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Abstract— The application of a systematic strategy to the
problem of falling liquid films is shown to lead to systems of
equations of reduced dimensionality that capture the phys-
ical mechanisms quite faithfully, helping us to enlighten the
observed dynamics by isolating the important physical ef-
fects. Additionally, a regularization procedure applied in
the approach pushes away the validity range of a consistent
three-field modeling of film flows in parameter space by re-
ducing the degrees of the dangerous nonlinear terms. Hav-
ing at one’s disposal reliable low-dimension models, one is
able to undergo a systematic numerical analysis at low cost
(in terms of CPU time). Consequently, complex wave pat-
terns such as herringbone patterns, synchronously deformed
fronts, V-shape solitary waves observed in various experi-
mental data can be recovered. In this paper, we specifi-
cally compare our model to recent and well-controlled ex-
periments by Park & Nosoko [AIChE J., 49, 2715 (2003)].

Keywords— Hydrodynamic instabilities, falling films, Soli-
tary waves

I. Introduction

Thin films flowing down inclines have a rich dynamics
extensively studied for a long time since Kapitza’s experi-
mental and theoretical pioneering works at the end of the
forties [1]. Besides their importance for engineering ap-
plications (e.g. evaporators or chemical reactors), their
interest mainly stems from the fact that their evolution
is amenable to thorough theoretical analysis. This situ-
ation happens mostly due to the two-dimensional, long-
wavelength, supercritical character of the primary insta-
bility mode. Thickness modulations which develop over
initially uniform films are usually spanwise homogeneous
and slowly varying both in time and in space, which allows
gradient expansions on which relies the lubrication approx-
imation. The approach is thus similar to that followed in
the study of boundary layers and deep analogies can be
found in the transition to turbulence of each system, espe-
cially at the level of secondary instabilities.

This paper, the details of which are given in [2], is de-
voted to the study of the three-dimensional (noted 3D)
wavy dynamics of film flows, up to moderate Reynolds
numbers, i.e. where single-variable models [3–5] are known
to fail, contrary to multiple-variable models [6,7].

For a film flowing down a vertical plate, experiments
show evidence of a 3D wavy regime after inception, suc-
ceeding to a regime of spanwise uniform waves —i.e. 2D
waves— resulting from the primary instability of the uni-
form film flow. The final state of the film corresponds to
a disordered dynamics dominated by 3D solitary waves,
or “3D soliton gas” [7]. Recent experimental results by
Park & Nosoko [8] give a clear picture of the transition
from 2D to 3D dynamics when the Reynolds numbers is
increased. These authors imposed a low frequency forc-

ing on the entrance flow rate and spanwise modulations at
the inlet with the help of an array of needles. For films
of water on a vertical wall, Park & Nosoko distinguished
two different scenarios for the 3D instabilities of the fast
γ2 waves1 depending on the Reynolds number. At R below
approximately 40, regular spanwise forcing of the waves led
to low-level spanwise modulations whereas at R above 40,
the waves broke into horseshoe-like solitary waves having
curved fronts and long oblique legs.

In section II, we derive our three-equation regularized
model. Section III is dedicated to the numerical simula-
tions of the regularized model in the experimental condi-
tions of Park & Nosoko [8]. Concluding remarks and per-
spectives are presented in section IV.

II. Two-dimensional modeling of
three-dimensional film flows

The flow of a Newtonian liquid down an inclined plane is
considered. We look for two-dimensional equations in the
streamwise (x) and spanwise (z) coordinates that mimic
the full 3D motion of the fluid (y being the cross-stream co-
ordinate). Our approach is based on the long-wave approx-
imation which ensures slow time and space modulations of
the basic flat film solution (Nusselt flow), by writing that
partial derivatives ∂t, ∂x, ∂z are all of order ε, with ε � 1.
The first step consists in the elimination of the pressure in
the Navier–Stokes equations truncated at O(ε3), leading to
the second-order boundary layer equations, which read

δ
[
∂tu + ∂x(u2) + ∂y(uv) + ∂z(uw)

]
=

1 + ∂yyu − ζ ∂xh + ∂xxxh + ∂xzzh

+η
[
2∂xxu + ∂zzu + ∂xzw − ∂x(∂yv

∣∣
h
)
]

, (1a)

δ
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∂tw + ∂x(uw) + ∂y(vw) + ∂z(w2)

]
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∂yyw − ζ ∂zh + ∂xxzh + ∂zzzh

+η
[
2∂zzw + ∂xxw + ∂xzu − ∂z(∂yv

∣∣
h
)
]

, (1b)
∂xu + ∂yv + ∂zw = 0 , (1c)

where h = h(x, z, t) is the local film thickness, and (u, v, w)
the streamwise, cross-stream and spanwise components of
the velocity field. Equations (1a) and (1b) correspond to
the streamwise and spanwise momentum balances, respec-
tively, and (1c) is the continuity equation. This set of
equations is completed by the no-slip condition at the wall
y = 0:

u = v = w = 0 , (1d)

1Following Chang’s terminology [9], γ2 waves refer to positive waves
while γ1 waves to negative ones.



and the x and z directions of the stress balance at the free
surface y = h:

∂yu = η [∂zh(∂zu + ∂xw) + 2∂xh(2∂xu + ∂zw) − ∂xv] , (1e)
∂yw = η [∂xh(∂zu + ∂xw) + 2∂zh(2∂zw + ∂xu) − ∂zv] . (1f)

The dimensionless numbers in (1) are, respectively, the re-
duced Reynolds number, the reduced slope and the viscous
diffusion parameter, defined as:

δ =
(3R)11/9

Γ1/3
, ζ =

cotβ(3R)2/9

Γ1/3
and η =

(3R)4/9

Γ2/3
.

These numbers are based on the inclination cotβ and the
usual Reynolds and Kapitza numbers in turn defined as

R =
g sinβh3

N

3ν2
and Γ =

σ

ρν4/3(g sinβ)1/3
,

with β the inclination angle from the horizontal, g the grav-
ity acceleration, hN the thickness of the uniform film, ν the
kinematic viscosity and σ the surface tension.

Second-order terms gathered under η in system (1) ac-
count for streamwise viscous diffusion. These equations
are symmetric under the exchange {u ↔ w, x ↔ z}, ex-
cept for the gravity term scaled to unity in (1a). The flat
film solution is a parallel flow with no spanwise compo-
nent, i.e. w = 0. A valid approach is therefore to consider
w of order ε, with the meaning that spanwise flows are
triggered by the modulations of the free surface. Ruyer-
Quil & Manneville [10] used this assumption to simplify
the cumbersome system of equations which models the 3D
flow dynamics. However least degeneracy considerations
about the continuity equation (1c) suggest us to take w of
order unity, and this is the approach we will take below.

Following the same procedure as for the 2D case [10], one
obtains that six independent fields are needed to account
for the velocity components at second order: the stream-
wise and spanwise flow rates q =

∫ h

0
u dy and p =

∫ h

0
w dy,

and four corrections s1, s2, r1 and r2 corresponding to
the polynomial test functions g1 and g2 and accounting
for the deviations of the velocity profiles away from the
zeroth-order parabolic profile g0 (polynomials gi are de-
fined in appendix A). The boundary layer equations are
then averaged using the Galerkin method by writing resid-
uals 〈E‖, gi〉 and 〈E⊥, gi〉 where 〈f, g〉 =

∫ h

0
f g dy, while

E‖ and E⊥ refer to the streamwise (1a) and spanwise (1b)
momentum balances, respectively. These residuals yield a
system of six evolution equations for h, q, s1, s2, p, r1

and r2, completed with the mass balance obtained through
integration of (1c) across the layer depth:

∂th = −∂xq − ∂zp . (2)

This system is called the complete model in the following.
Here, we follow a regularization procedure that aims at
reducing the complete model to only three equations for
h, q and p. First-order expressions of the fields s1, s2,
r1 and r2 are readily obtained from the truncation at or-
der ε of the residuals corresponding to the weights g1 and
g2. Substitution of these expressions in the first residuals

R0,‖ = 〈E‖, g0〉 and R0,⊥ = 〈E⊥, g0〉 produces second-
order inertia terms, formally written as R(2),δ

0,‖ and R(2),δ
0,⊥ .

These terms contain high-order nonlinearities that we next
kill by adjusting algebraic preconditioners. So residuals
R0,‖ and R0,⊥ are searched in the form G−1

‖ F‖ and G−1
⊥ F⊥

where F‖ and F⊥ correspond to the expressions of the
residuals R0,‖ and R0,⊥ when a parabolic velocity profile
is assumed, i.e. when corrections si and ri are neglected.
Isolating inertia terms, we thus set:

G‖

(
R(1),δ

0,‖ + R(2),δ
0,‖

)
= R(1),δ

0,‖

G⊥

(
R(1),δ

0,⊥ + R(2),δ
0,⊥

)
= R(1),δ

0,⊥ , (3)

where superscripts refer to first-order and second-order in-
ertia terms. Zeroth-order expressions of the flow rates
q = h3/3 + O(ε) and p = O(ε), i.e. the gravity-oriented
(base) flow, are next invoked to reduce the degree of non-
linearities of the regularization factors G‖ and G⊥. Conse-
quently, the inertia terms R(2),δ

0,⊥ induced by deviations of
the spanwise velocity field from the parabolic profile ap-
pear asymptotically at order ε3. So that we merely get
G⊥ = 1 + O(ε2). Similarly, the asymptotic expression of
R(2),δ

0,‖ corresponds exactly to the one obtained for a span-
wise independent flow. Hence we have

G⊥ ≡ 1 and G‖ ≡
[
1 − δ

70
q∂xh

]−1

. (4)

Completing (2), the 3D regularized model then reads:
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Equation (2) expresses the mass conservation, and (5a,5b)
express the averaged momentum balances in directions x
and z, respectively. The viscous drag corresponds to the
terms 5

2q/h2 in (5a) and 5
2p/h2 in (5b). As for system (1),

the gravity acceleration contributes only to the streamwise
momentum balance through the term 5

6
h in (5a).

The regularized model (2,5) is fully consistent with the
Benney expansion at second order [11], while the simplified
model, corresponding to the averaging of the momentum
balance equations across the layer depth assuming both
parabolic velocity profiles and weights, is not. The simpli-
fied model can be recovered from the regularized one by
replacing the factor G‖ by unity —or equivalently by as-
suming the actual order of si, ri to be of higher order than
ε, so that their derivatives can be neglected in the complete
model.

III. Two-dimensional simulations of
three-dimensional flows

In this section we perform time integrations of the regu-
larized model (2,5). Periodic boundary conditions in both
x and z directions are enforced. This allows us to make use
of the good convergence properties of spectral methods. A
pseudo-spectral explicit scheme has been developed, with
derivatives evaluated in Fourier space and nonlinearities in
physical space. The time dependence is accounted for by
a fifth-order Runge-Kutta scheme, which allows us to con-
trol the error by difference with an embedded fourth-order
scheme [12]. In practice, the time step is adapted to limit
the relative error on each variable to 10−4. The computa-
tional domain of size Lx × Lz is discretized with M × N
regularly spaced grid points with coordinates xi = iLx/M
and zj = jLz/N . The three-dimensionality of the waves is
evaluated through:

Ex(t) ≡ 1
(M − 1)N

N∑

j=1

(
M−1∑

m=1

|am(zj , t)|2
)1/2

, (6a)

Ez(t) ≡ 1
M (N − 1)

M∑

i=0

(
N−1∑

n=1

|bn(xi, t)|2
)1/2

, (6b)

where the spatial Fourier coefficients am and bn are defined
by

am(z, t) =
M∑

i=1

h(xi, z, t) exp (i2πmi/M ) , (6c)

bn(x, t) =
N∑

j=1

h(x, zj, t) exp (i2πnj/N ) , (6d)

and where i stands for the imaginary number. Ex and Ez

are the streamwise and the spanwise energy of deformations
as defined by Joo et al. [13].

Owing to the spatial periodicity in the streamwise direc-
tion, our simulations physically correspond to a closed flow
for which the fluid leaving the downstream border of the
computational domain is reinjected at the upstream bound-
ary. The mass is therefore conserved in the domain so that
the space-averaged film thickness 〈h〉X remains constant

and is equal to the initial flat-film thickness (1 in our scal-
ing). However, because the flow is gravity-oriented, the
closed-flow condition cannot be achieved experimentally.
In experiments, the flow is open and the time-averaged
flow rate 〈q〉T = 1/3 is conserved at each location on the
plane. The corresponding open-flow condition for the trav-
eling waves reads [14]

〈h〉 =
1/3− q0

c
. (7)

Relation (7) shows that the averaged thickness 〈h〉 can be
significantly lower than the inlet thickness, depending on
the wave characteristics c and q0. Therefore, in order to im-
prove comparisons of our simulations to experimental data,
we turn to our advantage the closed-flow condition inher-
ent in the numerical scheme by imposing a film thickness
tuned to the value obtained from (7) for 2D traveling waves
at the corresponding forcing frequency, using the continua-
tion software Auto97. Doing so ensures that we “embark”
the right amount of liquid in our computational domain ly-
ing under the 2D traveling waves. Since the local flow rate
varies as the cube of the local film thickness, this trick
can be decisive in recovering experimental results. Thus,
the development of 2D waves undergoing 3D instabilities is
simulated by enforcing initial conditions in the form:

h(x, z, 0) = 〈h〉 + Ax cos
(

2πnxx
Lx

)
+ Az cos

(
2πnzz

Lz

)

+Anoise r̃(x, z) , (8)

where Ax, Az, Anoise are small amplitudes, nx, nz ∈ N rep-
resent the numbers of sinusoidal waves in each direction,
and r̃ is a random function with values in the interval
[−1, 1]. The last term of (8) accounts for ambient white
noise whose amplitude is set to Anoise = 10−3. For most of
the computations, the aspect ratio of the domain is equal
to unity, so Lx = Lz ≡ L. The value of L must be taken
large enough to be representative of complex flow dynam-
ics. The general form of (8) enables us to explore a wide
range of experimental results on 3D waves emerging from
2D waves. In the following, we consider 3D modulations
of γ2 waves (i.e. positive and fast waves). In practice we
are interested in domains with lengths fitting an integer
number of the traveling waves under consideration.

We thus consider the experimental conditions investi-
gated by Park & Nosoko [8] who observed 3D wave pat-
terns emerging from 2D waves of γ2-type. Parameter val-
ues corresponding to the different numerical experiments
are given in table I, where R is the Reynolds number and
f(Hz) the forcing frequency. Park & Nosoko have imposed
a periodic modulation in the spanwise direction, which en-
forced the selection of synchronous patterns (i.e. in-phase
modulations). These authors placed an array of regularly
spaced needles with period λndl

z (given in mm) at the inlet;
kz is thus the corresponding dimensionless wavenumber.
Finally, k, c and 〈h〉 given in table I are, respectively, the
dimensionless wavenumber, the phase speed and the aver-
aged thickness of the corresponding 2D traveling waves.

Figure 1 shows snapshots for parameter set #1. Initial
spanwise modulations of period λndl

z = 10 mm (nz = 6)



TABLE I
Parameters of the simulations corresponding to

the experiments by Park & Nosoko [1] for a
vertical plane and pure water at 25◦C (Γ = 3375).

# R f λndl
z k c 〈h〉 kz

1 20.7 15 10 0.346 0.900 0.899 0.699
2 20.9 19 30 0.472 0.832 0.911 0.233
3 40.8 19 20 0.385 0.714 0.912 0.377
4 59.3 17 20 0.313 0.630 0.955 0.393

(a) t = 27 (b) t = 172

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

h

x
(c) Lx = 2π/k

Fig. 1. (a,b) Snapshots of the film free surface at two dif-
ferent times computed with the regularized model (2,5)
and for parameter set #1 (see table I). Initial condi-
tions are: Ax = 0.2, Az = 0.05, Anoise = 10−3, nx = 3,
nz = 6 and L = 2nxπ/k. The computational domain
is 60×60 mm with 128×128 grid points. Bright (resp.
dark) zones correspond to elevations (resp. depres-
sions). (c) 2D wave profile of (b).

are quickly damped, i.e. Ez → 0, and the pattern evolves
to 2D traveling waves, i.e. Ex → cst, the profile of which
is given in figure 1(c). It corresponds to a γ2 wave with
a large hump preceded by capillary waves, since when the
forcing frequency is small, the γ1 slow waves are not ob-
served and the linear inception region is immediately fol-
lowed by the formation of fast γ2 waves. Such genuine 2D
waves have been observed by Park & Nosoko [8] in the
right part of their test section (see figure 2(a)) while in the
left part, they additionally observed large spanwise mod-
ulations with a wavelength of about 3λndl

z . We recovered
these modulations (not shown here) by increasing the pe-
riod λndl

z to 30 mm (nz = 2). However, they also decayed
(with Ez → 0) but at a much smaller rate indicating that
the wavelength λz = 3 cm is close (but still below) the
cut-off wavelength for spanwise instability.

Figure 2(b) shows an experimental picture for approx-
imately the same Reynolds number but for a higher fre-
quency than for figure 2(a) (parameter set #2) and fig-
ure 3 shows the results of simulations with the regularized
model (2,5). In this case, the initial spanwise modulation
is unstable and figures 3(a,b) give patterns equivalent to
those observed experimentally. Wishing to compare the
evolution in time of our simulations to the evolution in
space of experimental waves, we need a way to convert lo-
cations in the laboratory frame to dimensionless time in
our computations. This is done by exploiting the fact that
a wave traveling at speed c reaches location x at time x/c.
The speeds of the 2D traveling waves corresponding to the

(a) (b)

Fig. 2. Experimental pictures by Park & Nosoko (fig-
ure 7a,b in [1]). (a) R = 20.7, f = 15 Hz and λndl

z = 10
mm; (b) R = 20.9, f = 19 Hz and λndl

z = 30 mm.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3. Simulations for the parameter set #2. See the
caption of figure 1, except for nx = 4 and nz = 2.
Corresponding times are given in figure 4.
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Fig. 4. Deformation energies (see equations 6) for simula-
tions of set #2: dashed line for Ex and solid line for
Ez. Letters refer to the snapshots of figure 3.

experimental conditions have thus been computed using
Auto97. The test section in the experiments is 20 cm
long which corresponds approximately to 200 dimensionless
time units in our simulations. Having run the simulation
for a much longer time (1500 time units), we have observed
time oscillations of the spanwise modulations. Figure 4
shows that the energy of spanwise deformations Ez varies
with a periodicity of about 300 time units. The region of
the experimental domain corresponding to t ≈ 300 is thus
located beyond the test section, which explains why Park
& Nosoko could not observe that behavior. Oscillations of
shorter period (about 60 time units) can also be noticed,
more pronounced for Ex than for Ez in figure 4. Their
amplitudes are small at the beginning so that it is difficult
to observe their effects on the 3D wave pattern. However,
they grow for t > 900 where they begin to influence the
evolution of the pattern in a complex way as illustrated
by the last panels (i-l) of figures 3. As time is running,
spanwise modulations of the fronts depart more and more
from their initial sinusoidal shape. The fronts start to de-
velop rounded tips separated by flat regions. At least two
symmetry breakings can be observed. The first one corre-
sponds to a streamwise period doubling of the modulated
fronts triggered by a 2D subharmonic instability, since two
identical fronts are observable in panel (i) instead of four
in panel (h). The second one corresponds to the develop-
ment of a phase shift of π observable between the tips of
two successive fronts (compare panel l to panel k).

Simulation results for a larger Reynolds number R =
40.8 are presented in figure 5(a) (parameter set #3). The
wavelength of the spanwise initial modulations was chosen
to correspond exactly to the streamwise perturbations thus
nx = nz = 3. As for R = 20.9, we first observed sinusoidal
spanwise modulations of the 2D waves. However, they
rapidly evolved into rugged modulations, made of nearly
flat backs and rounded fronts. The pattern then saturated
for a while (at least during 30 time units), traveling down-
stream in a quasi-steady state. A large number of mesh
points (256×256) was here necessary to accurately capture

(a) Simulation (b) Experiment

Fig. 5. (a) Snapshots of the film free surface for set #3.
Parameters are given in the caption of figure 1, except
for nx = nz = 3. The computational domain is 60 ×
60 mm with 256 × 256 grid points. (b) Experimental
picture by Park & Nosoko (figure 7c in [1]). R = 40.8,
f = 19 Hz and λndl

z = 20 mm.

details of the film dynamics, like for instance the checker-
board interference pattern of the capillary waves preceding
the flat zones. The resemblance with the experimental find-
ings shown in figure 5(b) is excellent and confirm the ability
of the regularized model to capture complex wave dynam-
ics of falling films up to moderate Reynolds numbers. The
occurrence of these rugged-modulated waves can also be
observed at smaller Reynolds number when the stream-
wise and spanwise initial perturbations have comparable
wavelengths, as confirmed by our numerical experiments
corresponding to the parameter set #2 with nx = nz = 3
(not shown).

Above R ≈ 40, Park & Nosoko observed a breaking of
the modulated fronts leading to horseshoe-like waves. Sim-
ulation results for R = 59.3 are presented in figure 6(a)
(parameter set #4) and confronted to the experimental pic-
ture in figure 6(b). Due to computational limitations, the
computational domain was this time limited to only one
and two wavelengths in the streamwise and spanwise di-
rections respectively (nx = 1 and nz = 2). As compared
to R = 40.8, the rugged modulations develop faster and
do not saturate. Instead, the curve bulging of the wave
front continuously expand into horseshoe-shapes, reducing
the span of the flat parts at the back. As time proceeds,
the legs of the horseshoes extend and split off into dimples,
in close agreement with experimental observations.

IV. Conclusions

In most cases, asymptotic expansions are poorly converg-
ing and the Benney expansion is no exception to this rule
[14]. If an improvement of the accuracy is achieved by in-
creasing the order of the approximation, this is at the cost



(a) Simulation (b) Experiment

Fig. 6. (a) Snapshots of the film free surface for set #4.
Parameters are given in the caption of figure 1, except
for nx = 1 and nz = 2. The computational domain
is 25 × 40 mm with 256 × 256 grid points. (b) Exper-
imental picture by Park & Nosoko (figure 7d in [1]).
R = 59.3, f = 17 Hz and λndl

z = 20 mm.

of an increased complexity and a reduction of the range of
parameters for which comparisons with DNS and experi-
ments are improved. Padé approximant techniques are well
known for their ability to extend the radius of convergence
of algebraic series. In the case of 2D flows, Ooshida’s ap-
plication of this idea to the Benney expansion remedies the
unphysical occurrence of finite-time blow-up of solutions to
the Benney equation but a quantitative agreement cannot
be achieved with experiments for δ of order unity or larger
[15].

Focusing on the treatment of inertia terms, our alge-
braic regularization procedure enabled us to obtain a three-
equation model which is fully consistent with the Benney
expansion up to second-order. The use of a kind of al-
gebraic preconditioner makes its application much simpler
than Ooshida’s approach based on differential operators.
Our hope is that this Padé-like strategy might be useful for
different related problems in lubrication theory for which a
careful treatment of inertial effects are of importance, e.g.
film flows where mass and heat transfer are involved, films
down fibers, and roll waves.

Simulations presented in this work have proved the abil-
ity of our regularized model to capture the complex dynam-
ics of surface waves in a large range of Reynolds numbers,
as supported by the comparisons to the available experi-
mental data [8]. In particular, the rugged-modulated waves
as well as the horseshoe-like 3D solitary waves observed in
experiments are all reliably recovered in our simulations.
Even the interference of the capillary waves preceding the
rugged-modulated fronts are observable in our simulations.

Notice however that the transition from modulated

waves to horseshoe-like solitary waves is far from being
understood. An exploration of the different wave regimes
in parameter space will be the subject of a future study.
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Appendix

I. Projection of the velocity

The streamwise velocity profile is defined as

u = 3
q − s1 − s2

h
g0

(y

h

)
+45s1 g1

( y

h

)
+210s2 g2

( y

h

)
, (9)

where the polynomials read (details are given in [10]):

g0(ȳ) = ȳ − 1
2 ȳ2 ,

g1(ȳ) = ȳ − 17
6 ȳ2 + 7

3 ȳ3 − 7
12 ȳ4 ,

g2(ȳ) = ȳ − 13
2

ȳ2 + 57
4

ȳ3 − 111
8

ȳ4 + 99
16

ȳ5 − 33
32

ȳ6 .

The spanwise velocity profile w is projected on the same ba-
sis of polynomials and obtained from (9) under the change
{q → p, s1 → r1, s2 → r2}.
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