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Faculté des Sciences Appliquées, CP 165/62, Avenue F.D. Roosevelt, 50 - 1050 Bruxelles
email: srossomm@ulb.ac.be, bscheid@ulb.ac.be, pcolinet@ulb.ac.be

Abstract—This paper deals with the nonlinear evolution of

a thin liquid film in contact with a hot rigid plate. The liq-

uid phase is separated from its own vapour by a deformable

interface. Various mechanisms affect the stability of the film

and govern its shape. Among them, we focus on the sur-

face tension and its variation with temperature, the evap-

oration and the resulting vapour recoil pressure resulting

from momentum conservation at the interface, the disjoining

pressure resulting from molecular interactions with the sub-

strate, the temperature discontinuity between vapour and

liquid at the interface and the variation of the saturation

temperature due to the disjoining pressure and the interfa-

cial curvature. We show how the contact angle and the heat

flux vary with some of these effects.
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tension, Thermocapillarity, Chemical and thermal non-
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I. Introduction

THIN and ultra-thin liquid films are a subject of inten-
sive research nowadays, as they intervene in many sci-

entific areas such as in biophysics, micro-fluidics and nano-
technologies. In particular, thin films are of primary impor-
tance in heat transfer technologies based on evaporation or
boiling. As demonstrated by Stephan and Busse [1], most
of the heat (and mass) flux indeed occurs in the vicinity of
contact lines, i.e. transition regions between a liquid vol-
ume and a thin film adsorbed on the heater.

Burelbach et al. [2] developed a model describing the tem-
poral evolution of the film thickness and analysed the film
stability. Their model accounts for the following effects:
mass loss (gain), vapour recoil, thermocapillarity, viscous
forces, surface tension and molecular forces due to Van der
Waals interactions with the substrate. The purpose of this
paper is to generalize Burelbach’s model by including var-
ious effects. First, following Stephan’s work, we consider
the saturation temperature at the interface to depend on
the disjoining pressure and the curvature of the interface.
Rigorously, the recoil pressure and the viscous stress could
also influence the saturation temperature but, for the con-
ditions studied on this paper, their role is negligible. Note
that, when the molecular interactions are opposed to evap-
oration, a flat non-evaporating film of microscopic thick-
ness is possible. One of the purposes of the present paper
is to study its stability. Secondly, using the laws of non-
equilibrium thermodynamics for interfaces, we relax the as-
sumption that liquid and vapour temperatures were equal.
This jump of temperature was studied theoretically (with
a general thermodynamic modelling) by Bedeaux [3] and
experimentally, during steady-state liquid evaporation, by
Fang and Ward [4]. Thirdly, our model will also take into
account the thermal conductivity of the solid wall [5].

The structure of the paper is the following. In Section
II, the set of governing equations is established, and a
lubrification-type model is derived. In Section III, we per-
form a linear stability analysis in a simplified case (no
influence of Van der Waals repulsion, negligible thermal
resistance of the wall and conductivity of vapour phase).
Section IV presents the numerical results for the complete
model. Finally, conclusions are outlined in Section V.

II. Model

We consider a thin viscous liquid layer bounded above by
its own vapour and below by a uniformly heated rigid plate.
The unknown position of the vapour-liquid interface (z) is
described by a function of the coordinates x, y and time t:
z = ξ(x, y, t).

Fig. 1. The studied system is composed of a rigid substrate
on which lies a volatile liquid film. The latter is in con-
tact with its own vapour at the interface z = ξ(x, y, t).

Fig. 1 shows the configuration of the problem and the
Cartesian coordinate system (x, y, z) with the origin at
the wall. J (x, y, t) is the interfacial mass flux, T (Σ) is
the temperature of the interface, and TH is the constant
temperature of the heated plate at z = −dw with dw

the thickness of the solid. The normal unit vector, ori-
ented towards the vapour, is n = (−∇ξ, 1)(1 + |∇ξ|2)−1/2

where ∇ = (∂x, ∂y) and the tangent unit vectors are t1 =
(1, 0, ∂xξ)(1 + (∂xξ)2)−1/2, t2 = (0, 1, ∂yξ)(1 + (∂yξ)2)−1/2.
Some quantities may be discontinuous across the liquid-
vapour interface. If q is one of these quantities, we will
note its value in the vapour and liquid phase respectively
by qv and ql, with {q}− = qv − ql.

The liquid layer is laterally unbounded and thin enough
so that gravity effects are negligible. We assume that the
liquid is Newtonian, incompressible and that its properties
(except the surface tension) are constant. We also consider
that the density (ρ) and the dynamic viscosity (η) are both
much greater in the liquid than in the vapour [2]. Formally,



we assume:
ρv

ρl
→ 0

ηv

ηl
→ 0

A. Governing equations

Flow of the liquid is described by the equation of continu-
ity, the momentum balance (Navier-Stokes) and the energy
balance. Under the hypotheses above, they read, respec-
tively,

∇.vl = 0 (1)

ρl (∂tvl + vl.∇vl) = −∇pl + ηl∆vl (2)

∂tTl + vl.∇Tl = κl∆Tl (3)

where ρl is the liquid density, ηl is the liquid dynamic vis-
cosity and κl is the liquid thermal diffusivity. pl denotes
the liquid pressure, vl is the liquid velocity vector with
components u, v, w in the x-, y- and z-directions, and Tl is
the liquid temperature. Eqs(1-3) are valid for 0 ≤ z ≤ ξ.
The solid is taken into account [5] by coupling the equation
(3) with the thermal conduction equation in the solid for
−dw ≤ z ≤ 0, written in the quasi-steady approximation

∆Ts = 0

where Ts is the solid temperature.

B. Boundary conditions

Eqs(1-3) should be completed by suitable boundary condi-
tions: [5, 7]

B.1 At the walls (z = 0 and z = −dw)

At the heated solid boundary (z = 0), we assume no-slip
condition:

v = 0

For the temperature, there are 3 boundary conditions.
Firstly, two at z = 0 to ensure the conditions of conti-
nuity of both the solid and liquid temperatures and solid
and liquid heat fluxes

Ts = Tl − λs∂zTs = −λl∂zTl

and secondly, one at z = −dw to impose a uniform temper-
ature at the other side of the solid Ts = TH .

B.2 At the free surface (z = ξ(x, y, t))

At the liquid-vapour interface, the boundary conditions are
conservations of mass, momentum and energy completed
by the kinematic condition [7]. The latter reads

vΣ.n =
∂tξ

√

1 + (∇ξ)2
(4)

where vΣ is the velocity of the interface.

The jump mass balance is

J = ρv(vv.n − vΣ.n) = ρl(vl.n − vΣ.n) (5)

where vv is the vapour velocity and ρv is the vapour den-
sity.

As the fluid is incompressible and Newtonian, we can write
the stress tensor: T = −pI + 2ηd where I is the identity
tensor, p the pressure, η the dynamic viscosity and d the
rate of deformation tensor. If we suppose that the surface
tension decreases linearly with the temperature, we have
the equation of state: γ = γr − γs

r(T (Σ) − Tsat) where γr is
the surface tension at the reference temperature Tsat and
T (Σ) = Tl|z=ξ.
With these properties, the momentum jump is

J {v}− − {T .n}− − pd.n = ∇sγ − γ (∇s.n) n (6)

where ∇s = (I − nn).∇ is the surface gradient operator
and pd is the disjoining pressure. This concept was set out
by Derjaguin [8] to quantify the interactions between a thin
film and its interfaces (solid and/or gas). In this work, we
shall use the Lennard-Jones potential. Consequently, the
disjoining pressure reads [9]

pd =
A

ξ3
− R

ξ9

where the first term is the attraction and the second is the
repulsion. Here, we will consider the case A > 0 and R < 0
which corresponds to a stabilising Van der Waals force.
The projection of Eq.(6) on the normal gives the expression
of the normal stress boundary condition

−pv + pd + pl − n.τl.n = pσ +
J 2

ρv
(7)

where pσ = −2γK and the mean film surface curvature K
is defined by [7]

K = −

∇s.n

2
=

∂2
xxξ(1 + (∂yξ)2) + ∂2

yyξ(1 + (∂xξ)2) − 2∂xξ∂yξ∂2
xyξ

2 [1 + (∂xξ)2 + (∂yξ)2]3/2

The projection of Eq.(6) on the tangents (i = 1, 2) gives

n.Tl.ti = ∇sγ.ti =
σi

(1 + ξ2
i )1/2

=
∂σ

∂T

∂iT + ∂iξ∂zT

(1 + ξ2
i )1/2

(8)

The jump energy balance is

J
{

L +
1

2
[(vv − vΣ).n]

2 − 1

2
[(vl − vΣ).n]

2

}

+ λl∇Tl.n

−λv∇Tv.n − τ
v
(vv − vΣ).n + τ

l
(vl − vΣ).n = 0

where λl and λv are the thermal conductivities of the liquid
and of the vapour, L is the vaporisation latent heat. If
we neglect viscous and kinetic energy effects, the energy
balance at the interface gives

{Jq}− = −LJ (9)

where

Jq,l = −∇Tl.n (10)

Jq,v = −λ∇Tv.n (11)

The last two boundary conditions arise from the irre-
versible thermodynamics, in particular from the interfacial



entropy production (σs). If we suppose that the evapora-
tion is slow, σs is [3]

σs =

{

[Jq + J sT ]

[

1

T
− 1

T (Σ)

]}

−

−
{J (µ − µs)}

−

T (Σ)
(12)

where s is the entropy, µ and µs are the liquid and the
interfacial chemical potential. According to the equation
(12), the interfacial behaviour is governed by two general-
ized forces (the differences of temperature and of chemical
potential). Developing Eq.(12) and using L = hv − hl and
hv = µv + Tvsv and hl = µl + Tlsl, we obtain

σs = −Jq,v
1

TvTl
{T}− − J 1

Tl
(sv{T}− + {µ}−) (13)

We assume that Tv and Tl are close to a temperature of ref-
erence (Tr) and we develop at first order. Then, developing
the second term (details will be published elsewhere) and
assuming that Tr = Tsat, Tl = Tr + δTl and Tv = Tr + δTv,
we obtain the two interfacial constitutive relations. They
give the two generalized fluxes in the non-equilibrium state,
that read











Jq,v = −Lqq
1

T 2

sat

{T}− + Lqw
L

T 2

sat

(Tl − Tsat,loc)

J = −Lwq
1

T 2

sat

{T}− + Lww
L

T 2

sat

(Tl − Tsat,loc)
(14)

where Lqq, Lww, Lqw and Lwq are phenomenological co-
efficients. Lqw = Lwq according to the Onsager-Casimir
reciprocity relations [10]. With the second principle Lqq

and Lww must be positive and LqqLww ≥ L2
qw. Tsat,loc

includes the modification of the saturation temperature at
the interface because of some microscopic effects (disjoining
pressure and curvature) that cannot be neglected [1]

Tsat,loc = Tsat

(

1 +
pd − pσ

ρlL

)

(15)

C. Dimensionless equations and parameters

We choose ξ0,
ξ2

0

νl
, νl

ξ0

,
ρlν

2

l

ξ2

0

, λl∆T
ξ0L

and λl∆T
ξ0

to scale the

length, time, velocity, pressure, mass flux and heat flux,
with ξ0 a characteristic thickness and ∆T = (TH − Tsat).
The dimensionless temperature (noted T in the following)
is defined by T−Tsat

∆T . With these definitions, the dimen-
sionless equations are expressed as follows.

C.1 Liquid phase equations

∇.vl = 0 (16)

∂tvl + vl.∇vl = −∇pl + ∆vl (17)

∂tTl + vl.∇Tl = P−1∆Tl (18)

C.2 Boundary conditions

• At the liquid-substrate interface (z = 0):

ul = vl = wl = 0 (19)

Ts = Tl (20)

−λs∂zTs = −λl∂zTl (21)

• At the bottom of the substrate (z = −dw

ξ0

):

Ts = 1 (22)

• At the interface (z = ξ(x, y, t)):

Kinematic condition:

vΣ.n =
∂tξ

√

1 + (∇ξ)2
(23)

Conservation laws:

EJ = (vl − vΣ).n =
2

3
D(vv − vΣ).n (24)

pd + pl − n.Tl.n = (3S − 2MP−1Tl)∇s.n +

pv +
3

2
E2D−1J 2 (25)

n.Tl.ti = −MP−1
∇Tl.ti (26)

J = −∇Tl.n + λ∇Tv.n (27)

Note that in Eq.(25), pv = ps(Tsat) is by definition con-
stant, neglecting hydrodynamics stresses in the vapour.
We can extract Tv and Tl from phenomenological laws (14),
which results in the following dimensionless equations:

Tv = −HrJq,v + Tl(1 + Hc) − φHc(pd − pσ) (28)

Tl = HjHcJq,v − HjJ + φ(pd − pσ) (29)

The dimensionless parameters that appear in the above
equations are defined in Table I.

TABLE I
Dimensionless parameters.

Ratio of the vapour to liquid densities: D = 3
2

ρv

ρl

Evaporation number: E = λl∆T
νlLρl

Marangoni number: M =
γs

r∆Tξ0

2ρlνlκl

Prandtl number: P = νl

κl

Surface tension: S = γrξ0

3ρlν2

l

Ratio of the vapour to liquid thermal

conductivities: λ = λv

λl

Influence of the disjoining pressure and the curvature

over the saturation temperature: φ =
Tsatν

2

l

L∆Tξ2

0

Influence of the thermal conductivity of the solid:

CS = dwλl

ξ0λs

Interfacial transfer parameters:

Hr =
λlT

2

sat

Lqqξ0

Hc =
LqwL

Lqq

Hj =
LqqλlT

2

sat

(L2
qw−LqqLww)ξ0L

2

D. Long-wave theory

Assuming that the space variations along x and y are much
slower than those in the z-direction, we can apply the long-
wave theory [2, 5]. We define a small parameter ε that is



the ratio between the mean film thickness and the charac-
teristic wavelength of horizontal modulations: ε = ξ0

λ ≪ 1.
We then rescale space and time variables as

α = εx β = εy ω = z ι = εt

If we assume that u, v, J , T = O(1), due to the equation
of continuity w = O(ε). In order to be able to keep the
influence of the pressure terms, we take p, pd, pσ = O(ε−1).
All variables are expanded in powers of ε :

u = u0 + εu1 + . . . v = v0 + εv1 + . . .

w = ε(w0 + εw1 + . . .) T = T0 + εT1 + . . .

Jq = Jq,0 + εJq,1 + . . . J = J0 + εJ1 + . . .

p = ε−1(p0 + εp1 + . . .)

The aim is to take into account all the physical phenom-
ena, it is thus necessary to include the parameter ε in the
definition of some dimensionless numbers (table I) :

D = ε3D̃ E = εẼ M = ε−1M̃ S = ε−3S̃

Hj = H̃j Hr = H̃r Hc = H̃c φ = εφ̃

CS = C̃S P = P̃ C = C̃

where the tilded quantities are of order 1, and in the fol-
lowing, we will omit tildes.

If we substitute these definitions in the system of dimen-
sionless equations, at first order, we obtain an equation to
describe the evolution of the film thickness (details will be
published elsewhere). If we go back to the initial coor-
dinates (x, y, z, t), we obtain a fourth order differential
equation:

∂tξ + EJ + ∇.

[

ξ3

3

dpd

dξ
∇ξ

]

+ ∇.
[

Sξ3
∇(△ξ)

]

(30)

−∇.
[

MP−1ξ2
∇ (C1ξ)

]

− ∇.
[

D−1E2J ξ3
∇J

]

= 0

where the mass flux J = λC2 −C1. The effects of the dis-
joining pressure and of the curvature on the saturation tem-
perature as well as the thermal conductivity of the vapour
and at the substrate are included in variables C1 and C2 :

C1 =
N1

D
C2 =

N2

D

where

N1 = (ξ − Hrλ − χ)(φΩ − 1) + (1 + Hc)Hjλ(Hc(φΩ − 1) − 1)

N2 = φΩ(CS + HcHj + ξ − (1 + Hc)Hj)

D = CS((1 + Hc)
2Hjλ − Hrλ − χ) + Hj(Hrλ + χ) +

(CS − Hrλ + Hj((1 + Hc)
2λ − 1) − χ)ξ + ξ2

with Ω = (pd − pσ) and χ the height at which the vapour
temperature is equal to the saturation temperature.

The relation (30) is composed of various terms: the first
one represents the temporal evolution of the thickness, the
second one the mass loss, the third one the disjoining pres-
sure, the fourth one the surface tension, the fifth one the
thermocapillarity and the sixth one the vapour recoil.

III. Stability analysis

In order to study the linear stability of thin film, we write
its thickness as the superposition of a flat reference state
and small normal mode disturbances

ξ = ξ∗0(t) + ǫ
∑

k

ξk(0) expσkt expikx (31)

where ξ∗0(t) is the state of reference i.e. a particular solu-
tion of Eq.(30), ǫ a small parameter, k is the wavenumber,

ξk(0) is the initial amplitude and σk the growth rate of the
mode of wavenumber k.

Eq.(30) being very complex, the stability is carried out
by neglecting the repulsive Van der Walls forces (R = 0),
the thermal resistance of the solid (CS = 0), the thermal
conductivity of the vapour (λ = 0) and the jump of tem-
perature across the interface (Lqq → ∞). In this case, the
phenomenological law (29) is reduced to

Tl = −HjJ + φ(pd − pσ)

If we pose φ = 0, this equation is similar to the Hertz-
Knudsen relation, that is obtained from the kinetic theory
as used e.g. by Burelbach et al. [2]. The coefficient Hj is
then given by

Hj = − (2 − f)(ρl − ρv)λlTsat

2fξ0L2ρlρv

√

2πRgTsat

Mw

where Rg is the gas constant, Mw is the molecular weight
and f is the evaporation coefficient. With these hypotheses,
the evolution equation for the thickness reduces to

∂tξ − ∇.

[

A∇ξ

ξ
− Sξ3

∇(△ξ) + MP−1ξ2
∇ (C1ξ) (32)

+D−1E2J ξ3
∇J

]

+ EJ = 0

with J = −C1 = −Aφ+ξ3(x,t)(1−3Sφ∆ξ(x,t))
ξ3(x,t)(ξ(x,t)−Hj)

.

To analyse the stability of the film, we substitute (31) in
(32) and carry out the development of the result in series of
power of ǫ. We can then study the various orders. In this
work, because of evaporation, we must take into account
at least two orders: order 0 and order ǫ1.

A. At leading order (i.e ǫ → 0)

At the lowest order, we have

∂tξ0(t) = − E
[

ξ3
0(t) − Aφ

]

ξ3
0(t)(ξ0(t) − Hj)

(33)

As the Hamaker constant is positive (A >0), this equa-
tion admits a stationary solution (ξ0 = 3

√
Aφ), which re-

sults from the equilibrium between the evaporation and the
attractive intermolecular interactions. Fig. 2 illustrates 3
solutions of Eq.(33). We can observe that the thickness al-
ways converges towards 3

√
Aφ, proving that the stationary

film is stable to homogeneous disturbance.
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Fig. 2. Solutions of Eq.(33) for various initial conditions:
ξ(x, t = 0) = 3

√
Aφ = 9.46 Angström (solid line),

ξ(x, t = 0) > 3
√

Aφ (dotted line) and ξ(x, t = 0) <
3
√

Aφ (dot-dashed line). The liquid used is ammonia
(table II).

B. At first order

If we develop Eq.(32) at the next order in ǫ, we obtain the
growth rate of the perturbations:

σ =
(1 + ξ0k

2Sφ)
[

ξ3
0k2(Hj + 3Mφ − ξ0) − 3Eφ

]

ξ0(ξ0 − Hj)φ
(34)

with ξ0 = 3
√

Aφ and M = MP−1.
The stationary film will be stable if σ < 0 for all k. An
analysis of Eq.(34) shows that this holds if

M < Mc =
ξ0 − Hj

3φ
(35)

When M > Mc, a short-scale instability occurs, due to
the variations of the local saturation temperature (Eq.(15))
inducing Marangoni convection.

IV. Numerical treatment

Eq.(30) is a strongly nonlinear partial differential equation.
We will now look for its stationary solutions. The fourth
order differential equation can be recast into a system of
four ordinary differential equations. To solve this system,
we used the software AUTO97 [11]. Integration requires
initial conditions and boundary conditions. As initial con-
ditions, we start with a flat film ξ = 3

√
Aφ, i.e. all its

derivatives set to zero. As boundary conditions, we impose
in x = 0 the thickness of the film (ξ = 3

√
Aφ), its first

derivative (∂xξ = 0), a small value for its second deriva-
tive (≈ 10−7). Finally, we impose the curvature of the film
(Kend) at the end of the integration domain (x = L). The
value of ∂3

x3ξ adapts itself according to the final curvature.

ξ = 3

√

Aφ; ∂xξ|x=0 = 0; ∂2
xξ|x=0 = 10−7; ∂2

xξ|x=L = Kend

The advantage of being able to impose Kend, is to create
a connection between the microscopic model and a macro-
scopic region, in order to simulate the entirety of a contact
region. Indeed, the latter consists of three zones: an ad-
sorbed film (where J = 0), a microscopic region (model

described here) and a macroscopic part where the capil-
lary pressure dominates. Consequently, the link between
the two scales is established when: Kend = Kmacro.

TABLE II
Data for the computation of the presented

examples (liquid: NH3 at Tsat = 300K).

Density of liquid (ρl): 600.0 kg m−3

Density of vapour (ρv): 9.0 kg m−3

Dynamic viscosity of liquid (νl): 2.1610−6 m2 s−1

Evaporation coefficient (f): 1
Gas constant (Rg): 8.31 J K−1 mol−1

Hamaker constant (A): 2.10−21 J
Molecular weight (Mw): 0.017 kg mol−1

Specific heat of evaporation (L): 118.104 J kg−1

Surface tension (γ): 0.02 N m−1

Variation of surface tension with temperature
(γs

r): 0.00005 N m−1 K−1

Thermal conductivity of liquid (λl): 0.480 W m−1 K−1

A. Validation of the model

In order to validate our model, we compared our solutions
of Eq.(30) with those of Stephan and Busse [1]. Figs 3
and 4 illustrate the solutions for

MP−1 = 0 D−1E2 = 0 CS = 0 R = 0

The fluid is ammonia at 300 K; its properties are repre-
sented in table II. For this case, we choose ξ0 = 10−8m

and the boundary conditions in Ref. [1] are Kmacro =
1.1 mm−1 and TH = 301 K.
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Fig. 3. Profile of the contact line shape

In the profile of the contact line (see Fig. 3), we can
distinguish 3 zones. First, a film where the thickness
(which is equal to 9.46 Angström) is such that the ad-
hesion forces counterbalance evaporation (the heat flux is
zero, see Fig. 4). Secondly, the microscopic zone. As soon
as the thickness increases, the local saturation tempera-
ture decreases, which causes a variation of the heat flux:
it increases strongly, reaches a maximum (5310 Wcm−2,
Stephan and Busse found 5300 Wcm−2) and then drops.
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Fig. 4. Profile of the heat flux

At the maximum, the curvature is 9.89 106m−1 (the value
of Stephan and Busse is ≈ 107m−1). Thirdly: the macro-
scopic zone: the role of the disjoining pressure becomes
negligible and the curvature of the contact line reaches the
specified value and remains constant.

The total heat transferred in the micro region is

Qmicro =

∫ ξ2

ξ1

Jqdξ = 3.23 W m−1

with ξ1 = 0 m and ξ2 = 210−7 m (for the same conditions,
Stephan and Busse obtain 3.4W m−1). Because of the slow
decay of the heat flux (J ∝ 1

x for x → ∞), we cannot
neglect the heat flux in the macro-region. So, to describe
the evaporation near of a contact line, we must combine
this model for the micro-region with the heat conduction
equation in the macroscopic region.

B. Results and discussion

The model presented here is composed of many parameters
which depend on the physical properties of the fluid and
on external constraints. The figures below illustrate the
behaviour of the heat flux and of the contact angle when
some of these numbers vary. The microscopic contact angle
is defined as the angle between the tangent at the interface
and the wall. Our analysis concerns the following physical
effects: firstly thermal resistance of the solid, secondly the
overheating, thirdly the Marangoni convection, fourthly
the variation of the local saturation temperature at the in-
terface and fifthly the chemical potential non-equilibrium
at the evaporating interface (parameter Hj). The numeri-
cal computations were carried out under the following con-
ditions: the fluid is ammonia, Tsat = 300K, TH = 301K

(when ∆T is not fixed) and Kmacro = 1.1mm−1.

Figs 5 and 6 display the impact of the thermal resistance of
the solid though the parameter CS on the microscopic con-
tact angle and on the heat flux when M = 0, E2D−1 = 0
and R = 0. If we assume that dw, λl and ξ0 are constant,
we observe that when λs increases (i.e. when the thermal
resistance of the solid decreases), the heat flux and the con-
tact angle increase.
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Fig. 5. The variation of the microscopic contact angle with
the thermal resistance of the solid: CS = 0 (solid line),
CS = 1 (dotted line), CS = 5 (dot-dashed line) and
CS = 10 (dashed line).
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Fig. 6. The variation of the heat flux with the thermal
resistance of the solid. Same legend as for Fig. 5

Figs 7 and 8 show the contact angle and the heat flux for
various values of ∆T when M = 0, E2D−1 = 0, R = 0 and
CS = 0. We note that the heat flux and the contact angle
increase with ∆T .

The influence of the Marangoni number is represented
in Figs 9 and 10. These simulations are realised for:
E2D−1 = 0, R = 0 and CS = 0. We can observe that,
when M increases, the peak of the heat flux decreases while
the macroscopic value of the contact angle increases. The
value of M is limited: Mmax ≈ 1.7. Beyond, instabili-
ties appear. We find the conclusions of the linear stabil-
ity analysis. Indeed, for ∆T = 1K, the Eq.(35) gives:
Mc = 1.78. Actually, this threshold is never reached. For
example, for ammonia (with ∆T = 1K): M = 0.00887.

Figs 11 and 12 show how the heat flux and the contact angle
are affected by variations of the local saturation tempera-
ture at the interface (thanks to a variation of the para-
meter φ). In the computations, we assume that M = 0,
E2D−1 = 0, R = 0 and CS = 0. When increasing φ, the
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Fig. 7. The variation of the microscopic contact angle with
∆T : ∆T = 0.5K (solid line), ∆T = 1K (dot-dashed
line) and ∆T = 1.5K (dotted line).
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Fig. 8. The variation of the heat flux with ∆T . See Fig. 7
for legend.

effects of disjoining pressure and of the curvature on this
temperature reduce the volatility of the liquid and cause a
decrease of the heat flux and of the contact angle.

Figs 13 and 14 show how the non-equilibrium evaporation
affects the heat flux and the contact angle in the case where
M = 0, E2D−1 = 0, R = 0 and CS = 0. As Hj increases
(in absolute value), the kinetic resistance to evaporation
increases and thus the heat flux drops. The contact angle
decreases also.

V. Conclusions

Thanks to the lubrification theory, we developed a mathe-
matical model for a thin liquid film in contact with a solid
wall and its own vapour. We obtain an evolution equation
for the film thickness when the interface is subject simul-
taneously to the following effects: surface tension, thermo-
capillarity, evaporation, vapour recoil, disjoining pressure,
the temperature discontinuity between vapour and liquid
and the variation of the saturation temperature. This equa-
tion generalized the result obtained by Burelbach et al. [2].

Neglecting the repulsive molecular forces, the thermal
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Fig. 9. The variation of the microscopic contact angle
with Marangoni number: M = 0 (solid line), M = 1
(dot-dashed line), M = 1.5 (dotted line) and M = 1.7
(dashed line).
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Fig. 10. The variation of the heat flux with Marangoni
number. Same legend as for Fig. 9

conductivity of the vapour, the termal resistance of the
solid and the jump of temperature across the interface,
we analyse the linear stability of this film. We showed
that because of the influence of the disjoining pressure on
Tsat,loc, an adsorbed film is possible (equilibrium between
the evaporation and the attractive intermolecular interac-
tions). This adsorbed film is stable, despite the destabiliz-
ing Marangoni effects, provided the Marangoni number is
less than a critical value (M <

ξ0−Hj

3φ ).

Then, under particular conditions (generally we neglected
the recoil pressure, the thermal conductivity of the vapour
and the repulsive forces), we carried out numerical simula-
tions in order to highlight the influence of different mecha-
nisms on the heat flux and on the apparent contact angle.
The former is supported by a great jump of temperature
between the wall and the saturation temperature of the
liquid (∆T ). On the other hand, it decreases when the
thermal resistance of the solid, the Marangoni number, the
variability of the local saturation temperature and the ki-
netic resistance to evaporation increase. Concerning the
contact angle, we can conclude that it increases with ∆T
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Fig. 11. The variation of the microscopic contact angle
with φ: φ = 0.11935 (solid line), φ = 1 (dot-dashed
line) and φ = 5 (dotted line).

0 1 2 3 4 5

x 10
−7

0

1

2

3

4

5

6
x 10

7

x [m]

H
ea

t f
lu

x 
[W

/m
²]

Fig. 12. The variation of the heat flux with φ. See Fig. 11
for legend.

and the Marangoni number while it decreases when the
thermal resistance of the solid, the variability of the local
saturation temperature and the kinetic resistance to evap-
oration increase.
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