nevertheless, in order to discuss here the linear stability of
our modelling as compared to the analysis of the linearized Navier-Stokes and heat
equations when the parameters are varied, let us assume that Ineq and Marq given
by(6.2) and (6.4) are the formulations of the second-order inertial terms as selected
by the whole procedure. This will be verified later on.
To illustrate how the marginal stability curves behave in the plane wavenumber versus
Reynolds number again for a vertical plane if the wavenumber is scaled using the film
thickness, the curves obtained using the Orr-Sommerfeld analysis, the full-size second-
order model and the reduced model have been plot on figure 6.2 along with the curve
corresponding to the Benney expansion (2.11). As expected, the curves all tend to
the origin as Re is decreased. Note the plateau reached by each curve for Re ∼ 1.
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Figure 6.2: Neutral stability curves in the plane wavenumber k versus Reynolds
number. k is defined using hN. Parameters and numbering correspond to figure 6.1,
see corresponding caption. Curve B corresponds to the Benney long-wave expansion.

On figure 6.3 the growth rate =(Γ) is plotted against the real wavenumber for the
long-wave mode. At a quite low Reynolds number Re = 1, growth rates predicted
by the reduced model with Ineq = Ine(1)

q and Marq = Mar(1)
q , the full-size model or

the Benney expansion (2.11) are close to the answer provided by the Orr-Sommerfeld
stability analysis. For larger Reynolds numbers, the Benney expansion ceases to
provide results in reasonable agreement with the Orr-Sommerfeld analysis. Indeed,
the Benney expansion assumes the dynamics of the flow to be slaved to its kinematics
which is no more true at large Reynolds numbers. At Re = 50, where the H-mode
is predominant, note the good agreement of the full-size model and the reduced
model with the Orr-Sommerfeld analysis. However at Re = 10, if the full-size model
is in remarkable agreement with the correct answer provided by the Orr-Sommerfeld
analysis, the growth rate predicted by the reduced model is significantly larger. Again,
taking into account the second-order terms appearing in the heat equation is probably
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necessary to correctly describe the instability at moderate Reynolds numbers for
which the S-mode is significant. This argues again for the derivation of a model
involving t1 along with h, q and θ, which is still to be done (see the discussion based
on equation 5.31).
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Figure 6.3: Growth rate =(Γ) versus wavenumber kν for different Reynolds numbers.
Parameters are given in the caption of figure 6.1. Solid lines stand for the Orr-
Sommerfeld analysis, dotted lines for the full-size model and dashed ones for the
reduced second-order model (case 1). The thin solid lines correspond to the Benney
expansion.

Still for a vertical plane, the marginal stability curves corresponding to the reduced
model with Ineq = Ine(1)

q and Marq = Mar(1)
q for several Biot numbers are shown on

figure 6.4. The Marangoni effect is maximum at low and moderate Reynolds numbers
if Bi ∼ 1. Indeed, if Bi goes to zero or infinity, the free surface temperature of the
undisturbed solution (5.38) is independent of the thickness hN and the Marangoni
effect cannot occur (see details in §1.3).
The effect of the Marangoni and Prandtl numbers has been investigated and compar-
isons of the marginal stability curves are provided on figure 6.5. Note the choice of
a smaller Biot number Bi = 0.1 since available experiments correspond to small Biot
numbers [56, 62, 65]. As expected if Ma = 0 one recovers the classical hydrodynamic
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Figure 6.4: Influence of the Biot number on the marginal stability curve. Parameters
are Ka = 250, Ct = 0, Pr = 7 and Ma = 50. Solid lines (dashed lines) correspond to
Orr-Sommerfeld (reduced model)

H-mode, the corresponding curve emerging from the origin of the plane (kν , Re). For
Pr = 7, raising the Marangoni number increases the range of unstable wavenumber
especially at low Reynolds numbers where the Marangoni effects are predominant
(S-mode). Again the results obtained using the reduced model do compare very well
with the curves corresponding to the Orr-Sommerfeld analysis. Note however that
at large Reynolds numbers, the marginal stability curve obtained with the reduced
model do not merge on a single curve whereas Orr-Sommerfeld curves do. Clearly,
if Re is large enough, the hydrodynamic H-mode predominates and the thermocap-
illary effects measured by Ma do not modify significantly the critical wavenumber.
The small disparity of the curves corresponding to the reduced model is therefore a
consequence of the increased inaccuracy of this model at large Reynolds number. The
effect of the Prandtl number on the marginal stability curve is less intuitive. Indeed
since the instability is primarily an inertia driven instability, at least if the H-mode
predominates, a larger value of Pr should imply a larger range of unstable wavenum-
bers since the Péclet number Pe = PrRe measuring the inertia effects in the heat
equation is also larger. Nevertheless, it can be observed that the Prandtl number has
little influence at large Re (H-mode) whereas the curves are strongly affected by it at
small Re (S-mode). If the S-mode predominates, the origin of the instability is the
gradient of temperature at the surface. This gradient may be weakened by the trans-
port of heat from the troughs to the crests due to the motion of the fluid, a process
which is increased with large Prandtl numbers. Note that comparisons between the
Orr-Sommerfeld analysis and the reduced model are better at Pr = 1 than for larger
values of Pr for which the temperature profile is certainly not properly described by
only a single field, namely θ.
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Figure 6.5: Influence of the Marangoni number (a) and the Prandtl number (b) for a
vertical plane, Ka = 250 and Bi = 0.1; (a) Pr = 7, (b) Ma = 50. Solid lines (dashed
lines) correspond to Orr-Sommerfeld (reduced model).



158 CHAPTER 6. LINEAR STABILITY AND NONLINEAR WAVES

For a non-vertical inclined plane and Marangoni numbers Ma of order unity, the
critical condition (5.20) can lead to two different values for the onset of the instability
corresponding respectively to the H and S modes. This has been checked on figure 6.6
for a plane inclined at an angle β = 15◦ from the horizontal. For moderate values
of Ma, two distinct unstable regions are observable each corresponding to a different
instability mode as observed initially by Goussis & Kelly [46]. Note the excellent
agreement of the curves corresponding to the reduced model with Ineq = Ine(1)

q and

Marq = Mar(1)
q with the Orr-Sommerfeld results in the vicinity of the two thresholds.

This agreement results from the account of the second-order dissipative terms in
our modelling and from a correct account of the instability threshold. Noticeable
discrepancies between the two sets of curves can be observed if the Marangoni number
is increased or at larger Reynolds numbers.
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Figure 6.6: Influence of the Marangoni number for an inclined plane of an angle
β = 15◦. Parameters are Ka = 250, Pr = 7 and Bi = 1. Solid lines (dashed lines)
correspond to Orr-Sommerfeld (reduced model, case 1).

Finally, let us notice again that the choice of the parameters in the above linear study
was guided by the concern for emphasizing the differences between the results pro-
vided by the different set of equations. In particular, the Kapitza number was chosen
quite low (Ka = 250). For example, flows of water on vertical planes correspond
to much higher values of Ka (see table C.1). Therefore one expects a much better
agreement of our models to the linear Orr-Sommerfeld stability analysis in that case.
This can been checked on figure 6.7 where the neutral marginal curves obtained using
the reduced model with Ineq = Ine(1)

q and Marq = Mar(1)
q have been compared to the

results of the Orr-Sommerfeld analysis for different Ka. Note the excellent agreement
for large values of Ka and especially for Ka = 3175 corresponding to water at 18◦C.
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Figure 6.7: Influence of the Kapitza number for a vertical plane (Ka = 3175 corre-
sponds to water at 18◦C). Solid lines (dashed lines) correspond to Orr-Sommerfeld
(reduced model, case 1).

6.2 Solitary waves

As observed above, comparisons between the Orr-Sommerfeld results and the linear
analyses of the different models are not sufficient to completely determine an ac-
ceptable reduced model since the influence of the nonlinearities introduced by the
second-order inertial terms appearing in (5.36) needs to be investigated. Our atten-
tion will be focused on the very nonlinear regime corresponding to solitary waves.
Indeed, considering the time evolution of the Benney equation, Pumir et al. [103] ob-
served non-physical catastrophic blows up in finite time that seemed to be related to
the disappearance of one-hump solitary wave solutions for the parameters considered.
This was also the issue of §2.5 where the homoclinic solutions were indeed found to
be the most dangerous ones with regards to finite-time blow-up.

Because our approach as well as the classical Benney expansion rely on the assumption
of strong viscous effects and small ‘perturbative’ inertial effects – that is on the drag-
gravity regime as defined by Ooshida [93] (see §5.5) – special care should be taken to
formulate the inertia terms in order to extend them to the drag-inertia regime.

Therefore we consider one-hump solitary wave solutions of the reduced model with
Ineqθ = Ineθ = Marθ = 0, in a frame of reference moving downstream at the speed of
the wave. Considering waves that do not change their shape in their moving frame
enables to recast the set of equations in a system of ordinary differential equations
whose solutions can be computed using the continuation software Auto97 with the
Homcont package [30]. Comparisons of the shapes of the different waves is made
easier using the scaling based on the intrinsic length-scales of the structures consid-
ered. Therefore let us apply the transformation T (1.103) due to Shkadov [127] and
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use the nonlinear set of parameters {R, C, η,M,B,Pr} as introduced in §1.6.
Interestingly enough, every parameter goes to zero with the Reynolds number except
the reduced Marangoni number which goes to infinity. Therefore for small flow rate,
R � 1, C � 1 and η � 1 can be neglected. Integrating twice the boundary layer
equations (1.104) thus leads to

q =
h3

3
(1 + ∂xxxh) −

M
2
h2∂xθ , θ =

1

1 + Bh
= 1 − Bh+O(B2) , (6.5)

and the mass conservation equation ∂th+ ∂xq = 0 writes

∂th+ ∂x

[
h3

3
(1 + ∂xxxh) +

MB

2
h2∂xh

]
(6.6)

where the leading order term involving B has been retained. Apart from numerical
factors and a different scaling that makes appear the single parameter MB in a
different way, equation (6.6) is identical to the one obtained by Kalliadasis et al.
[67]. The reduced parameter they proposed appears ∝ 1/BM. They observed that
homoclinic solutions to (6.6) goes to infinity as their parameter goes to zero, that is
when MB goes to infinity. Because we have MB ∝ (3Re)−1/9, this limit corresponds
to the zero Reynolds number limit for which the film is therefore expected to give
way to isolated drops separated by very thin layers of fluids for which intermolecular
van der Waals forces become increasingly important and could arrest this singularity
formation (in the repulsive case). A similar process was found in the time-dependent
computations by Joo et al. [53] in which the troughs of the waves grow rapidly and lead
to very thin regions of the film where van der Waals forces are no longer negligible.
Joo et al. [53], however, did not construct any solitary wave solutions. In fact the
work by Kalliadasis et al. [67] is the only study that has traced the solitary wave
solution branch for the heated falling film problem (for both free surface and interfacial
temperature).
Inversely, if Re goes to infinity, both M and MB go to zero and the velocity and
temperature fields are decoupled. Therefore, at large Reynolds numbers, the shape
of the wave should be unaffected by the Marangoni effect. Having considered these
two limits will enable us to understand more clearly the influence of the Reynolds
number on the shape of the wave for chosen slope and physical properties. Indeed,
if the properties of the wave – phase speed c, maximal height and profiles – will
be compared using the nonlinear set of parameters, numerical computations will be
performed as in experiments changing only one parameter with the use of the natural
set {Re,Ct,Ka,Ma,Bi,Pr}.
Practically, considering stationary solutions in the moving frame ξ = x − ct, the set
of equations to be resolved can be formally written

dU

dξ
= F(U; R, C, η, B, M, Q) , (6.7)

where U corresponds to (h, h′, h′′, θ, θ′)t for systems of equations of the form (5.36).
The constant Q is the mass flux under the wave in its frame of reference given after
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integration of the mass conservation equation −c h′ + q′ = 0 by Q = q − c h. Con-
sidering here solitary waves, the Nusselt flat film solution h = 1 should be recovered
far from the waves and therefore Q = 1/3− c. The speed of the wave being generally
larger than the maximal velocity in the liquid, Q is generally negative. Note however
that in experiments, the time-averaged film thickness is smaller downstream than at
the inlet, the presence of the waves accelerating the fluid motion. As a consequence,
the local Reynolds number varying with the third power of the thickness can be sig-
nificantly smaller than the Reynolds number computed based on the flow rate or the
inlet Nusselt film thickness.
Two more possible formulations of Marq will be explored here. Yet the reader should
keep in mind that a large number of asymptotically equivalent formulations are pos-
sible making use of the equalities at zeroth-order (5.38). In the first formulation, we
make appear the thermal dissipative terms Disθ as given in (5.34b) in an attempt to
obtain a system of equations as close as possible to the “approximated” model :

Mar(2)
q =

37 − 34θ

448h(1 − θ)
∂xθ

(
∂tq −

9

7

q2

h2
∂xh+

17

7

q

h
∂xq

)
− hqθ

224(1 − θ)
× Disθ. (6.8)

Another simpler possibility is to modify Mar(1)
q by changing the term in factor of the

first-order inertial terms. Playing with the equivalence θ = 1/(1 + Bih) + O(ε) one
gets

Mar(3)
q = − 5

56
Bi
θ2

h
∂xh

(
∂tq −

9

7

q2

h2
∂xh +

17

7

q

h
∂xq

)
+

1

224
qh∂xxθ. (6.9)

The superscripts (2) and (3) refers to the corresponding cases in table 6.1.
Figure 6.8 shows the evolution of the speed c and the maximal height hmax as func-
tion of the Reynolds number for the families of single-hump homoclinic solutions
computed with the different formulations of Marq. The parameters are Ka = 250,
Ct = 0, Ma = 50 and Bi = 0.1. The formulation Mar(2)

q (curve 4) leads to a turning
point and therefore branch multiplicity. Above Re ≈ 6.7 no one-hump solitary wave
can be obtained in that case. Solitary-wave families computed by Kalliadasis et al.
[67] do not present any turning point so that any branch multiplicity is likely to be
related to the catastrophic behaviour observed by Pumir et al. [103] and Oron &
Gottlieb [98] with the Benney equation (see §2.5.2). The expression Mar(2)

q should

therefore be prohibited. The solitary wave branches obtained using Mar(1)
q and Mar(3)

q ,
respectively curves 2 and 3 in figure 6.8, do not exhibit such branch multiplicity. It
is not easy to say which of these two formulations is preferable since the one-hump
solitary wave branch corresponding to the full set of the Navier-Stokes and heat equa-
tion is not available. Indeed, constructing such solutions is a formidable task owing
to the difficulty of tracking the boundaries of the computational domain and the large
range of scales involved . In an attempt to get a point of comparison, the solitary
wave branch corresponding to the full-size second-order model was constructed (see
curve 5 in figure 6.8). Unfortunately, it seems not possible using Auto97 to continue
this branch of solutions above a quite low value of Re. This is certainly due to the
very large dimension of the corresponding dynamical system. Therefore, owing to
the good behaviour of the “approximated” model observed at least in the case of
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Figure 6.8: Speed and maximal height of solitary wave solutions computed with the
reduced model; curve 1: Marq = 0; curve 2: Mar(1)

q ; curve 3: Mar(3)
q ; curve 4: Mar(2)

q ;
curve 5: full-size for the momentum equation and approximated for the heat equation.

isothermal flow [110], we will keep here a very conservative approach and select the
formulation that gives the closest answer to the one provided using the approximated
model which is obviously Mar(1)

q . Consequently, the selected model (‘case 1’ in table
6.1) corresponding to (5.36) with Ineqθ = Ineθ = Marθ = 0 and Ineq and Marq given
by (6.2) and (6.4) reads explicitly

∂th = −∂xq , (6.10a)

∂tq =
9

7

q2

h2
∂xh − 17

7

q

h
∂xq

+

{
5

6
h− 5

2

q

h2
+ 4

q

h2
(∂xh)

2 − 9

2h
∂xq∂xh− 6

q

h
∂xxh+

9

2
∂xxq

−5

6
Cth∂xh+

5

6
Kah∂xxxh− Ma

(
5

4
∂xθ −

1

224
hq∂xxθ

)}

×
(

1 − 1

70
q∂xh + Ma

5

56h
∂xθ

)−1

, (6.10b)

Pr∂tθ = 3
(1 − θ − Bihθ)

h2
+ Pr

[
7

40

(1 − θ)

h
∂xq −

27

20

q

h
∂xθ

]

+

(
1 − θ − 3

2
Bihθ

)(
∂xh

h

)2

+
∂xh∂xθ

h
+ (1 − θ)

∂x2h

h
+ ∂xxθ . (6.10c)

Remark finally on figure 6.8 the jump of the phase speed and the maximal amplitude of
the homoclinic branch of solutions. It separates actually the two regimes as already
discussed in §5.5, namely the drag-gravity regime at the left of the jump and the
drag-inertia regime at its right. As foreseen previously, all the models agree in the
drag-gravity regime while the key-point of our study stands in the formulation that
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correctly describes the drag-inertia regime; condition that seems to be fulfilled by
(6.10).

6.3 Interactions between H and S-modes

A model of reduced dimensionality having been selected, let us discuss the influence
of the different physical effects. However, we will restrict ourself to the case of vertical
walls and to solitary waves since vertical apparatuses are the most common in use
and solitary waves tend to dominate the wave dynamics at a sufficient distance from
the inlet [1] (see chapter 7). We may also only study the influence of the Re, Pr and
Ma numbers. Indeed, our interest is mainly to consider how the hydrodynamic and
thermocapillary H and S-modes couple each other, putting the emphasis on the case
of large amplitude waves, that is on the drag-inertia regime (for which inertia plays a
dominant role). We have then fixed throughout this discussion the values of the Biot
and Kapitza numbers to Bi = 0.1 and Ka = 250. On the one hand, the Biot is chosen
much smaller than unity as for realistic experimental situations (see the discussion
in §8.2.1). On the other hand, the Kapitza number as been expressly chosen small
with respect to its value for common liquids (see table C.1). The reason is that at
such small value, the second-order dissipative and inertia effects become predominant
and we precisely want to test our selected model in a situation when its second-order
terms are effective.

On figure 6.9, the amplitude and speed of the one-hump solitary-wave family have
been plotted against Re for different values of the Prandtl and Marangoni numbers.
On the same figure the wave family corresponding to isothermal flows (Ma = 0) is
represented for comparisons. As expected, increasing the Marangoni number implies
larger amplitude and speed since the two instability modes reinforce each other. This
effect is more visible at low Reynolds numbers since the reduced Marangoni number
M defined in (1.105d) is proportional to Re−4/9. Inversely, for the largest values of
Re, the curves merge on the isothermal one. The effect of the Prandtl number is
more subtle. At low Reynolds numbers (< 0.5), larger values of Pr seem to favor the
instability (though the effect is weak), whereas at larger Re, it is the opposite.

In order to understand the effect of the Prandtl number, the streamlines and the
isotherms have been computed in the frame of reference of the wave after computing
the velocity and temperature fields from the polynomial expansion, the definitions
of the polynomial test functions and the first-order approximation of the corrections
si and ti (see 5.35). Note that the second-order corrections of both fields could
have been computed after writing the residuals corresponding to the corresponding
test-functions, and inverting the obtained linear system. Nevertheless, due to the
complexity of this procedure, we may avoid it and consider the velocity and tem-
perature fields to be sufficiently described by their representation at first-order, at
least for a qualitative discussion. The Marangoni number is Ma = 50 and will not
be modified until the end of this section. The isotherms and streamlines computed
for a small value of Re = 0.01 are shown on figure 6.10. The reduced parameters are
R = 0.0022, η = 0.0053, M = 37.6 and B = 0.031. The product PrR, η and B being
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Figure 6.9: Speed and maximal height of solitary wave solutions computed with
the selected second-order model (6.10) for different values of Pr and Ma. Other
parameters are Ct = 0, Bi = 0.1 and Ka = 250.

small, ∂yyT ≈ 0 and the temperature field is nearly linear. θ ≈ 1 − Bh such that
T ≈ 1 − By. Therefore, the isotherms are nearly aligned with the wall. Note also
that the surface temperature θ also represented on figure 6.10 is nearly uniform.

The isotherms and streamlines computed for Re = 1 and Pr = 1 or 7 are reproduced
on figure 6.11. The reduced parameters are now R = 0.61, η = 0.041, M = 4.86
and B = 0.14. Again, at Pr = 1, the isotherms are nearly aligned, B and PrR being
still relatively small. At Pr = 7, the isotherms are no more aligned with the wall and
are more deflected upwards by the movement of the fluid in the crest. Therefore, the
minimum of temperature achieved at the surface on the top of the wave is increased
(Tmin = 0.8 compared to 0.765 for Pr = 1) and consequently the Marangoni effect
reduced. The transport of heat by the motion of the fluid has a stabilizing effect in
that case, i.e. in the drag-gravity regime. Nevertheless, at larger Reynolds numbers,
i.e. in the drag-inertia regime, the wave amplitude and speed increase dramatically
and a recirculation zone appears inside the solitary wave. Streamlines computed
for Re = 2 and Re = 3 and represented on figures 6.12 and 6.13 do exhibit such
recirculating zones, and two stagnation points at the surface on the back and the front
of the solitary waves can be observed. Because the fluid in the moving hump circulates
clockwise and is trapped, the waves can be said to transport mass. Comparisons to
the streamlines computed if the thermocapillary effects is switched off (Ma = 0) at
Re = 3 show that the Marangoni instability moves one of the stagnation point from
the front of the wave to its crest (see figure 6.14). Because thermocapillary stresses
push the fluid from the rear to the top of the crests, they reinforce the clockwise
circulation in the crest. Meanwhile, the transport of heat by the downward fluid
motion at the front of the recirculating zone cools the surface at its crest and the
minimum of surface temperature matches closely with the stagnation point at the
front. Therefore the two mechanisms reinforce each other promoting the speed and
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Figure 6.10: Streamlines in the moving frame (top) and isotherms (bottom) calculated
for a right-moving solitary wave at Re = 0.01, Ka = 250, Pr = 7, Ma = 50 and
Bi = 0.1. The temperature at the interface θ corresponds to the dashed line.
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Figure 6.11: Streamlines (top) and isotherms (bottom). Same parameters as in fig-
ure 6.10 but Re = 1 and (a) Pr = 1, (b) Pr = 7.
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Figure 6.12: Streamlines (top) and isotherms (bottom). The Reynolds number is
Re = 2 and (a) Pr = 1, (b) Pr = 7. Other parameters defined in the caption of
figure 6.10.
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Figure 6.13: Streamlines (top) and isotherms (bottom). Re = 3 and (a) Pr = 1, (b)
Pr = 7.
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Figure 6.14: Streamlines in the moving frame of the wave. Parameters are Ma = 0,
Re = 3, Ct = 0 and Ka = 250.

amplitude of the wave. This explains that a recirculating zone can be observed at
Re = 2 and Ma = 50 whereas it is not present if Ma = 0. Indeed, the abrupt increase
of amplitude and speed of the solitary waves corresponding to the transition from
the drag-gravity to the drag-inertia regime occurs for smaller values of the Reynolds
number if the Marangoni effect is present (see figure 6.9).

Comparison of figures 6.12(a) and 6.12(b) indicate also that increasing the Prandtl
number from Pr = 1 to Pr = 7 enhances the cooling process of the crest and reduces
the minimum of temperature from Tmin = 0.591 to 0.517 thus contributing to the
Marangoni effect. At Re = 3, the effect is even stronger as can be seen from figure 6.13.
However, if the H and S instability modes reinforce each other for Re = 2 or Re = 3,
the speed and amplitudes of the solitary waves do decrease with the Prandtl number
as indicated on figure 6.9. This paradox can be explained only by noting that pushing
one of the stagnation point to the crest, thermocapillarity does tighten the streamlines
and isotherms in the front of the recirculating zone. Moreover, the circulation in
the hump is promoted by the Marangoni stresses at the surface. Therefore, large
temperature and velocity gradients appear in that region. As a consequence, the
dissipation of heat and momentum is increased, which contributes to stabilize the
growth of the instability and to limit the speed and amplitude of the waves.

Notice that at Re = 3 the minimum of temperature drops from 0.414 when Pr = 1 to
0.051 when Pr = 7. This minimum is no more located at the surface but in the core of
the recirculating zone. This result should be taken cautiously since for higher values
of Re, unphysical negative values of the dimensionless temperature appear in the fluid
as shown in figure 6.15. Turning back to dimensional quantities, this means that the
temperature at the surface would be locally smaller than the temperature of the air.
Such results obviously have no physical basis. To understand the appearance of this
unphysical behaviour, let us consider the high Péclet number limit PrRe � 1. In
such a case, the heat diffusion can be neglected and the temperature field is basically
transported by the flow as a passive scalar. Therefore, considering stationary waves in
their moving frame, the isotherms should coincide with the streamlines in the moving
frame. Since large amplitude waves exhibit recirculation zones, some isotherms should
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Figure 6.15: Film thickness and surface temperature of homoclinic solutions calcu-
lated for various Re and Ka = 252, Pr = 7, Ma = 50 and Bi = 0.1.

be closed. Consequently, the temperature gradient could be horizontal and thus the
hypothesis ∂yT � ∂xT necessary to the derivation of our models would be violated at
least locally. Another potential reason for the appearance of negative temperature is
also the neglect in the averaged heat balance (6.10c) of the transport of heat due to the
Marangoni flow (Marθ). Though these terms are formally of second-order, they could
be quite strong due to the enhancement of the Marangoni flow by the hydrodynamic
mechanism. Different possibilities – not examined here – could be offered to cure
this strong limitation in the applicability of the three-unknown model (6.10). One of
them would be to consider more unknowns such as t1 for the description of the heat
transfer process in the flow, as already mentioned. The second one is to relax the
assumption ∂yT � ∂xT in the derivation process by considering all terms involving
the temperature to be of the same order.
To check the arguments given as a possible explanation of the failure of our model to
describe the solitary-wave regime at high Péclet number, we have computed the one-
hump solitary-wave branch corresponding to the first-order model (equations (5.36)
all second-order terms Disq, Disθ, Ineq, Ineqθ, Ineθ, Marq, Marθ being set to zero).
The speed of amplitudes of the solitary waves are displayed on figure 6.16 as function
of the Reynolds number for Ka = 250, Ct = 0, Bi = 0.1 and two values of the Prandtl
number (Pr = 1 or Pr = 7). In both cases, a limit point, for which the branch of
solutions is lost, is encountered. This loss follows the formation of steep gradients of
temperature in the bulk of the flow as is evident in view of the isotherms displayed
on figure 6.17 at Re = 2.5 and Pr = 7. Notice that, quite surprisingly, the loss of
solutions appear at values of Re smaller for Pr = 1 than for Pr = 7. This paradoxical
result can be understood considering that the transition between the drag-gravity



6.3. INTERACTIONS BETWEEN H AND S-MODES 169

0 1 2 3 4 5
1

2

3

4

Re

hmax

Ma = 50

Ma = 0

Pr = 1
Pr = 7

(a)

0 1 2 3 4 5
1

1.5

2

2.5

3

Re

c Ma = 50

Ma = 0

Pr = 1
Pr = 7

(b)

Figure 6.16: Speed and maximal height of solitary wave solutions computed with the
first-order model (thick lines) and the selected second-order model (thin lines)
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and the drag-inertia regimes is delayed by the upward displacement of the isotherms
by the flow as already observed on figure 6.11. Consequently, the second-order terms
do contribute to delay the breakdown of our modelling. This effect is certainly due
to the second-oder diffusion terms which reduce the range of unstable wavenumber
and smooth the gradients (the reader is invited to compare the amplitude of the
fore-running waves preceding the main hump in figures 6.13 and 6.17).



Chapter 7

Three-dimensional dynamics

This chapter is devoted to a numerical investigation of three-dimensional instabilities
of film flows and comparisons with available experiments. We first present the phe-
nomenology of the transition between two-dimensional (2D) and three-dimensional
(3D) instability (§7.1). Turning to 3D flows, we will extend our models developed in
chapters 5 and 6 to include the spanwise coordinate z (§7.2). Next, numerical simu-
lations of the model will be compared to the 3D patterns observed in experiments of
Liu et al. [84] and Alekseenko et al. [1] for isothermal conditions (§7.3). Finally, we
investigate the effect of thermocapillarity on three-dimensional nonlinear dynamics
(§7.3.3).

7.1 Transition from 2D to 3D waves

Many experimental studies have been devoted to the wavy regime of film flows since
the first observations by Kapitza & Kapitza [69]. Most of them are described in the
review by Alekseenko et al. [1]. Recent measurements can be found in [91, 143]. Gol-
lub and coworkers reported an extensive study of the film dynamics in the case of
weakly inclined planes and for a water-glycerin mixture [83, 81, 82, 84]. Controlling
the entrance flow rate, they applied a periodic forcing at the inlet and observed the
film response at a given frequency. Their experiments give the clearest picture of the
wide phenomenology of the interacting waves on film flows and complete the descrip-
tion offered by Chang [15]. The different observations are summed up schematically
on figure 7.1. The spatial evolution of the film can be split up into four phases corre-
sponding to four different regions on the inclined plane. The first one is the inception
region where the primary instability of the flat film to infinitesimal disturbances de-
velops spatially and temporally. The observed primary waves are two-dimensional,
which is consistent with the Squire’s theorem (see §1.4.2), indeed shown to apply to
free surface flows by Yih [146]. Next, the wave amplitude saturates and the shape
of the waves remains quasi-stationary over a distance corresponding to a few wave-
lengths (II). These waves are quite slow and present large crests and deep thin troughs.
They form the γ1 wave family using the terminology defined by Chang et al. [19] (see
§2.5.1). The saturated waves then undergo a secondary instability which, close to
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Figure 7.1: Phenomenological sketch of the spatial evolution of film flows [15, 84]:
(a) at high forcing frequency ; (b) at low frequency. Courtesy of Ruyer-Quil [107].

the threshold and for low frequency, is two-dimensional and leads to large amplitude
fast hump preceded by small capillary ripples, or solitary waves (III). This family of
wave are the γ2 waves in Chang’s terminology. Two-dimensional waves are generally
unstable to transverse perturbations which leads to the last stage of secondary three-
dimensional instabilities (IV), generally accompanied by chaotic dynamics. As for
boundary layers, Liu et al. reported two different scenarios. Concerning the first one,
their investigations showed that the wave crests are usually deformed in phase, and
will thus be referred to as a synchronous instability. In the second less commonly
observed scenario, two successive crests are deformed with a π phase shift. This leads
to checkerboard (or herringbone) patterns and is characteristic of a subharmonic
instability. At high forcing frequency, the 3D instability mechanisms show up before
the secondary 2D instabilities such that the flow becomes chaotic before the forma-
tion of the 2D solitary waves. Therefore, region III disappears at high frequency,
whereas at low frequency, forcing can lead directly to the solitary wave formation and
saturated γ1 waves (region II) may not be observed.

To our knowledge, the transition of film flows towards 3D dynamics was first theoret-
ically investigated by Trifonov [140]. Trifonov computed the branches of 2D solutions
of the Kapitza-Shkadov model (IBL) that remain stationary in their frame of refer-
ence, and analyzed their stability versus transverse modulations. His study revealed
that the subharmonic instability was always the most dangerous, in contrast with
experimental results. Actually, Liu et al. ’s experiments [84] show that in the case of
the γ1 family, the transverse modulations of the troughs grew faster than the modula-
tions of the peaks and lead to a train of isolated depressions distributed synchronously.
Chang et al. [14] completed the study of Trifonov using the boundary-layer equation
(1.100). As for Trifonov’s results, their computations showed a quite different sce-
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nario from the experimental ones reported by Liu et al. , since their stability analysis
of the γ1 family predicted only the subharmonic instability. However, Trifonov and
Chang et al. considered only a vertical wall and quite low Reynolds numbers whereas
Liu et al. ’s experiments [84] were performed for an inclined wall where the hydro-
static pressure plays a significant role. As a consequence their results still need to be
theoretically explained.

7.2 Three-dimensional model

Let us turn to the three-dimensional formulations of the models, or more precisely to
the two-dimensional (x and z) averaged equations that describe the three-dimensional
film flow up to moderate Re. This means that we will again get rid of the y−coordinate
of the 3D boundary layer system of equations presented in §1.5, by using the weighted
residual technique developed in chapter 5 for the 2D version.

Considering the trivial Nusselt flat film solution (1.43), the gravity acceleration has
no component in the spanwise direction and therefore the spanwise velocity w is
trivially equal to zero. Therefore, w is necessarily triggered by the modulations of the
free surface and formally appears (at least) at order ε. This property can be used to
simplify the systems of equations which model the flow dynamics in three dimensions,
as done by Ruyer-Quil & Manneville for isothermal conditions [109]. However, this
assumption will not be used here and the systems of equations published in [109] will
then be generalized hereafter. Two reasons motivate this choice. First, experimentally
observed wave patterns have a significant curvature along the z-axis which is due
to the lateral no-slip boundary conditions [82, 84]. In such a configuration, the
local velocity field may not be oriented in the preferred streamwise direction and
the previous argument may fail. Secondly, comparisons of the spanwise wavelength
corresponding to the maximal growth-rate of the secondary 3D instabilities show a
better agreement with the results obtained by Liu et al. if w is assumed to be of
order unity rather than of order ε [112]. Therefore, and similarly to the projection
for the streamwise velocity (5.25a), four additional fields are needed to represent the
spanwise velocity, which reads as

w =
3

h
(p − r1 − r2 − r3)F0(ȳ) + 45

r1
h
F1(ȳ) + 210

r2
h
F2(ȳ) + 434

r3
h
F3(ȳ) (7.1)

where the spanwise flow rate p =
∫ h

0
wdy appears as well as three corrections r1, r2

and r3 associated to the same polynomials F1, F2 and F3 as the ones used for the
streamwise velocity (5.23). Formally, the problem here consists in thirteen equations
for the thirteen unknowns h, q, s1, s2, s3, p, r1, r2, r3, θ, b1, b2 and b3. This sys-
tem being complex, we will restrict ourselves to its isothermal version for which only
seven unknowns are involved, namely h, q, s1, s2, p, r1, r2; the corresponding system
is presented in appendix D.2 and is referred to as the full model in the following.
In contrast, extending the reduced model (6.10) to 3D (non-isothermal) flow is quite
simple. Indeed, the leading order transverse flow rate being zero, i.e. p(0) = 0, the
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corrections r1, r2 and r3 for p will not contribute to the second-order inertial correc-
tions if we adopt the same strategy as discussed in chapter 6. Therefore, the resulting
averaged spanwise momentum equation – as for the heat equation – can then be
straightforwardly derived from the spanwise boundary-layer equation (1.100b) apply-
ing the Galerkin method (i.e. assuming the velocity and the temperature profiles to
be parabolic and linear, respectively, as for F0(ȳ) and G0(ȳ)). The three-dimensional
extension of our reduced model can then finally be written in the following form:

∂th = −∂xq − ∂zp , (7.2a)

R ∂tq = R
[
9

7

q2

h2
∂xh−

17

7

q

h
∂xq

]
+

{
R
[
−8

7

q∂zp

h
− 9

7

p∂zq

h
+

9

7

qp∂zh

h2

]
+

5

6
h− 5

2

q

h2

+η

[
4
q (∂xh)

2

h2
− 9

2

∂xq∂xh

h
− 13

16

∂zp∂xh

h
− 43

16

∂xp∂zh

h
− 73

16

p∂xzh

h
− 6

q∂xxh

h

−∂zq∂zh

h
+

3

4

q (∂zh)
2

h2
+

13

4

p∂xh∂zh

h2
− 23

16

q∂zzh

h
+

9

2
∂xxq + ∂zzq +

7

2
∂xzp

]

−5

6
ζh ∂xh −M

(
5

4
∂xθ −

R
224

hq∂xxθ

)
+

5

6
h (∂xxxh+ ∂xzzh)

}

×
(

1 − R
70
q∂xh+ M 5

56

∂xθ

h

)−1

, (7.2b)
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PrR ∂tθ = 3
(1 − θ − Bhθ)

h2
+ PrR

[
7

40
(1 − θ)

(∂xq + ∂zp)

h
− 27

20

(q∂xθ + p∂zθ)

h

]

+η

[(
1 − θ − 3

2
Bhθ

)(
(∂xh)

2

h2
+

(∂zh)
2

h2

)
+
∂xh∂xθ

h
+
∂zh∂zθ

h

+(1 − θ)
(∂xxh+ ∂zzh)

h
+ ∂xxθ + ∂zzθ

]
, (7.2d)

where the nonlinear set of parameters has been used. Equation (7.2a) is the mass
conservation equation, equations (7.2b,7.2c) express the averaged momentum bal-
ances in both directions x and z, and equation (7.2d) is the energy balance. The 3D
approximated model is embedded into (7.2) and recovered by omitting the under-
lined terms corresponding to the second-order corrections of the streamwise parabolic
profile due to inertia and Marangoni flow.
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7.3 Three-dimensional simulations

In this section, we compare direct numerical simulations of (7.2) with experimental
results available in the literature. In addition, we will compare in isothermal condi-
tions (M = 0) our reduced model (7.2a,b,c) with the embedded approximated model
and the full model given in appendix D.2. Periodic boundary conditions in both
x and z−directions are enforced. This allows to represent the solution in Fourier
space and to use the good convergence properties of spectral methods, as was done
in §4.5. The numerical scheme is again pseudo-spectral, products and non-linearities
being evaluated in the real space and derivatives in Fourier space. The Fast Fourier
Transform algorithm is therefore used extensively. The time stepping is chosen to be
explicit in order to quickly adapt our scheme to the different models. In practice, a
fifth-order Runge-Kutta scheme was used [102], which allows to estimate the error by
difference with an embedded fourth-order Runge-Kutta scheme. The error on each
variable is limited to 10−5.
In order to measure the three-dimensionality of the flow, let us define, following Joo
et al. [52], a streamwise Ex and a spanwise Ez energy of deformations

Ex(t) ≡ 1

Nx Nz

Nz∑

j=0

(
Nx∑

p=1

ap(zj, t)
2

)1/2

(7.3a)

Ez(t) ≡ 1

Nz Nx

Nx∑

i=0

(
Nz∑

q=1

bq(xi, t)
2

)1/2

(7.3b)

where the spatial Fourier coefficients ap(z, t) and bq(x, t) are defined as

ap(z, t) =
Nx∑

i=0

h(xi, z, t) exp{ipkxxi} , (7.4a)

bq(x, t) =
Nz∑

j=0

h(x, zj, t) exp{iqkzzj} , (7.4b)

where kx = 2π/Lx and kz = 2π/Lz are the streamwise and spanwise fundamental
wavenumbers, Lx and Lz being the length and width of the computational domain;
xi = i Lx/Nx and zj = j Lz/Nz are the coordinates of the regularly spaced grid points
whose numbers are Nx and Nz in the corresponding direction.
Because of the spatial periodicity of the computational domain, the mass is conserved
and the averaged film thickness 〈h〉 is fixed. This corresponds to the closed flow
condition as defined in §2.4. As stated in that section, periodic stationary 2D waves
which result from a periodic forcing at the inlet rather correspond to an open flow
condition – i.e. a prescribed averaged flow rate –, the average 〈h〉 over one wavelength
being sensitively different than the inlet Nusselt thickness hN (see equation 2.33).
Because the Reynolds number varies as the cube of the average film thickness, fixing
〈h〉 = hN at the initial stage of the simulation may introduce important discrepancies.
Therefore, to enable an accurate comparison with the experimental data and wave
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patterns reported in experiments we adjust the initial condition such that to match
the averaged thickness 〈h〉0 of the 2D stationary waves – computed using Auto97 –
when the condition 〈q〉 = 1

3
is enforced. ∗.

We then formally use as initial condition simple harmonic disturbances plus a white
noise on the form

h(x, z, 0) = 〈h〉0 +A cos(a kx x) +B cos(b kz z) + C r̃(x, z), (7.5)

where r̃(x, z) is a random function defined on the interval [−1, 1], A,B,C are am-
plitudes and a, b represent the numbers of harmonic waves in each direction. In the
following sections, three different cases will be considered, along which specific initial
conditions:

§7.3.1 Isothermal simulations with periodic forcing: A = 0.1 unless specified otherwise,
B = 0 and C = 10−3. The computational domain is a square (Lx = Lz) whose
size is arbitrarily taken to be five times the length of the corresponding 2D
waves. The computation is started with a = 5. To save computational time,
whenever possible the 2D stationary waves are computed first (i.e. Nz = 1 and
C = 0) and then introduced in the 3D computational domain with the white
noise.

§7.3.2 Isothermal simulations with white noise: A = B = 0, C = 10−3 and Lx = Lz.

§7.3.3 Non-isothermal simulations with periodic forcing: A = B = 0.1, C = 0, a =
b = 1 and 〈h〉0 = 1

The parameters not given above are specified in the sections themselves.

7.3.1 Isothermal simulations with periodic forcing

Let us study the secondary 3D instability in isothermal conditions with a periodic
forcing in order to compare with experimental results obtained by Liu et al. [84]. The
reduced and approximated models in isothermal conditions are recovered by omitting
the heat equation (7.2d) and setting M = 0 in the momentum equations (7.2b,c).
On table 7.1 we have summarized the values of the parameters used in our numerical
simulations. The numbers of grid points in x and z−directions are chosen large
enough, Nx ×Nz = 128 × 64 in the computations in order to limit the aliasing error.
We first start by considering the flow conditions corresponding to the stability diagram
reported by Liu et al. [84] for an inclination angle β = 4◦ and Ka = 2340. For
the first case in table 7.1, parameters are selected in the region of the frequency–
Reynolds plane (f , Re) – see figure 6 in [84] – where herringbone patterns were

∗The artefact used here to establish the correspondence between closed and open flow is rather
artificial. However, due to the convective nature of the flow dynamics, the evolution in time and
in space are closely related. Thereby, the time needed for a wave to develop in a periodic domain
(closed flow) can be related (through the phase speed) to the distance needed for the same wave to
develop in space (open flow). In the same manner, a periodic forcing (time modulations) imposed
at the inlet of an open flow (say by mean of flow rate modulations) can be reproduced by space
modulations in a periodic domain as initial conditions.
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Case Re β (◦) Ka f(Hz) k c Q 〈h〉0
1 40.0 4.0 2340 13 1.565 0.824 -0.480 0.987
2 60.0 4.0 2340 13 1.494 0.689 -0.335 0.970
3 42.7 4.0 2340 7 0.953 0.703 -0.353 0.975
4 48.0 6.4 2002 10 0.980 0.628 -0.274 0.965

Table 7.1: Wavenumber, speed, flow rate in the frame of reference and averaged
thickness (k, c, Q and 〈h〉0) corresponding to the stationary travelling wave generated
by an inlet periodic forcing at frequency f . Cases 3 and 4 correspond respectively to
the case of figure 7 and figure 11 by Liu et al. [84].

observed experimentally, namely subharmonic instability. All simulations of the full,
reduced and approximated models do agree with the experimental data by showing the
presence of staggered crests and troughs which are similar in shape to the snapshots
displayed in [84]. On figure 7.2 the iso-thickness contours of the wave patterns are
shown at different times. Note that at large times, the film evolves towards a staggered
succession of quite smooth and large bumps, and thin and deep depressions.

(a) (b) (c)

Figure 7.2: Free surface deformations giving rise to a herringbone pattern, com-
puted for Case 1 with the reduced model in isothermal conditions at a) time=150, b)
time=175, c) time=195. The dark (bright) zones stand for depressions (elevations).
The iso-thickness contours are separated by 0.06. The domain is of size k/5 in both
directions with a grid of 128 × 64.

Increasing the Reynolds number, we move next to a region of the plane (f , Re) where
the synchronous secondary instability was reported by Liu et al. [84] (Case 2). The
time integration of the models gives a rather more complex picture of the 3D flow.
Indeed, the snapshots obtained using the full or the reduced models and shown in
figure 7.4 indicate a state intermediate between a synchronous and a subharmonic
scenario. However, it shares a lot of similarities with the experimental observations.
Crests are hardly deformed whereas troughs tend to form deep isolated depressions.
Contrary to the two other models, the simulation of the approximated model shows
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(a) (b) (c)

Figure 7.3: Free surface deformations computed for the Case 2 at Ez ≈ 0.05 with a)
the full model (time=t+125), b) the reduced model (time=t+125), c) the approxi-
mated model (time=t+155). The iso-thickness contours are separated by 0.08. The
domain is of size k/5 in both directions with a grid of 128 × 64. Note that for a) and
b), computations have also been performed with a grid of 128 × 128 and no signi-
ficative change has been observed. The large white zones represent the crests of the
waves.

clearly staggered troughs and more deformed crests indicating a subharmonic insta-
bility. Comparisons of the wavelength selected by the instability indicate also a good
agreement between the full and the reduced models whereas the approximated model
predicts longer spanwise modulations as can be observed on figure 7.3.

Recently, Ruyer-Quil et al. [112] focused on the three-dimensional stability analysis
of the γ1 stationary waves in their moving frame. They performed a classical Floquet
analysis (as the one presented in §2.7) of the wave stability against both streamwise
and spanwise modulations. They obtained a good prediction of the experimental
spanwise wavenumber kz for both the full and the reduced models. Furthermore,
they found the corresponding growth rate to remain rather constant with the detuning
parameter ϕ (or Floquet coefficient) for the full and the reduced models. This explains
why the corresponding snapshots presented on figure 7.3a,b are intermediate between
the herringbone (ϕ = 1

2
) and synchronous (ϕ = 0) patterns. Actually, the growth

rates for 0 < ϕ < 1
2

being very close, the instability is not really selective and the form
of the observed patterns are likely to be controlled by the nature of the noise. This
feature can explain for a large part the inability of the Floquet analysis to predict
the nature of the 3D patterns (herringbone or synchronous) accurately. Note however
that Ruyer-Quil et al. reported that the growth rate of the most amplified spanwise
perturbation predicted by the approximated model indicates a clear selection of the
subharmonic instability which is in line with the snapshot of figure 7.3c.

As admitted by Liu et al. [84] the 3D instability is likely to be convective and thus
dominated by the geometrical irregularities of the inlet distributor. These irregulari-
ties being time independent, they trigger in-phase modulations of the fronts evolving
downstream. Therefore, such an experimental noise may trigger more easily a syn-
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chronous instability than a subharmonic one. This statement is further backed up by
the fact that Liu et al. were compelled to apply controlled perturbation to enhance
the subharmonic instability.
Next, two sets of parameters corresponding explicitly to some experiments performed
by Liu et al. have been selected for comparison with the snapshots given in figures
7 and 11 of reference [84]. The iso-thickness contours obtained by integration in
time of our models are shown on figure 7.4 for the Case 3 in table 7.1. All of them
show a complex wave pattern which is rather staggered. Again, the Floquet analysis
performed by Ruyer-Quil et al. [112] shows that the instability is not very selective,
i.e. the growth rate does not change with the detuning parameter. Note that the
good agreement between the computations made with the three models strongly sup-
ports our hypothesis of a favoured occurrence of the synchronous instability due to
specificities of the noise introduced in experiments.

(a) (b) (c)

Figure 7.4: Free surface deformations computed for the Case 3 at Ez ≈ 0.022 with a)
the full model (time=585), b) the reduced model (time=575), c) the approximated
model (time=615). Iso-contours and domain size are defined in the legend of figure
7.2. The large white zones represent the crests of the waves.

More intriguing is the fourth case corresponding to a more pronounced inclination
angle (Case 4 in table 7.1 corresponding to β = 6.4◦). Our integrations in time show
that if the 3D initial noise is omitted, no stationary wave is selected, the system
evolving towards a time periodic state, the waves undergo a periodic amplitude mod-
ulation. The fundamental mode and its harmonics exchange energy continuously.
The energy of perturbation Ex oscillates also in time as shown on figure 7.5. This
behaviour was equally observed by Ramaswamy et al. [104] who described this regime
as quasi-periodic. These authors performed direct numerical simulations of the basic
equations and found the quasi-periodic regime to be quite widespread in the case
of a vertical plane if the Reynolds number becomes large. Using the vocabulary of
dynamical system theory, instead of evolving towards a limit cycle (stationary wave)
in the phase space, the flow tends to a torus (quasi-periodic regime).
For all computations done in Case 4, the 3D instability mechanism and the desta-
bilization of the stationary travelling wave leading to a modulated 2D wave pattern
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Figure 7.5: Energy Ex as function of time (a) and wave-profiles (b) of the 2D waves
computed using the full model (D.2).

(a) (b) (c)

Figure 7.6: Free surface deformations computed for the Case 4 at Ez ≈ 0.05 with a)
the approximated model (time=295), b) the reduced model (time=305), c) the full
model (time=345).
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were found to coexist. The evolution of the film is therefore controlled by the ini-
tial condition of the computation and in particular the amplitude A of the initial
sinusoidal wave.
On figure 7.6, are compared the wave patterns obtained using the full, reduced and
approximated models for the same initial condition namely a sinusoidal wave of am-
plitude A = 0.2 and a white noise with C = 10−3. Note that both the full and the
approximated models predict a staggered pattern whereas the reduced model does
predict a synchronous instability which corresponds to the experimental observations.

(a) (b) (c)

Figure 7.7: Free surface deformations computed for the Case 4 using the reduced
model at Ez ≈ 0.4: a) A = 0.1 (time=300), b) A = 0.2 (time=305) c) A = 0.3
(time=215).
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Figure 7.8: Energy of deformations for Case 4, in the streamwise (spanwise) direc-
tion Ex (Ez), computed with the reduced model. The dotted, solid and dashed line
correspond, respectively, to A = 0.1, 0.2 and 0.3.

To test the influence of the initial amplitude A on the final evolution of the film,
three computations were performed for A = 0.1, 0.2 and 0.3. The obtained wave
patterns are shown on figure 7.7. Significant qualitative differences can be noted be-
tween them. At low initial amplitude A, the final transverse modulation seems to
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have longer wavelengths than for larger values of A. Most significantly, it seems to
be subharmonic whereas the 3D pattern is clearly synchronous if A is large enough.
Such an observation can be understood by looking at the energy of the deformation as
function of time as given on figure 7.8. When A = 0.1, the system clearly approaches
the unstable stationary wave solution and remains close to it for a long time. There-
fore, the Floquet analysis still applies and the obtained staggered pattern is in line
with the predicted subharmonic instability. Such is not the case for larger value of A,
the modulation of the 2D pattern occurring much before the 3D instability appears.
The observed synchronous pattern is thus the complex result of two ingredients, the
growing 2D modulation and the 3D instability.

Figure 7.9: Comparison between an experimentally observed pattern [84] and the
computations obtained using the reduced model corresponding to Case 3.

Now, let us make some qualitative comparisons of the experimental and numerical
wave patterns for Case 3 and Case 4 as shown on figure 7.9 and 7.10. Due to the
choice of periodic boundary conditions, our computations cannot fit well experimental
results. In experiments the observed evolution of the film is convective and the waves
grow in space (downstream) whereas numerical wave patterns rather grow in time.
Nevertheless, our simulations share the same qualitative features as in experiments.
In particular, we predict the strong modulation of the troughs, whereas crests remain
nearly undeformed, leading to the formation of isolated depressions. The spanwise
wavelengths are similar and the iso-thickness contours do compare quite satisfactorily.
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Figure 7.10: Comparison between an experimentally observed pattern [84] and the
computations obtained using the reduced model corresponding to Case 4.

Model validation

Two statements straightforwardly follow from previous investigations:

(i) The approximated model is unable to reproduce the synchronous wave pattern
while the addition of second-order inertial corrections, yielding the reduced
model (see underlined terms in equation 7.2b), enables to reproduce the exper-
imental observations both qualitatively and quantitatively.

(ii) The full second-order model seems unable to reproduce the synchronous insta-
bility in some cases;

Therefore, the reduced model (7.2), being accurate and simple, is a good candidate
for a further study of the 3D wave patterns and in particular the horseshoe solitary
waves which seem to dominate the flow dynamics at larger Reynolds number or further
downstream the plate. This is the goal of the following section.

7.3.2 Isothermal simulations with natural noise

The three-dimensional character of perturbations is the peculiarity of any film flow at
large distances from the inlet, even when no periodic forcing is applied. Figure 7.11
shows experimental pictures of non-stationary solitary waves separated by a smooth
thin residual layer with approximately constant thickness hres. The area of the film
surface occupied by the residual layer decreases with an increase of the Reynolds
number.
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(a) (b) (c)

Figure 7.11: Wave patterns on a film falling down an inclined plane, β = 75◦. They
were obtained experimentally by Alekseenko et al. (figure 1.6. in [1]) for a 16% water
ethanol solution at 25◦C whose properties are ρ = 972kg/m3, ν = 1.55 × 10−6m2/s
and σ = 40.8 × 10−3N/m. The dimensionless numbers are Ka = 1106, Ct = 0.268
and (a) Re = 8: R = 4.7, C = 0.053, η = 0.038; (b) Re = 16: R = 11.0, C = 0.0612,
η = 0.052; (c) Re = 45: R = 38.8, C = 0.077, η = 0.083.
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Results of time-dependent simulations corresponding to the experimental parameters
of figure 7.11 are reported in figure 7.12. Here, since no periodic forcing is imposed,
we evaluate 〈h〉0 by calculating (using Auto97) the corresponding 2D stationary
solutions with the wavelength estimated from the experimental pictures 7.11; there
we get very roughly for Re = 8, 16 and 45, the values of 40, 30 and 25 mm, respectively.
The average thickness is then found to be 〈h〉0 ≈ 0.9 for the three cases. In the same
manner, the phase speeds of the 2D stationary solutions (resp. 0.20, 0.32 and 0.65
m/s) allow us to estimate roughly the distance L covered by the wave from t = 0,
yielding the time scales Llν = 4.57, 3.11 and 1.75 ×10−3s, respectively.
By comparing figures 7.11 and 7.12, remark that the grey level seems not to measure
the same quantities in both set of pictures. For simulations, the grey level quantifies
the film thickness (bright means thick and dark means thin) while for experiments,
it is difficult to figure out precisely what is the coding. However, the presence of
sharp bright zones suggests that the grey level quantifies the slopes of the free surface
deformations (bright for positive slopes and dark for negative slopes).
In the first row of figure 7.12, the waves are predominantly two-dimensional. They
are quasi-linear for Re = 8 – bright and dark zones occupy identical areas – and
become more nonlinear, with larger amplitude, by increasing Re. For Re = 8 and
16, some waves have started to connect to each other while for Re = 45, they rather
form isolated waves whose the center is above (upstream) the sides (see figure 7.12c).
Indeed, those waves belong to the slow γ1 family which represents waves with deep
and sharp troughs.
The second row of figure 7.12 corresponds to the decay of the two-dimensional waves.
The largest amplitude waves travel faster and tend to catch up the preceeding slower
ones, leaving behind them an increasing flat zone. Interestingly, for Re = 45, the
waves are still more isolated but with the center below (downstream) the sides (see
figure 7.12f). This indicate that the waves have bifurcated from the γ1 to the γ2

family whose waves travel faster, with crests that have higher amplitudes than the
troughs.
As time is running, the coalescence process yields solitary waves with preceding cap-
illary ripples and large flat zones in between. Figure 7.12g,j and 7.12h,k share a lot of
similarities with the experimental figures 7.11a and 7.11b, respectively. Alekseenko
et al. [1] have indicated that their pictures represent non-stationary situations, and
that the stabilized waves are defined by the wavelength of solitary waves, which takes
values from 10 to 50 cm. However, for Re = 8, this wavelength has been found to be
approximately constant up to t = 1500 in the simulations (not shown on the figure).
On the contrary, for larger Re, the stabilization of wavy regime could not be reached.
The simulations were stopped before due to prohibitive computing time and unfor-
tunately, the straight V-shape waves observed in experiments for Re = 45 could not
be recovered even though figure 7.12i announces their birth with the presence of the
expected horseshoe-like waves directed downstream. It can be also observed on 7.12i,
like on figure 7.11c, that the capillary ripples of two neighbouring waves cross each
others nearly without interaction.
The caption of figure 7.11 provides the value of η that measures the viscous dissipation.
The square root of this parameter represents the ratio between the film thickness and
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(a) t = 105 – L ≈ 13cm (b) t = 120 – L ≈ 13cm (c) t = 185 – L ≈ 16cm

(d) t = 280 – L ≈ 35cm (e) t = 200 – L ≈ 22cm (f) t = 310 – L ≈ 26cm

(g) t = 480 – L ≈ 59cm (h) t = 370 – L ≈ 40cm (i) t = 375 – L ≈ 32cm

(j) t = 890 – L ≈ 110cm (k) t = 845 – L ≈ 91cm

Figure 7.12: Numerical simulations computed with the 3D reduced model in isother-
mal conditions. The three columns correspond to the three experimental situations
reported in figure 7.11. The scaling has been respected, i.e. the large boxes are 100×
100mm2 and the small one, 50× 50mm2. The dimensionless time is indicated together
with the estimated distance L from the inlet. The mesh points are 256×256 except
(c,f) that are 512×256.
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the characteristic length of the capillary ripples preceding main solitary waves (see
§1.6). For Re = 45,

√
η ≈ 0.3 indicates that even though separation of scale inherent

to the boundary layer approximation is not fully verified here, a good qualitative
agreement with experiments can still be observed with our reduced model quite far
in the nonlinear regime.

7.3.3 Non-isothermal simulations with periodic forcing

In this section are performed simulations of a falling film with an uniform tempera-
ture at the wall yielding thermocapillary effects. Joo et al. [54] studied this problem
for small Reynolds numbers, in a regime where the Benney equation is valid. They
demonstrated a mechanism of rivulet formation based solely on instability phenom-
ena. Ramaswamy et al. [105] confirmed the observations by Joo et al. obtained with
the Benney equation (2.10), by performing full-scale simulations with the Navier-
Stokes/Fourier equations. Similarly, we want to compare here the results obtained
by Ramaswamy et al. with our 3D reduced model (7.2). Figure 7.13 shows results of
simulations corresponding to the case of figure 9 in [105]. The simulation is started
with a simple harmonic disturbance of the form

h(x, z, 0) = 1 + 0.1 cos(kx x) + 0.1 cos(kz z), (7.6)

as shown in figure 7.13a. The wavenumbers have been chosen as kx = kz = 0.335
to be below those for the maximal linear growth rate in each direction, which are
kxmax = 0.56 and kzmax = 0.53. Actually, these appropriate values allow for inter-
esting secondary flow development. The perturbation (7.6) creates a trough in the
centre of the domain. Then, thermocapillarity sets in, displacing the fluid from the
hotter troughs towards the surrounding colder crests. However, the growth rate of
the hydrodynamic mode is dominant at initial stage and surface waves develop (figure
7.13b). The local phase speed being proportional to the square of the local film thick-
ness according to the leading-order evolution equation (2.6), the crests travel faster
than the troughs (c). In the absence of the mean flow in the spanwise direction, the
liquid is displaced laterally due to thermocapillarity. Therefore, as time progresses,
the thinning of the liquid layer persists and forms a valley surrounded by rivulets
aligned with the flow (d). As already mentioned in §4.5, this process is similar to the
evolution of a heated thin film on a horizontal substrate [76, 95]. Likewise, it exhibits
the formation of a secondary rivulet between the main one (e,f), the mechanism of
which is explained in §4.5. As found by Boos & Thess [11] for horizontal layers, a true
‘cascade of structures’ takes place in thinner zones (g), precursor to the film rupture.
Ramaswamy et al. [105] reported that the Benney equation compares well with their
full-scale computations up to t = 120† and then diverges up to t = 146 when blow-up
occurs. Beyond this time, the Benney equation fails to follow the dynamics of the
flow. The last stage before rupture obtained by Ramaswamy et al. with their full-
scale computations is at t = 153, which is in excellent agreement with figure 7.13f.

†Due to a different scaling used by Ramaswamy et al. [105], the time differs in that reference by
a factor L/h2

N = 6.7 according to §1.6 (with hN = 1).
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Figure 7.13: Inception and development of rivulet aligned with the flow computed
with the reduced model (7.2) arising for Re = 1/3, Ka = 300, Ma = 10, Bi = 1,
Pr = 7 and Ct = 0. The domain is square with size 2π/kx where kx = kz = 0.335.
The flow direction is from the right top towards the left bottom.
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However, our simulation runs beyond this time and exhibits finer structures in the
film before its rupture (see figure 7.13g). The reason why the full-scale computations
with Navier-Stokes/Fourier equations did not provide such further evolution of the
film is not obvious but is likely related to the choice of the number of mesh points
used in [105]. The authors would have most probably been able to compute larger
time with refined grid resolution. However, this would have been at the expense of
computing time, which demonstrate the restriction of full-scale simulations. Thereby,
we would like to emphasize here the great advantage of working with a model of
reduced dimensionality. Actually, the mesh points are 32×32 and the time necessary
for computing the case of figure 7.13, with an accuracy of 10−4, is about one hour on
a standard desktop computer.
Figure 7.13h shows the energy of deformations in both directions versus time. The
energy along the streamwise direction Nx saturates which indicates the formation of
longitudinal rivulets aligned with the mean flow.
Now, let increase the Reynolds number up to Re = 2, out of the range of validity
of the Benney equation – see figure 2.8 for (R,MB) = (1.5, 1.33) – and keep the
other parameters identical. Now, the wavenumbers for the maximal linear growth
rate are kxmax ≈ 0.62 and kzmax ≈ 0.34 (approximated values calculated in the long-
wave limit), which yields kx ∼ kxmax/2 while kz ∼ kzmax. Figure 7.14 shows that the
hydrodynamic mode quickly generates high amplitude waves (a,b) that evolves to a
solitary-like wave with preceding capillary ripples (c). However, the thermocapillary
mode leads the film to rupture before the surface wave saturates as depicted by the
evolution of Ex and Ez (d). An interesting interaction between the two modes can
be pointed out here: as the thermocapillary flow feeds the core of the rivulet, the
mean film thickness at the crest increases, and so the local flow rate. Hence, the
wave solution does not saturate and rather follows the change of the ‘local Reynolds
number’, by increasing its amplitude and its phase speed (look at the squeezing of the
oscillations in time on figure 7.14e). This process vanishes at t > 620 when the film
approaches the wall enough for the viscous stress to slow down the thermocapillary
flow.
Figure 7.14 demonstrates that the hydrodynamic waves and the longitudinal rivulets
can coexist and interact along a distance that is about 50 wavelengths here. Further-
more, this distance increases with the Reynolds number. It seems therefore possible
with our model to recover experimental observations like the ones given on figure 7
of the Introduction. However, a quantitative comparison should be addressed in a
future investigation.
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Figure 7.14: Same as for figure 7.13 with Re = 2.



Chapter 8

Further topics

In this chapter, we show how our reduced model can be obtained in the case of the
heat flux condition using the weighted residual approach together with the Galerkin
method (§8.1). We also consider the small Biot number limit and show how it modifies
the reduced model (§8.2). This limit will be justified by using a simple argument
corresponding to realistic situations in experiments.

8.1 Heat flux condition

Up to now, the weighted residual approach has been applied for the problem with
a constant temperature imposed at the wall. Let us here generalized in the case
when the wall is not a perfect conductor. In this case, a constant heat flux is rather
imposed at the wall and an additional parameter appears, namely the Biot number
Biw that measures the conducting property of the wall. If Biw � 1, the wall is a good
conductor and if Biw � 1, the wall is a good insulator. This was discussed in details
in §1.3.2 and the corresponding boundary condition is given by (1.23b). Here we
will first keep constant the imposed heat flux such that Fw(x) = 0 and the boundary
condition at the wall reads explicitely

∂yT = −1 + BiwT. (8.1)

The following procedure with the Galerkin method being similar to the one presented
in §5.2, we present hereafter only the modifications concerning the heat flux condition.
In the weighted residual approach, since we want the film surface temperature θ to be
the relevant variable of our averaged model (see discussion based on equation 5.14),
let us rewrite the linear zeroth-order temperature profile across the film (2.4f) (with
Fw = 0) as function of the surface temperature θ:

T (0) = θ + F(h− y) where F =
1 −Biwθ

1 + Biwh
. (8.2)

The effective heat flux F(x, t) at the wall logically decreases with the intensity Biw of
the heat losses from the liquid to the wall and with the increase of the film surface

191
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temperature θ. To satisfy the boundary condition (8.1), we write the temperature
field as

T (x, y, t) = −F(x, t) y +
imax∑

i=0

bi(x, t)gi

(
y

h(x, t)

)
, (8.3)

where g0 = 1 corresponds to the base state and the set of test functions is completed
with gi(ȳ) = ȳi+1, i ≤ 1 to obtain the polynomial basis for the projection.

8.1.1 Formulation at first-order

First, it is important to mention that the heat and mechanical equilibriums of the
flat film (at zeroth-order) are two decoupled problems, the coupling appearing only at
first-order through interfacial deformations. Moreover, playing judiciously with the
zeroth-order solution of the surface temperature (2.5b)

θ(0) =
1

Bi + Biw(1 + Bih)
(8.4)

yields the same formulation of the second-order terms Marq as obtained in (6.4) for
the temperature condition∗. Therefore, the momentum equation 6.10b of the reduced
model will remain unchanged with the heat flux condition and we will have to focus
only on the heat equation in what follows.
Turning to the weighted residuals for the heat equation (5.7b) and with the same
arguments as in §5.2, the unknowns bi, i ≥ 1 may only play a role through the
integral

∫ h

0
wj∂yyT . Two integrations by parts give, making use of the boundary

condition at the surface (5.6f) and the heat flux condition at the wall (8.1),

h∫

0

wj

(y
h

)
∂yyT dy = −Biwj(1)T

∣∣
h

+ wj(0)(1 − BiwT
∣∣
0
)

+
1

h

[
wj

′(0)T
∣∣∣
0
− wj

′(1)T
∣∣∣
h

]
+

1

h2

h∫

0

wj
′′
(y
h

)
T dy . (8.5)

Here, to put the emphasis on θ ≡ T
∣∣∣
h
, we choose for the first weight function

w′
imax

(0) = 0, wimax
′′ = 0 so that wimax ∝ 1 = g0. It is therefore appropriate to

replace the physically meaningless unknown b0 by θ through the substitution

b0 = Fh+ θ −
imax∑

i=1

bi . (8.6)

Evaluating now the first residual (5.7b) corresponding to wimax = g0 = 1, we then get

Pr

[
F∂th+

1

2
h∂tF + ∂tθ +

3

8

(
Fq∂xh

h
+ F∂xq + q∂xF

)
+
q∂xθ

h

]
− (F −Biθ)

h
= 0.

(8.7)

∗Remember that those terms are induced in the momentum equation by the Marangoni flow
produced by the gradient of temperature at the film surface.
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Now, substituting F = (1 − Biwθ)/(1 + Biwh) and using the equivalence ∂th = −∂xq
lead to the dynamical equation for θ:

Pr∂tθ =

{
(1 − Biwθ)

h(1 + Biwh)
− Biθ

h
+ Pr

[
(5 + Biwh)(1 − Biwθ)

8(1 + Biwh)2
∂xq −

3

8

(1 − Biwθ)

(1 + Biwh)2

q

h
∂xh

−
(

1 − 3

8

Biwh

(1 + Biwh)

)
q

h
∂xθ

]}
×
(

1 − Biwh

2 + 2Biwh

)−1

. (8.8)

Equation (8.8), where the unknowns bi do not appear, is consistent at O(ε) and can
be substituted to (5.17c) in the model (8.8) to get our model in terms of three coupled
evolution equations for h, q and θ that accounts for the heat flux condition at the
wall.
It is worth noting that (8.7) is formulated in such a way that it may be used in the case
of a non-uniform heat flux distribution at the wall (this is by using (1.23b) instead of
(8.1) as boundary condition). Indeed, the introduction of the non-uniform component
of the heat flux distribution Fw(x) is made through F such that the corresponding
dynamical equation is obtained by rather substituting F = (1+Fw)(1−Biwθ)/(1+Biwh)
in (8.7).

8.1.2 Formulation at second-order

As in §5.3, we want to extend here our formulation to take into account the second-
order thermal diffusion terms. For this purpose, we need the explicit expressions
for the amplitudes bi of the projection at first-order. This is by cancelling the five
coefficients of the fourth-order polynomial obtained by projecting the temperature
field (8.3) and the velocity field (5.5a) into the energy equation (5.6c). Since the
amplitudes ai are known from (5.21a-5.21e) as well as b0 from (8.6), and that the
bi’s, i ≥ 1 are at least of O(ε), the five coefficients of the polynomial provide the
expression of the bi’s as function of h, θ, q and their derivatives:

b1 =
1

2
Prh2 (h∂tF + ∂tθ − F∂xq) (8.9a)

b2 = −1

6
Prh

(
h2∂tF − 3q [F∂xh+ h∂xF + ∂xθ]

)
(8.9b)

b3 = −1

8
Prh (−hF∂xq + q [3F∂xh + 3h∂xF + ∂xθ]) (8.9c)

b4 =
1

40
Prh (−hF∂xq + 3q [F∂xh+ h∂xF]) (8.9d)

b5 = 0. (8.9e)

Contrarily to the case of a constant temperature at the wall, here the amplitude b1
is non zero. The temperature T is therefore, at first-order, a combination of five
independent fields, namely θ, b1, b2, b3 and b4. As a consequence, a consistent formu-
lation of a model for the dynamics of the flow at second-order would require fourteen
unknowns when considering the heat flux condition at the wall – instead of thirteen
with the temperature condition –. However, rather than solving fourteen equations,
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let us used the same approach as for the temperature condition, and construct a set
of orthogonal test functions for the temperature field from linear combinations of g0,
g1, g2, g3 and g4 such that G0 ≡ g0:

G0 = 1 , (8.10a)

G1 = 1 − 3ȳ2 , (8.10b)

G2 = 1 − 15ȳ2 + 16ȳ3 , (8.10c)

G3 = 1 − 45ȳ2 + 112ȳ3 − 70ȳ4 , (8.10d)

G4 = 1 − 105ȳ2 + 448ȳ3 − 630ȳ4 + 288ȳ5 . (8.10e)

Therefore, the temperature field can be accurately described at O(ε) from

T = −Fy + (Fh+ θ − t1 − t2 − t3 − t4)G0

(y
h

)
+

1

2

4∑

i=1

(−1)i tiGi

(y
h

)
. (8.11)

The set of test functions Gi must be completed at second order with ten polynomials
of degree up to fourteen. Nevertheless, sinceG′′

i , 0 ≤ i ≤ 3 are not linear combinations
of Gi, 0 ≤ i ≤ 3, the five first residuals do not form a closed set of equations for θ, t1,
t2, t3 and t4. Yet, a basis for the set of polynomials of degree up to five satisfying the
heat flux condition at the wall can be obtained by introducing only one polynomial
orthogonal to the first four Gi. This polynomial G5 is given explicitly by

G5(ȳ) = 1 − 70

3
ȳ + 140ȳ2 − 336ȳ3 + 350ȳ4 − 132ȳ5 . (8.12)

The temperature field can now be written at second-order as

T = −Fy + (Fh+ θ − t1 − t2 − t3 − t4)G0

(y
h

)
− 1

2
t1G1

(y
h

)
+

1

2
t2G2

(y
h

)

−1

2
t3G3

(y
h

)
+

1

2

(
t4 −

8∑

i=6

ti

)
G4(ȳ) − 3t5G5

(y
h

)
+

8∑

i=6

ti
Gi(y/h)

Gi(1)
. (8.13)

The choice of this formulation ensures that the evaluation of
∫ h

0
G′′

j (ȳ)T dy, 0 ≤ j ≤ 5
does not require the definitions of Gi, j ≥ 6. By applying next the Galerkin method
to the heat equation, the six first residuals RT (Gi), 0 ≤ i ≤ 5 constitute a closed set.
Since the amplitude t5 is of O(ε2), its space and time derivatives can be neglected
at this order, so that an explicit formulation as function of h, θ, t1, t2, t3 and t4 can
be obtained, thus expressing the slaving of the former to the latter. Cumbersome
algebraic manipulation may allow us to get a set of five evolution equations for θ, t1,
t2, t3, t4 that coupled with the five other evolution equations (5.4, 5.27) will provide
our full second-order model, for ten unknowns, in the case of a heat flux condition
at the wall. However, we will make a short-cut here based on considerations already
developed in the case of the temperature condition (see chapter 6). Actually, our pur-
pose is again to get a three-unknown ‘reduced’ model for h, q and θ which remains
asymptotically correct up to O(ε2) with the long-wave expansion. Yet, the tempera-
ture being coupled through its gradient in the momentum equation, the second-order
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terms in the heat equation do not participate to the second-order gradient expansion.
Furthermore, we already stated that it seems not possible to take into account the
second-order corrections appearing in the averaged heat equation – which are induced
by the deviations of the temperature and velocity profiles from the flat-film Nusselt
solution – if the temperature field is assumed to be slaved to the free surface tem-
perature θ only. Therefore, we will restrict ourself to the second-order averaged heat
equation obtained from the first residual RT (G0) with G0 = 1, as for the first-order.
We get

F − Biθ

h
− Pr

[
1

2
h∂tF + ∂tθ +

3

8
q

(
∂xF + F∂xh

h

)
− 5

8
F∂xq +

q∂xθ

h

]

+

[
2∂xF∂xh+

(
F − 1

2
Biθ

)
(∂xh)

2

h
+
∂xh∂xθ

h
+

1

2
h∂xxF + F∂xxh+ ∂xxθ

]
= 0 (8.14)

whose the second line are the second-order terms accounting for heat diffusion. Re-
member that 8.14 should be coupled with the continuity and the momentum equations
(6.10a,6.10b) and that this system of three equations constitutes the reduced model
– in the sense that it remains asymptotically correct – in the case of a heat flux con-
dition. Furthermore, as for its first-order version (8.7), (8.14) is formulated to apply
for a non-uniform heating whose the distribution Fw may be embedded into F.

8.2 Small Biot number limit

8.2.1 Analogy with forced convection

Up to know, we used an arbitrary value for the Biot number based on the assumption
that the heat transfer coefficient at the liquid-gas interface is small. Let us now justify
this assumption by considering the classical problem of forced convection along a
heated plate (see e.g. Holman [49]). The boundary layer theory yields an expression
for the Nusselt number

NuL =
αL

k
= 0.664Re

1/2
L Pr1/3, (8.15)

which quantifies the heat transfer from the plate to the fluid layer; L is the length
of the heated plate and ReL = U∞L/ν where U∞ is the relative velocity between the
plate and the fluid. Considering the case of a local heating studied in chapter 4, we
shall make the following analogy: let the air be the fluid and the liquid film (assumed
to be flat for simplicity) be the ‘plate’ in our forced convection problem; this ‘plate’
moving at the film surface velocity. The characteristic temperature difference between
the film surface and the air far from the interface is about 10K. For Re = 1.5, the
film surface velocity is U∞ = 4 cm/s. Setting merely L = 6.7mm as the length of the
heater (even though the interface temperature remains constant along a much larger
distance than L), we are able to estimate the heat transfer coefficient at the liquid-
gas interface, provided that the ambient air is at 22◦C and that the air properties
are given at ‘the average boundary layer temperature’ (defined as the arithmetic
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mean between the ‘plate’ and the ambient air). Therefore, νair = 15.69 × 10−6 m2/s,
kair = 0.02624W/mK and Pr = 0.708 at the air temperature of 300K. The heat
transfer coefficient, using (8.15), reads therefore

α = 3.92

(
U∞

L

)1/2

≈ 10W/m2K, (8.16)

If the Reynolds number is increased up to Re = 10, U∞ = 14cm/c and α ≈
20W/m2K. As expected, the basic value of the heat transfer coefficient at the
liquid-gas interface is very small. Nevertheless, our approximation underestimates
the effective heat transfer at the liquid-gas interface that is generally improved by
wave motion and residual evaporation. These effects may increase by one or several
order of magnitude the heat transfer coefficient. For this reason, we chose arbitrarily
α = 100W/m2K in table C.1 and values of similar order of magnitude for α all along
this work.

8.2.2 Temperature condition (TC)

We shall consider now the limit Bi � 1 in the case of the temperature condition
(1.23a). Then, the basic state temperature gradient can be assumed to be independent
of the film thickness h, bs ≈ Bi, as discussed in §1.3.1. The basic state temperature
gradient is then uniquely defined by the heat transfer α and the diffusivity κ and not
by the flow rate. Many studies have been devoted to the Marangoni instability using
explicitly the temperature gradient bs to scale the temperature field [133, 25, 46].
Following this approach but avoiding the reference to the Nusselt film thickness, let
us define a reference temperature Tsν corresponding to the surface temperature of
a flat film of thickness equal to the length-scale lν (i.e. hN = 1). A dimensionless
temperature T ? is thus introduced using the difference Tw − Tsν such that T ? = 1 at
the wall and T ? = 0 at the surface of the film of thickness lν. T and T ? are then
related by

T =
1 + BiT ?

1 + Bi
, (8.17)

so that the temperature gradient of the base state can be written

b?s ≡
Θ?
∣∣
y=0

− Θ?
∣∣
y=hN

hN
=

1 + Bi

1 + BihN
. (8.18)

The heat transfer boundary condition (1.14), using (8.17), reads now in dimensionless
form,

−∇T ? · n = BiT ? + 1 . (8.19)

Takashima [133] considered the linear stability analysis of a thin film in the limit of a
vanishing Biot number (Bi = 0) and a constant Marangoni number M? (see (1.46)).
Obviously, taking this limit is not consistent with the problem at hand since M?,
which depends on Bi, also vanishes. Nevertheless, Ma can be quite large (in the case
of a large temperature difference between the wall and ambient) so that M? can be of
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order one even if Bi is small (Bi � 1). Thus, Takashima’s limit corresponds in fact
to a constant temperature gradient α(Tw − T∞)/λ or b?s = 1 and can be taken simply
by neglecting the term BiT ? in (8.19) as

−∇T ? · n = 1 . (8.20)

The number of parameters is consequently reduced by one, the Marangoni and Biot
numbers being combined to the product BiMa.
In this limit, the change of variables from the dimensionless temperature T to T ?

given by (8.17) is translated to the corresponding definition of the temperature at the
free surface θ = (1 + Biθ?)/(1 + Bi). The approximation of the heat transfer at the
surface leading from (8.19) to (8.20) can be applied in our modelling by expanding
θ ≈ 1 + Bi(θ? − 1). Then the modified system of equations is obtained simply by
substituting θ? for θ in (6.10) and keeping the leading order terms in Bi to get

∂th = −∂xq , (8.21a)

∂tq =
9

7

q2

h2
∂xh−

17

7

q

h
∂xq

+

{
5

6
h− 5

2

q

h2
+ 4

q

h2
(∂xh)

2 − 9

2h
∂xq∂xh− 6

q

h
∂xxh+

9

2
∂xxq .

−5

6
Bh∂xh +

5

6
Kah∂xxxh− MaBi

(
5

4
∂xθ

? − 1

224
hq∂xxθ

?

)}

×
(

1 − 1

70
q∂xh+ MaBi

5

56h
∂xθ

?

)−1

, (8.21b)

Pr∂tθ
? = 3

(1 − θ? − h)

h2
+ Pr

[
7

40

(1 − θ?)

h
∂xq −

27

20

q

h
∂xθ

?

]

+(1 − θ?)

(
∂xh

h

)2

+
∂xh∂xθ

?

h
+ (1 − θ?)

∂x2h

h
+ ∂xxθ

? . (8.21c)

The Marangoni and Biot numbers appearing through their product only, one param-
eter disappears and the parametric study of the waves is simplified.

8.2.3 Heat fluc condition (HFC)

Considering the small Biot number limit (Bi � 1) in the case of the heat flux condition
1.23b, the base state temperature gradient (see §1.3.2) can again be assumed to be
independent of the film thickness, bs ≈ Bi/Biw. However, M? as given by (1.49) and
bs depend here on Biw, the value of which we should try to estimate. Taking an ideal
situation like the one sketched on figure 8.1, the heat loss at the wall reads

qloss =
λw

hw
∆Tw

where hw is the thickness of the wall along which applies the temperature difference
∆Tw = Tw − T∞ and λw is the heat conductivity of the wall. Identifying the heat
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transfer coefficient at the wall as αw = λw/hw, the wall Biot number becomes

Biw =
λw

λ

h̄N

hw
. (8.22)

An experimental apparatus where the conductivity ratio λw/λ is of O(1) and the
thickness ratio h̄N/hw is of O(10−2) is realistic such that Biw = O(10−2) could be of
the same order of magnitude than Bi. For simplicity, let us therefore consider the
approximation Biw ≈ Bi. Then, the temperature gradient across the layer reads bs ' 1

2

such that the problem becomes independent of the Biot numbers, with M? = Ma/2.

hNhw

T∞T∞ Tw Ts

qw

qloss g

Figure 8.1: Sketch of the heat fluxes at the wall.

Now, we can follow the same approach as for the TC case, what consists in defining
a reference temperature difference ∆Ts across a film of thickness lν (i.e. hN = 1), and
introduce again a dimensionless temperature based on it such that T ? = 1 at the wall
and T ? = 0 at the surface. T and T ? are here related by

T =
1 + BiT ?

Bi + Biw(1 + Bi)
, (8.23)

so that the temperature gradient of the base state can be written

b?s =
Bi + Biw(1 + Bi)

Bi + Biw(1 + BihN)
. (8.24)

Notice that while T tends to infinity when both Biot numbers tend to zero, T ? does
not. It represents therefore an advantage for the numerical point of view.
The heat transfer boundary condition (1.14), using (8.23), is identical to (8.19) and
the small Biot limit Bi � 1 leads also to the same simplification as for the TC case,
i.e. that if M? remains of O(1), the base state temperature gradient b?s = 1 will
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remain independent on the film thickness perturbations. Then, the reduced model is
modified by substituting θ? for θ in (8.14) and keeping the leading order terms in Bi
to get

F? − 1

h
− Pr

[
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2
h∂tF? + ∂tθ
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8
q

(
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2
h∂xxF? + F?∂xxh+ ∂xxθ

?

]
= 0, (8.25)

with F? = (1 − Biwθ
?)/(1 + Biwh). The continuity and momentum equations (8.21a,

8.21b) remain unchanged.

In conclusion, we have shown in this chapter appropriate valuable modifications to our
reduced model, necessary for more realistic comparisons with common experimental
situations. We then believe that the resulting new systems will be of special interest
for future investigations and comparisons with experimental studies.





Conclusions and perspectives

The main objective of this work was to obtain the most appropriate models to describe
the stability and the dynamics of a thin film flowing along a heated inclined plate.
We have considered two heat boundary conditions at the plate, namely a temperature
and a heat flux condition referred to as TC and HFC, respectively. The former is a
particular case of the latter for a perfectly conducting wall, i.e. Biw → ∞.

In chapter 1, we formulated the basic equations and calculated the base state solu-
tion of the problem. For both TC and HFC with a perfectly conducting (Bi → ∞) or
insulating (Bi → 0) interface, the film surface temperature remains homogeneous and
no Marangoni effect takes place. The same situation occurs for the HFC with an insu-
lating plate (Biw = 0). On the contrary, for a finite value of Bi (and Biw for HFC), the
long-wave thermocapillary instability can take place at the free surface. Under these
conditions, we performed a linear stability analysis of the basic equations and anal-
ysed separately purely transverse (spanwise) and longitudinal (streamwise) normal
mode disturbances. For the former, analytical condition for the critical Marangoni
number can be obtained while for the latter, similar condition was obtained through
a long-wave approximation. While the thermocapillary S-mode is present in both
directions, the hydrodynamic H-mode occurs only for longitudinal disturbances.
We also presented three sets of dimensionless parameters depending on the problem
considered. They are the natural set, the base state set and the nonlinear set of
parameters. The first one is the most appropriate for comparison with experiments
since it depends only on fluid properties and on control parameters (temperature
difference across the layer and flow rate), the second one compares forces that are
relevant at the instability onset of the base state solution while the third one compares
forces relevant in the case of nonlinear waves such as large amplitude solitary waves
with fore-running capillary ripples. The nonlinear set of parameters is numerically
optimal for time-dependent simulations since all terms of the evolution equations are
of order unity, including the surface tension terms.
Finally, we presented a hierarchy of models. Generally, the dynamics of a wavy lami-
nar flow is well described by the boundary layer equations which basically neglect the
inertia terms in the cross-stream momentum equation. However, these equations, as
for the Navier-Stokes/Fourier equations, are fully three-dimensional. Hopefully, the
dimensionality of these equations can be reduced by taking into account the coher-
ence of the flow ensured by viscosity. Then two class of models can be considered
depending on the flow regime: the long-wave equation (or Benney equation) for low
Reynolds numbers and the weighted integral boundary layer equations for moderate
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Reynolds numbers. Interestingly, as identified by Ooshida [93] considering solitary-
wave solutions, these two classes correspond to two different driving forces in the flow.
First, we have the drag-gravity regime corresponding to the balance of the gravita-
tional acceleration with the viscous drag, with inertia playing only a ‘perturbative’
role. This regime is observable for low amplitude waves. Secondly, we have the drag-
inertia regime appearing at larger Reynolds numbers where inertia plays a dominant
role. This regime is observable for large amplitude waves of high speed.

In the first part of this work, we restricted ourselves to the drag-gravity regime where
a single evolution equation (namely the Benney equation) generally provides satis-
factory results. However, we paid a special attention to the validity domain of the
Benney equation (BE) since the latter is known to exhibit non-physical finite-time
blow-up.

In chapter 2, we therefore focused on the validity of stationary travelling wave
solutions of the BE in terms of accuracy and boundedness. The accuracy was checked
by comparison with a reference model developed in chapter 5 and valid at larger
Reynolds numbers (i.e. in some region of the drag-inertia regime). The solutions that
tend to blow up first, i.e. at the smallest Reynolds number, were found to be the
one-humped solitary waves. We provided quantitative criteria for the boundedness of
such solutions.

We paid a particular attention to the condition imposed for the flow that can be
closed or open. While the former is commonly used in the literature, only the lat-
ter coincides with realistic experimental conditions. For the open flow condition
the validity domain of the Benney equation is larger than for the closed flow con-
dition. Furthermore, in the isothermal case, for the open flow condition the Hopf
bifurcation (yielding waves) is always supercritical in a very small region close to the
neutral curve. This is not the case using the closed flow condition. There the Hopf
bifurcation is always subcritical above the Reynolds number at which none of the lin-
early unstable modes is bounded. The subcritical bifurcation of the Benney equation
has also been investigated in the region where the Benney equation can still yield
bounded solutions. In the isothermal case, subcritical bifurcations appear only with
the closed flow condition. We showed that they are physically meaningless. Including
the Marangoni effect, the situation is more tricky because for horizontal layers the
Marangoni instability is known to be subcritical indeed. Therefore, the subcritical
behaviour obtained with the Benney equation for inclined layers might be physical.
However, for vertically falling films such behaviour has never been observed with the
reference model, whereas the Benney equation even gives a threshold MB ≈ 1 above
which all the bounded solution branches emerge by subcritical bifurcation and are
therefore non-physical.

Finally, the stability of stationary solutions has been addressed for solutions that are
conditionally bounded depending on the wavenumber. They were all found to be
unstable to disturbances of larger spatial period. This gives the possibility to the
sub-harmonics to develop and in consequence, to yield finite-time blow-up. This was
confirmed by numerical simulations that show blow-up promoted by wave coalescence.
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In chapter 3 we considered the case of a non-homogeneously heated plate in the
case of a sinusoidal temperature distribution imposed at the wall (the latter being
vertical). We still used the Benney equation, which in this case contains an ad-
ditional thermocapillary term accounting for the imposed non-uniform heating and
inducing steady-state deformations of the film surface. Thereby, in addition to the
characteristic temperature difference across the layer, a second one along the wall had
to be considered, which quantifies the amplitude of the imposed temperature non-
uniformity. The most interesting picture occurs when both characteristic temperature
differences are of the same order of magnitude.
Numerical solutions of the evolution equation showed that the travelling wave ob-
tained with an averaged uniform heating is modulated by an envelope given by the
steady-state deformation resulting from the non-uniform heating. At small Marangoni
number, the solution is merely the superposition between the travelling wave calcu-
lated as a stationary solution in a moving reference frame for a uniform heating, and
the steady-state deformation calculated as a stationary solution in a laboratory fixed
reference frame in the case of a non-uniform heating. At larger Marangoni number,
the presence of the non-uniform heating affects nonlinearly the travelling waves and
at some threshold, it may even suppress the wavy motion at the interface.
We also assessed the enhancement of the heat transfer due to the coexistence of
sustained deformations and travelling waves. The latter have no significant effect
on the heat transfer coefficient, while the former can increase it sensitively. We did
not investigate the stability of the stationary solutions with regards to streamwise
subharmonic disturbances. Such analysis should be done in the future to check if our
conclusions still apply in the realistic situation of an open flow. In the same vein,
the stability of the steady-state deformations with respect to spanwise deformations
may reveal novel instabilities as it was studied in chapter 4 for the specific case of a
step-function temperature profile imposed at the wall in the streamwise direction.

The intent of chapter 4 has been to develop an understanding of the mechanisms by
which a falling film on a locally heated plate looses stability and yield steady-state
rivulet structures. Experiments were performed at small Reynolds numbers such that
the Benney equation could serve as a model and provide satisfactory comparisons.
Its stationary solutions (base state) and their stability were calculated numerically
for an array of heaters, the period of which is chosen large enough to recover the
single heater case. The steady-state deformation in this case forms a horizontal
bump that is unstable with respect to transverse (spanwise) perturbations at any
Marangoni number, even though a threshold Math was found in our stability analysis,
above which a drastic increase of the growth rate is observed. We found on the
one hand that below this threshold, long-wave thermocapillary mode (resp. surface
tension) is the main responsible in destabilizing (resp. stabilizing) the flow, as for
homogeneous heating. On the other hand, above this threshold, both body force
(gravity) and thermocapillarity play important roles in destabilizing the fluid bump
whereas the presence of the temperature gradient along the streamwise direction
due to non-uniform heating was found to be stabilizing (which could explain the
wave suppression found in chapter 3). Moreover, by raising Ma, the wavelength first
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decreases for Ma < Math and then increases for Ma > Math. This behaviour was
observed experimentally. However, the critical Marangoni number Mac for large-
amplitude rivulets instability was found in experiments to be smaller by a factor
three than the theoretical threshold Math. We then identified two mechanisms that
can trigger the rivulet instability for smaller Marangoni number. First, our linear
stability revealed that the bump is unstable in the transverse direction (mainly due
to thermocapillarity) at any Ma even though the growth rate is small for Ma <
Math. We conjectured (based on experimental observations) that it induces spanwise
perturbations (regular structure) of small but finite amplitudes, which can in turn
modify the threshold for inception of large amplitude rivulet structure (actually, the
Marangoni number was always increased gradually in experiments). Secondly, the
heater being of finite size in the transverse direction, the lateral temperature gradient
at the edges can produce an ‘imperfect’ bifurcation from the ‘perfect’ laterally infinite
case with the spanwise modes starting from the sides of the heater and then filling
the domain in the transverse direction.

Because of the quantitative discrepancies between theory and experiment, we per-
formed a qualitative survey of the nonlinear dynamics through 3D numerical sim-
ulations. Despite of many approximations used in our model (periodic boundary
conditions, small Prandtl number limit, inaccurate value of the heat transfer coeffi-
cient, ...), we could recover the main characteristics of the rivulet pattern as observed
in experiments such that the bump shape, the rivulet structure, the location for dry
spot formation, the secondary structure and the reverse flow accompanied by a stag-
nation point. However, the rivulet structure was steady in experiments while they
always lead to rupture in our simulations. We believe the principal reason of this
discrepancy is in essence due to periodic boundary conditions used in simulations
that correspond to a closed flow. We then believe that using a 3D numerical scheme
allowing for an open flow could provide in the future satisfactory agreement still using
a simple model as the Benney equation.

Nevertheless, two mechanisms that were not studied in this work may as well be of
primary importance in stabilizing the rivulet structure. They are the intermolecular
forces (Van der Waals) when the film thickness is about 0.1 µm and solutocapillary
effect that is more intensive in thin film regions and opposes to the thermocapillary
effect when the mixture is negative – that is when the more volatile fluid has the lowest
surface tension –, as it was the case in experiments. With some classical hypotheses
(see e.g. Burelbach, Bankoff & Davis [12]), those effects can be included in our model
without much effort and are of crucial importance for the investigation of dry spot
formation in liquid mixtures.

Finally, even though the Reynolds number was smaller than unity in experiments,
ensuring the validity of the Benney equation, the Prandtl number is usually larger
than unity for common liquids. Therefore, convection of heat that has been neglected
in our model, should be considered more carefully. This has been done in the second
part of this work, but only for the case of uniform heating. Future investigations
for rivulet instability should consider for instance a two-equation model for the film
thickness and the surface temperature (as proposed by Kalliadasis et al. [68]).
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The methodology developed in chapter 5 is a combination of the classical long-wave
theory with polynomial expansions for the temperature and velocity fields followed
by a weighted residual approach. It allowed us to formulate a number of models
of reduced dimensionality (i.e. without dependence on the cross-stream coordinate),
referred to as weighted integral boundary layer models, consistent at first or second
order in the long-wave expansion parameter (or film parameter ε). These models
are basically valid for much larger Reynolds number and Prandtl number than the
single Benney equation. The full two-dimensional second-order model includes nine
unknows defined at the free surface, namely the film thickness h, the flow rate q, the
surface temperature θ and three corrections to each field q and θ accounting for the
departure of velocity and temperature profiles across the film from their parabolic
and linear shapes, respectively. Admittedly, our full second-order model is of little
use because of its complexity. Using arguments from the linear stability of the film
in the zero wavenumber limit, we showed that only h, q and θ play a significant role
and the other fields are virtually slaved to their dynamics, at least for some range
of Reynolds and Prandtl numbers. As a consequence, the ‘appropriate’ elimination
of the corrective fields yields a whole family of models of reduced dimensionality in
terms of the three variables h, q and θ. ‘Appropriate’ means here that the resulting
reduced second-order models would lead to exact asymptotic results as described by
the second-order long-wave expansion.

In chapter 6 we developed a strategy to select the ‘best candidate’ among the whole
family of reduced models. To this purpose, we compared their stability analyses to the
Orr-Sommerfeld analysis of the linearized basic momentum and heat equations. The
selected model does agree with the Orr-Sommerfeld analysis for small and moderate
Reynolds and Marangoni numbers. Computation of its principal homoclinic orbits
(the solitary waves) do not exhibit the non-physical turning points and therefore
time-dependent integrations of the model do not lead to the non-physical finite time
blow-up encountered with the Benney equation.
Once the reduced model selected, the two long-wave instability modes (S and H) of a
liquid film flow down a heated plane at a constant temperature have been investigated.
We have computed the shape, streamlines and isotherms of the one-hump solitary
waves for different Reynolds and Prandtl numbers. In the drag-gravity regime, the
transport of heat by the flow contributes to warm up the crest of the wave and the
inertial terms in the averaged heat equation have a stabilizing effect. In the drag-
inertia regime where the amplitudes and speeds of the waves become very large,
recirculation zones can be observed and the effect of the transport of heat by the
flow is reversed. One of the stagnation points is displaced from the front face to
the crest of the wave. The Marangoni effect thus amplifies the recirculation flow
in the crest and promotes a strong downward flow at the crest. As a consequence,
the transport of heat by the flow contributes to cool the crest and to increase the
Marangoni effect. Nevertheless, the strong circulation and the downward flow create
a strong shear and therefore increase the effect of viscous dissipation, which reduces
in turn the amplitude and speed of the waves if the Prandtl number is raised.
The interaction of the hydrodynamic H-mode and the Marangoni S-mode is not trivial
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especially if one considers the dynamics of the large-amplitude solitary waves. The
preliminary observations gathered in this study needs to be compared to experiments.
Such comparisons would be facilitated by the fact that most fluids used in applications
correspond to high Kapitza numbers.
Another open question is the study of large Péclet number flows. The formulation of
reduced models was limited here to systems of equations in terms of three unknowns
only. Our linear stability analysis and computations of solitary waves suggest that
other fields than θ are needed to correctly represent the heat transport process. In
particular, an important perspective is to overcome the spurious appearance of tem-
peratures lower than the temperature of the air that we observed for large amplitude
waves if the Reynolds and Prandtl numbers are not small. Therefore, our aim will
be to obtain reliable models in term of h, q, θ and t1 (first correction of the linear
temperature profile across the layer), compatible with the long-wave expansion up
to second order, and enabling to extend the present study to higher Reynolds and
Prandtl numbers.

In chapter 7, we turned to larger Reynolds numbers, where secondary instabilities
generate three-dimensional patterns, under periodic forcing. We essentially compared
the full second-order model, the reduced model and an approximated model (which
parabolic velocity and linear temperature profiles). As demonstrated by Ruyer-Quil
et al. [112], our models predict the subharmonic scenario (herringbone pattern) to be
the predominant one which contradicts experimental observations. This discrepancy
was understood considering that the the secondary transition is not really selective,
the maximal growth rate varying slowly with the detuning parameter ϕ. Integrations
in time of the three-dimensional models using periodic boundary conditions show a
good agreement with the experimental snapshots given by Liu et al. [84] for isothermal
conditions. However, numerical simulations of the approximated model lead system-
atically to herringbone patterns whereas synchronous instabilities are observed using
the full or the reduced models. Our simulations show also that the classical two-steps
scenario of a secondary 3D instability of the primary 2D wave-train could be wrong
in some cases where the 2D simulation do not evolve first to saturated periodic waves
but to modulated ones as was observed previously in the direct numerical simula-
tions of Ramaswamy et al. [104]. In such cases the 3D wave pattern is the result of
the competition between the growing modulation and the secondary instability and
should therefore be dependent on the compared levels of noise in the streamwise and
spanwise directions. If our simulations of the reduced model are able to reproduce
the experimentally observed synchronous wave pattern, such was not the case with
the full-second order model.
We also tested our 3D model in isothermal conditions in the case of white noise in
a large domain of size about 15 linear wave lengths in both directions (streamwise
and spanwise). Our simulations share a lot of similarities with experimental pictures
obtained by Alekseenko et al. [1], mainly the coalescence of two dimensional waves and
the development of 3D large amplitude solitary waves with extended region of residual
thin film in between. For the largest Reynolds number considered (Re = 45), we
encountered numerical limits. For such regime, we suggest therefore to use an implicit
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numerical scheme for better stability, which would furthermore allow to consider the
more realistic open flow condition (i.e. non-periodic boundary conditions). This is
performed using “soft” boundary conditions at the downstream boundary, ensuring
no upstream reflections.
Finally, we have performed preliminary 3D simulations in the case of a uniformly
heated plate with our reduced model. The presence of rivulets aligned with the
flow as described by Joo et al. at small Reynolds number was recovered. At larger
Reynolds number, the co-existence between longitudinal rivulets and solitary waves
has been evidenced, as observed experimentally (see figure 7 of the Introduction). A
more systematic survey will be needed in the future to explore the development of
solitary waves in presence of a uniform heating.

In chapter 8, we applied our modelling strategy to the case of a heat flux condition
on the one hand and show, on the other hand, how to modify our model in the case
of the small Biot number limit. Indeed, those two cases are of particular interest in
practical applications and may be useful in future studies.

To conclude, one of the advantages of the Benney equation is to describe with a
single evolution equation the different physical effects in a falling film, namely in
our case, viscosity, gravity, surface tension and thermocapillarity. We believe this
ensures that the Benney equation will remain a competitive model to study thin
film flows at low Reynolds numbers, especially to identify new phenomena. Actually,
many other effects may be added to the Benney equation like evaporation [53], Van
der Waals forces [134], chemical reaction [139], topological effects [66], non-uniform
heating [87, 64, 120], etc. However, the validity of the Benney equation should in the
future also be addressed including these additional effects.
The weighted integral boundary layer model (or reduced model) obtained in this
work provides a larger validity range than the Benney equation and is recommended
for flow regimes where the Benney equation is not valid anymore, i.e. at moderate
Reynolds and Péclet number. The WIBL model has furthermore the great advantage
to enable, a posteriori, reconstruction of the velocity and the temperature fields – with
corrections to the parabolic and linear profiles, respectively – across the layer (which
is not possible with the classical Shkadov’s integral boundary layer model). The
validation of our reduced model was threefold: good linear properties, boundedness
of solitary-wave solutions and satisfactory comparisons with experiments. Of course
the best validation would have been to compare the branch of solitary-wave solutions
with the one computed directly from the full-scale boundary-layer equations. Such
comparison is not yet available but will be decisive in our model validation.
The procedure developed in the second part of this work was made possible by the
simple zeroth order solution, which corresponds to polynomial velocity and temper-
ature profiles. We specifically showed that models based on the assumption of a
‘perturbative’ role of the inertial terms – valid for the drag-gravity regime at low or
moderate Reynolds numbers – can be extended to larger Reynolds numbers where
inertia is a dominant effect if special care is taken for the formulation of the inertial
corrections. Our hope is that our strategy may be helpful in the modelling of other
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situations of interest in practical applications, where physicists wish to extrapolate
approximated equations obtained asymptotically and apply them to situations where
the small parameter is no longer small. This might include thin films in the presence
of active impurities (surfactants), evaporation or chemical reactions. It might also
include other geometries that can be connected to the ‘flat film case’ with the help
of appropriate expansions, as for instance the case of flow in Hele-Shaw cell made of
thin gaps [113].



Appendix A

Falling film applications

Falling film evaporators in the food industry

Falling film evaporators, as the one sketched on figure A.1, are especially popular in
the food industry where many substances are heat sensitive. A thin film of the product
to be concentrated flows down inside of heat exchanging tubes. Steam condenses on
the outside of the tubes supplying the required energy to the inside of the tubes.

Figure A.1: Sketch of a tubular falling film evaporator [152].

The simple heat transfer balance for falling film evaporators is:

Q = U A (Tc − Tb) ,
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where U is the overall heat transfer coefficient, A is the heat transfer area, Tc is the
temperature of the condensing steam and Tb is the boiling point of the process liquid.
The overall heat transfer coefficient consist of the steam side condensing coefficient
(usually about 5700W/m2K), a metal wall with small resistance (depending on steam
pressure, wall thickness), and a liquid film coefficient on the process side [153].
Evaporating fruit and vegetable juices present a special challenge for chemical engi-
neers. Juices are heat sensitive and their viscosities increase significantly as they are
concentrated. Small solids in the juices tend to stick at the tube wall (heat transfer
surface) thus causing spoilage and burning. Juice evaporations are usually performed
in a vacuum (see figure A.1) to reduce boiling temperatures (due to heat sensitivity).
High flow circulation rates help avoid build-ups on the tube walls.
For some juices (as orange), it is unavoidable that the flavor changes as concentration
increases. Some of the volatile, flavor-containing components are lost during evapo-
ration. In this case, some of the raw juice is mixed with the concentrate to replace
the lost flavors.
It is worth saying that in European sugar industry, falling film evaporators represent
the state of the art and this technique is already common world-wide [124]. Since
the last decade, falling film evaporators are both, falling film tubes and falling film
plates; the heating surface is smooth in both cases.

Crystallizer

The falling film crystallizer contains vertical tubes as shown on figure A.2. Crystal
layers are grown from a falling film of melt on the inside of the cooled tubes. Impurities
are rejected from the crystals and concentrated in the remaining melt. Falling film
crystallization is generally used for relatively pure feeds and high capacities.

Evaporator and crystallizer applications

Here are listed products that are processed with falling film evaporators or crystalliz-
ers: Alcohols, Apple Juice, Boric Acid, Brewer’s Malt, Calcium Salts, Caprolactam,
Caustic Soda, Citrus Juice, Coffee Extract, Collagen, Copper Sulfate, Distiller Slop,
Ethanol Stillage, Fruit Juices, Gelatin, Glucose, Glycerin, Grape Juice, Green Liquor,
Kraft Liquor, Methanol Stillage, Milk, Phosphoric Acid, Potassium Salts, Red Liquor,
Sodium slats, Solvents Separation, Steepwater, Stickwater, Stillage, Sugars, Sulfates,
Sulfites, Sulfides, Syrups, Tomato Juice, Urea, Waste Lubrication Oil, Waste Water,
Whey [154].

Absorption in a Falling Film

There are a number of different experimental methods for determining the absorption
of gas in a liquid. The principle of these methods is however the same in most cases;
to obtain a well-defined velocity profile in the liquid phase in order to obtain an
analytical estimation of the diffusion boundary layer [9, 38, 101]. This well-defined
velocity profile can be obtained by using for instance thin liquid falling films (see [77]).
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Figure A.2: Falling film crystallization: the melt flows down on the inside surface
of the tubes, whereas the medium used for cooling is distributed to wet the external
surface of the tubes [151].

This is the principle of typical measuring equipments for gas absorption as sketched
in figure A.3. A liquid film is formed by a guiding funnel that creates an annular flow
with a free liquid surface facing the centre of a tube. The gas is introduced in the
middle of the tube and is absorbed on the free surface of the liquid. The composition
of the liquid and the gas is measured before and after entering the apparatus. The
contact surface between the gas and the liquid is confined to the free surface inside
of the tube. This implies that the contact area and the convection in this phase
boundary are well-defined.
The mass transport properties in the gas phase are estimated from the relative velocity
between the liquid flow and the gas flow. In most cases the magnitude of the forced
convection in the gas is negligible and the transport properties can be obtained from
the free convection that is induced in the gas phase by the flow of the liquid.



212 CONCLUSIONS AND PERSPECTIVES

Figure A.3: Sketch of an absorption apparatus with a falling film [150].



Appendix B

Systems of 2D boundary layer
equations

Natural set of parameters: {Re, Ct, Ka, Ma, Bi, Pr}
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Base state set of parameters {Re, Ct, We, M, B, Pr}
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Nonlinear set of parameters {R, C, η,M, B, Pr}

R (∂tu+ u∂xu+ v∂yu) = 1 + ∂yyu+ η
(
2∂xxu+ ∂x

[
∂xu
∣∣
h

])
− C∂xh+ ∂xxxh (B.3a)

PrR (∂tT + u∂xT + v∂yT ) = ∂yyT + η∂xxT (B.3b)

∂yu
∣∣
h

= −M∂x

[
T
∣∣
h

]
+ η

(
4∂xh∂xu

∣∣
h
− ∂xv

∣∣
h

)
(B.3c)

∂yT
∣∣
h

= −B

(
1 +

1

2
η(∂x)

2

)
T
∣∣
h

+ η∂xh∂xT
∣∣
h

(B.3d)
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The three above systems have to be completed by the following equations,

∂xu+ ∂yv = 0 (B.4a)

∂th+ u
∣∣
h
∂xh = v

∣∣
h

(B.4b)

u
∣∣
0

= v
∣∣
0

= 0 (B.4c)

T
∣∣
0

= 1 + Fw(x) (B.4d)

The relations between all the parameters are

Re =
R

3η1/2

Ct =
C
η1/2

Ka =
R2/3

η11/6
= We(3Re)2/3

Ma =
MR2/3

η5/6
= M(3Re)2/3

Bi =
B

(3Re)1/3

We =
1

η3/2
=

Ka

(3Re)2/3

M =
M
η1/2

=
Ma

(3Re)2/3

B = Bi (3Re)1/3

R =
3Re

We1/3
=

(3Re)11/9

Ka1/3

C =
Ct

We1/3
=

Ct(3Re)2/9

Ka1/3

η =
1

We2/3
=

(3Re)4/9

Ka2/3

M =
M

We1/3
=

Ma

Ka1/3(3Re)4/9



Appendix C

Typical parameter values

Liquid lν⊥ tν⊥ Ka⊥ Ma⊥ Bi⊥
(µm) (ms) (∆T=1K) (α=100W/m2K)

Water at 20◦C 47 2.2 3375 8.9 0.008
Water at 15◦C 50 2.3 2950 7.7 0.009
FC-72 at 20◦C 26 1.6 1100 9.7 0.045
MD-3F at 30◦C 31 1.8 703 5.8 0.047

25%-Ethyl alcohol at 20◦C 87 3.0 500 1.5 0.02

Table C.1: Rounded values of characteristic liquid parameters [144]. Those liquids
are effectively used in experiments [56, 59, 116, 117, 119]. The value of the heat
transfer coefficient α used to estimate the Biot number is justified in §8.2.

ρ 961.6 kg/m3 density
ν 2.548 × 10−6 m2/s kinematic viscosity
k 0.4786 W/mK heat conductivity
σ∞ 35.53 × 10−3 N/m mean surface tension
γ 0.1103 × 10−3 N/mK surface tension variation with T
Pr 21.8 −− Prandtl number

Table C.2: Fluid properties for a 25 % ethyl-alcohol solution in water at 20◦C.
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Appendix D

Full second-order models

D.1 Two-dimensional with non-isothermal condi-

tions
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D.2 Three-dimensional with isothermal conditions
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Summary

This thesis analyses the dynamics of a thin liquid film falling down a heated plate.
The heating yields surface tension gradients that induce thermocapillary stresses on
the free surface, thus affecting the stability and the evolution of the film. Accounting
for the coherence of the flow due to viscosity, two main approaches that reduce the
dimensionality of the original problem are usually considered depending on the flow
rate (as measured by the Reynolds number): the ‘long wave’ asymptotic expansion
for small Reynolds numbers and the ‘integral boundary layer’ approximation for mod-
erate Reynolds numbers. The former suffers from singularities and the latter from
incorrectness of the instability threshold for the occurrence of hydrodynamic waves.
Thus, the aim of this thesis is twofold: in a first part, we define quantitatively the
validity of the ‘long wave’ evolution equation (Benney equation) for the film thickness
h including the thermocapillary effect; and in a second part, we improve the ‘integral
boundary layer’ approach by combining a gradient expansion to a weighted residual
method. In the first part, we further investigate the Benney equation in its validity
domain in the case of periodically inhomogeneous heating in the streamwise direction.
It induces steady-state deformations of the free surface with increased transfer rate
in regions where the film is thinner, and also in average. The inhomogeneities of the
heating also modify the nature of travelling wave solutions at moderate temperature
gradients and allows for suppressing wave motion at larger ones. Moreover, large tem-
perature gradients (for instance positive ones) in the streamwise direction produce
large local film thickening that may in turn become unstable with respect to trans-
verse disturbances such that the flow may organize in rivulet-like structures. The
mechanism of such instability is elucidated via an energy analysis. The main features
of the rivulet pattern are described experimentally and recovered by direct numeri-
cal simulations. In the second part, various models are obtained, which are valid
for larger Reynolds numbers than the Benney equation and account for second-order
viscous and inertial effects. We then elaborate a strategy to select the optimal model
in terms of linear stability properties and existence of nonlinear solutions (solitary
waves), for the widest possible range of parameters. This model – called reduced model
– is a system of three coupled evolution equations for the local film thickness h, the
local flow rate q and the surface temperature θ. Solutions of this model indicate that
the interaction of the hydrodynamic and thermocapillary modes is non-trivial, espe-
cially in the region of large-amplitude solitary waves. Finally, the three-dimensional
evolution of the solutions of the reduced model in the presence of periodic forcing and
noise compares favourably with available experimental data in isothermal conditions
and with direct numerical simulations in non-isothermal conditions.

Key words: thin films, long-wave expansion, interfacial instabilities,
thermocapillarity, solitary waves, rivulet-like patterns, weighted resid-
uals
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Résumé

Cette thèse analyse la dynamique d’un film mince s’écoulant le long d’une paroi
chauffée. Le chauffage crée des gradients de tension superficielle qui induisent des
tensions thermocapillaires à la surface libre, altérant ainsi la stabilité et l’évolution
du film. Grâce à la cohérence de l’écoulement assurée par la viscosité, deux approches
permettant de réduire la dimensionnalité du problème original sont habituellement
considérées suivant le débit (mesuré par le nombre de Reynolds): l’approximation
asymptotique dite ‘longues ondes’ pour les faibles nombres de Reynolds et l’approxi-
mation ‘intégrale couche limite’ pour les nombres de Reynolds modérés. Cependant, la
première approximation souffre de singularités et la dernière de prédictions imprécises
du seuil de stabilité des ondes hydrodynamiques à la surface du film. Le but de cette
thèse est donc double: dans une première partie, il s’agit de déterminer, de manière
quantitative, la validité de l’équation d’évolution ‘longues ondes’ (ou équation de
Benney) pour l’épaisseur du film h, en y incluant l’effet thermocapillaire; et dans une
seconde partie, il s’agit d’améliorer l’approche ‘intégrale couche limite’ en combinant
un développement en gradients avec une méthode aux résidus pondérés. Dans la
première partie, nous étudions l’équation de Benney, dans son domaine de validité,
dans le cas d’un chauffage inhomogène et périodique dans la direction de l’écoulement.
Cela induit des déformations permanentes de la surface libre avec un accroissement du
transfert de chaleur dans les régions où le film est plus mince, mais aussi en moyenne.
Un chauffage inhomogène modifie également la nature des solutions d’ondes progres-
sives pour des gradients de températures modérés et conduit même à leur suppression
pour des gradients de températures plus importants. De plus, ceux-ci, lorsqu’ils sont
par exemple positifs le long de l’écoulement, produisent des épaississements localisés
du film qui peuvent à leur tour devenir instables par rapport à des perturbations
suivant la direction transverse à l’écoulement. Ce dernier s’organise alors sous forme
d’une structure en rivulets. Le mécanisme de cette instabilité est élucidé via une
analyse énergétique des perturbations. Les principales caractéristiques des structures
en rivulets sont décrites expérimentalement et retrouvées par l’intermédiaire de simu-
lations numériques. Dans la seconde partie, nous dérivons une famille de modèles
valables pour des nombres de Reynolds plus grands que l’équation de Benney, qui
prennent en compte les effets visqueux et inertiels du second ordre. Nous élaborons
ensuite une stratégie pour sélectionner le modèle optimal en fonction de ses propriétés
de stabilité linéaire et de l’existence de solutions non-linéaires (ondes solitaires), et
ce pour la gamme de paramètres la plus large possible. Ce modèle – appelé modèle
réduit – est un système de trois équations d’évolution couplées pour l’épaisseur lo-
cale de film h, le débit local q et la température de surface θ. Les solutions de ce
modèle indiquent que l’interaction des modes hydrodynamiques et thermocapillaires
n’est pas triviale, spécialement dans le domaine des ondes solitaires de grande am-
plitude. Finalement, l’évolution tri-dimensionnelle des solutions du modèle réduit
en présence d’un forçage périodique ou d’un bruit se compare favorablement aux
données expérimentales disponibles en conditions isothermes, ainsi qu’aux simula-
tions numériques directes en conditions non-isothermes.

Mots-clés: films minces, développement longues ondes, instabilités in-
terfaciales, thermocapillarité, ondes solitaires, structure en rivu-
lets, résidus pondérés


