

Surface Rheology & Liquid Film Dynamics

+ Microfluidics applications

Benoit Scheid

TIPs – Transfers, Interfaces and Processes Université Libre de Bruxelles

bscheid@ulb.ac.be

COST CM1101, April 15th 2015

Surface rheology: motivation

- Interfaces between two immiscible fluids are made more stable by "particles"
- Fat globules in ice cream
- Asphaltenes in crude oil
- · Proteins in food products

- Goff, D.; <u>http://www.foodsci.uoguelph.ca/dairvedu/icmilos2.html</u> (ice cream)
- <u>www.itopf.com/fate.html</u> (oil spill emulsion)
- McManus, W.; <u>http://bioweb.usu.edu/emlab/Galleries/foods/casein_micelles_in_milk.html</u> (casein)

[G. G. Fuller, Stanford University, seminar on surface rheology]

Surface rheology: motivation

- Interfacial rheology is the main reason for which surfactants are essential in
 - Food
 - Pharmaceuticals
 - Cosmetics
 - Paints
 - Oil recovery
 - Detergency
 - Multiphase reactions and separations
 - Water remediation
 - Fire-fighting foams
 - _ ...
 - But also in Biology: i.e. lung surfactants

Even in "clean" system, impurities act as surface-active agent!!!

Surface rheology: background

• Surface tension: daily observations

Surface rheology: background

• Surface tension: measurement

$$\gamma = \frac{F}{L}$$
; *L* is the perimeter

Surface rheology: background

• Surface tension: concept

Surface rheology: background Surface tension and soluble surfactants

Fig. 16-13. Decrease in the surface tension of water when a straitchain amphiphile is added. Key: CMC = critical micelle concentration. (Replotted from H. Schott, J. Pharm. Sci. 69, 852, 1980.)

CMC

Polar head

Water soluble

Gibbs monolayer

[MFM, Homsy et al., 2007]

Surface rheology: background Surface tension and insoluble surfactants

Insoluble Monolayers: Langmuir Films

• There are molecules that are able to spread on the surface of liquids but are insoluble. These are referred to a *Langmuir* monolayers

• These molecules are *amphiphilic* and contain hydrophilic portions attached to hydrophobic pieces.

• The hydrophobic portion must be large enough to render the molecule insoluble in the subphase. The hydrophilic part must have a strong affinity to water and anchor the molecule to the surface.

Surface rheology: background Surface tension and insoluble surfactants

Insoluble Monolayers - Examples

fatty acids/alcohols

phospholipids

cholesterol

Polymers (poly tert butyl methacrylate)

Liquid film dynamics: background Interfacial phenomena and instabilities

Rayleigh-Taylor

Rayleigh-Plateau

Kapitza

vidéo

Suspended films

Driving force: gravity

(condensed or painted films on a ceiling) <u>Fiber coating</u> Driving force: capillarity (hairs, capillaries) Falling films

Driving force: inertia

(rain on a windshield) (cooling electronic device) (evaporators)

Liquid film dynamics: background Partial wetting inducing rivulet instabilities

m m

Painting

30

Liquid film dynamics: background Other examples

<u>Hydraulic jump</u>

Motivations of this lecture

- Interfacial phenomena dominate systems with at least one small dimensions
 - Liquid films
 - Microfluidics
- In almost all liquid films and microfluidic problems, surfactants (or impurities) are present!
 - Need for a comprehensive theoretical framework that combines surface rheology and film dynamics
 - Boussinesq-Scriven constitutive equation
 - Lubrication approximation
 - \rightarrow Model of reduce dimensionality (highly nonlinear but solve faster)

Outline

- Surface Rheology
 - Complex interface
 - Surface viscosity
 - Surface elasticity
 - Interfacial boundary condition
- Liquid Film Dynamics
 - Shear vs. extensional flow
 - Soap film vs. dip coating
 - Experiments with surface elasticity
 - Experiments with surface viscosity
- Applications to Microfluidics

Characterization of complex interfaces

[G. G. Fuller, Stanford University, seminar on surface rheology]

Constitutive Equation for a Newtonian fluid/fluid interface Linear Boussinesq-Scriven surface fluid model

[Boussinesq, 1913; Scriven, 1960; Slattery, Sagis & Oh, 2007]

compressible fluid bulk

$$\begin{aligned} \mathbf{T} &= -P\mathbf{I} + \boldsymbol{\sigma} \\ \boldsymbol{\sigma} &= (\kappa_b - \frac{2}{3}\mu)(\nabla\cdot\mathbf{u})\mathbf{I} + 2\mu\mathbf{D} \\ \mathbf{D} &= \frac{1}{2} \big[(\nabla\mathbf{u}) + (\nabla\mathbf{u})^T \big] \end{aligned}$$

Bulk coefficient of viscosity: $\kappa_b \ge 0$ Bulk shear viscosity: $\mu \ge 0$

Usually
$$\kappa_b >> \mu$$

[Leal, 2007]

Stokes hypothesis: Isotropic and Newtonian fluid (valid for Mach << 1)

 $\kappa_{b} = 0$

Quizz: In practical applications, liquids are incompressible: $\nabla \cdot \mathbf{u} = 0$ What about $\nabla_s \cdot \mathbf{u}_s = 0$? compressible fluid surface

 $egin{aligned} \mathbf{T}_s &= \gamma \mathbf{I}_s + oldsymbol{\sigma}_s \ oldsymbol{\sigma}_s &= (\kappa - arepsilon) (
abla_s \cdot \mathbf{u}_s) \mathbf{I}_s + 2arepsilon \mathbf{D}_s \ & \mathbf{D}_s = rac{1}{2} \left[(
abla_s \mathbf{u}_s) \cdot \mathbf{I}_s + \mathbf{I}_s \cdot (
abla_s \mathbf{u}_s)^T
ight] \end{aligned}$

 $\begin{array}{ll} \mbox{Surface dilatational viscosity:} & \kappa \geq 0 & \mbox{Usually} \\ \mbox{Surface shear viscosity:} & \epsilon \geq 0 & \end{array}$

Can the Stokes hypothesis be valid for a fluid surface (at low frequency)?

Surface viscosity

Viscous dissipation associated with shearing/dilating a "populated" interface

Planar interface: $\mu^* = \varepsilon + \kappa \sim 10^{-6} - 10^{-3}$ Pa.s.m

Boussinesq number: $Bq = \frac{\mu^*}{\mu \ell}$

Boundary conditions at a liquid-gas interface

$$abla_{\!s} \cdot \mathbf{I}_{\!s} = 2H\mathbf{n}
onumber \ H = -rac{1}{2}
abla_{\!s} \cdot \mathbf{n}$$

1) Jump momentum balance:

$$\begin{bmatrix} \mathbf{T} \end{bmatrix}_{g}^{l} \cdot \mathbf{n} = \nabla_{s} \cdot \mathbf{T}_{s} \\ \begin{bmatrix} \mathbf{T} \end{bmatrix}_{g}^{l} \cdot \mathbf{n} = 2\gamma H \mathbf{n} + \nabla_{s} \gamma + \nabla_{s} \cdot \boldsymbol{\sigma}_{s} \\ \text{Stress from the} \\ \text{liquid phase} \\ \text{pressure} \\ \text{stress} \\ \text{stres$$

Quizz: What is the static limit?

2) Jump mass balance:

$$\partial_t \Gamma + \nabla_s \cdot (\Gamma \mathbf{u}_s) = D_s \nabla_s^2 \Gamma + \mathbf{j}$$
 [Stone, 1989]

Quizz: What is the insoluble limit?

Surface elasticity

Marangoni effect

- Surface tension gradient
 - James Thomson, older brother of Lord Kelvin (William Thomson) in 1855:
 - 'On certain curious motions observable at the surfaces of wine and other alcoholic liquors'
 - Tears of wine

[[]Images: John Bush, MIT]

– Studied by Marangoni at the end of 19th century

Carlo Marangoni (1840-1925)

Quizz: Laplace pressure

Two soap bubbles are connected by a closed valve.
 What happens when the valve is open?

(Hint: fluids flow from high to low pressure)

Quizz: Marangoni effect

Soluto-capillary effect

Thermocapillary effect

[MFM, Homsy et al., 2007]

Marangoni instability: drying of liquid films

ex: orange peal in drying

Outline

- Surface Rheology
 - Complex interface
 - Surface viscosity
 - Surface elasticity
 - Surface boundary conditions
- Liquid Film Dynamics
 - Shear vs. extensional flow
 - Soap film vs. dip coating
 - Experiments with surface elasticity
 - Experiments with surface viscosity
- Applications to Microfluidics

Quizz: Making a film of pure viscous liquid

Where is the pressure minimum? Is this stable?

Quizz: Making a soap film

Pulling stable films need strong interfacial stress

What means strong? \rightarrow "shear" distinguished limit

$$Ca = \frac{\mu V}{\gamma} \ll 1$$
 $M = \frac{\Delta \gamma}{\mu V} \gg 1$

Outline

- Surface Rheology
 - Complex interface
 - Surface viscosity
 - Surface elasticity
 - Surface boundary conditions
- Liquid Film Dynamics
 - Shear vs. extensional flow
 - Soap film vs. dip coating
 - Experiments with surface elasticity
 - Experiments with surface viscosity
- Applications to Microfluidics

Soft Matter 11, 2758 (2015)

PAPER

View Article Online View Journal

Cite this: DOI: 10.1039/c4sm02661f

Surfactant-induced rigidity of interfaces: a unified approach to free and dip-coated films

Lorène Champougny,^a Benoit Scheid,^b Frédéric Restagno,^a Jan Vermant^c and Emmanuelle Rio^{*a}

Soap films vs. dip coating

Frankel, 1962

soap film

 $h_0/\ell_c = 1.88 \ {
m Ca}^{2/3}$

Is this always true?

Lev Landau 1908-68

Benjamin Levich 1917-87

Boris Derjaguin 1902-94

Soap films vs. dip coating

<u>Frankel, 1962</u>

soap film

Lev Landau 1908-68

Benjamin Levich 1917-87

Boris Derjaguin 1902-94

Experiments with $C_{12}E_6$

Modeling films with partially rigid interfaces

Modeling the dynamic meniscus in stationary regime

Lubrication approximation

 $h\bar{u} = h_0 V$ Mass balance: Momentum balance (Stokes):

 $\partial_x P = \mu \partial_{yy} u$ $\partial_y P = 0$ Jump momentum balance: $P - P_g = \gamma \partial_{xx} h$ $\mu \partial_y u|_h = -\frac{E}{\Gamma} \partial_x \Gamma + (\kappa + \varepsilon) \partial_{xx} u_s$

(Insoluble) surfactant conservation: $\partial_x(\Gamma u_s) = 0$

Quizz: Find the Landau-Levich-Derjaguin scaling law, i.e. $h_0/l_c \sim Ca^{2/3}$ Hint: the interface is stress-free for a pure liquid

At the wall:

soap film : $\partial_y u|_0 = 0$

dip coating : $u|_0$

B.C.: $h(\infty) = 1$, $h'(\infty) = 0$, $h''(\infty) = 0$, $u_s(\infty) = 1$, $\Gamma(-\infty) = 1$ Matching condition: $\frac{h_0}{\ell_c} = \frac{h''(-\infty)}{\sqrt{2}} \operatorname{Ca}^{2/3}$

Theoretical curves

What is the relative variation of surface tension along the film?

Linear versus nonlinear equation of state

Independent measurement of surface elasticity!

All results for $C_{12}E_6$

No influence of confinement: slow adsorption, out-of-equilibrium

Conclusions on surface elasticity

- Experimental/theoretical unification of two independent settings: Dip-coating and soap films
 - Rigidity parameter: a system parameter!

$$\Lambda = \frac{\mathrm{Ma}}{\mathrm{Ca}^{2/3}}.$$

• Constant surface elasticity for soluble surfactant with 'slow' adsorption kinetics

$$E \simeq E_{\text{insol}} \equiv -\Gamma \frac{\partial \gamma}{\partial \Gamma}$$

• Nonlinear equation of state

$$\gamma(\Gamma) = \gamma_0 - E \ln\left(\frac{\Gamma}{\Gamma_0}\right)$$

Outline

- Surface Rheology
 - Complex interface
 - Surface viscosity
 - Surface elasticity
 - Surface boundary conditions
- Liquid Film Dynamics
 - Shear vs. extensional flow
 - Soap film vs. dip coating
 - Experiments with surface elasticity
 - Experiments with surface viscosity
- Applications to Microfluidics

Dip-coating experiments

[Delacotte et al., Langmuir, 2012]

surfactant: DeTAB or decyl trimethyl ammonium bromide

 $h_0/\ell_c = 0.9458 \, \alpha \, C a^{2/3}$

Lubrication Model

In the dynamic meniscus

$$\begin{split} \mu \partial_{yy} u + \gamma \partial_{xxx} h &= 0 \\ \text{shear viscous surface tension} \\ \text{forces forces} \end{split} \qquad H &= h/h_0. \\ U &= u_s/u_0 \\ \end{pmatrix} \\ \mu \partial_y u \Big|_{y=h} &= \mu^* \partial_{xx} u_s \\ \text{shear stress surface viscosity stress} \\ (\mu^* &= \kappa + \varepsilon) \end{aligned} \qquad H &= h/h_0. \\ U &= u_s/u_0 \\ \end{pmatrix} \\ X &= x/\ell \\ \ell_{-} &= h_0 \operatorname{Ca}^{-1/3} \end{aligned} \qquad \beta U'' &= -\frac{6}{H^2} + \frac{2 + 4U}{H} \\ \end{split}$$

$$\beta = Bq Ca^{2/3} \ell_c / h_0 \qquad Bq = \frac{\mu^*}{\mu \ell_c}$$

Flat film b.c.: $H, U \rightarrow 1$ and $H', H'', U' \rightarrow 0$ as $X \rightarrow \infty$

Matching conditions:
$$H''(-\infty) = \sqrt{2} (h_0/\ell_c) C a^{-2/3}$$

 $U(-\infty) = c^{st}$

Curvature of the dynamic meniscus

Curvature of the static meniscus

Matching constant surface velocity

Results

Thickening factor :

$$h_0/\ell_c = 0.9458 \, \alpha \, C a^{2/3}$$

More viscous the interface, thicker the film!

Experiments

$$\alpha = h_0 / h_0^{(LLD)}$$

With surfactant (DeTAB 15cmc)

Conditions for observing this weak constant thickening at large Ca: $Ca^{1/3} \ll 1$ $\tau_a \ll \tau_s$ $\sigma = \Gamma_0/ch_0 \ll 0.01$ no gravity adsorption stretching large reservoir of surfactants

Results

Liquid film dynamics and surface viscosity

Thickening factor :

Independent measurements

Measuring surface shear viscosity

Double wall-ring

Double wan Couette cup

Vandebril S, Franck A, Fuller GG, Moldenaers P, Vermant J(2009) Analysis of a double wall-ring geometry to study interfacial shear rheology. In preparation

²Franck A, Vermant J, Moldenaers P, Fuller GG (2007) System and method for interfacial rheometry; US –Patent applied No:60/970,115

Conclusions on surface shear viscosity

- "Plenty of room" for surface rheology using film dynamics
 - Discriminate between various surface properties
 - Various time scales (adsorption, diffusion, electrostatic, \cdots)
 - Coherence between two independent settings
 - Dip-coating and soap films
 - Rationalization of experimental data
 - Effective surface elasticity
 - Surface viscosity in planar geometry
 - But coupled!
 - Need for other (curvilinear) geometries (antibubbles!)

Workshop: COMSOL

- <u>Tool</u>: Comsol Multiphysics 5.0
 - -<u>PDE</u> solver

PDE: Partial Diff. Eq. ODE: Ordinary Diff. Eq. ADE: Algebraic Diff. Eq.

- Also solves ODE and ADE
- Multiphysics (combines as many equations as needed)
- Finite Element Method
 - Integral (or weak) formulation
 - Moving boundary (deformed Mesh)
 - Arbitrary Lagrangian Eulerian (ALE)

– All-in-one: Drawing, Meshing, Solving, Postprocessing

Background: polymer processing

J.R.A. Pearson, *Mechanics of Polymer Processing* (Elsevier Applied Science Publishers, 1985)

Quizz: extensional or shear flow?

Stretching sheet or fiber Draw resonance instability

$$\partial_t h + \partial_x (hu) = 0 \partial_x (h\partial_x u) = 0$$

$$\begin{cases} h(0,t) = 1 \\ u(0,t) = 1 \\ u(1,t) = D_r \text{ (Draw ratio)} \end{cases}$$

Fiber: $h \rightarrow a$

Threshold: $Dr_c = 20.218$

[Denn, 1971 - Yeow, 1974]

• Spatially uniform tension f(t)

 \rightarrow Feedback mechanism between the two ends

 \rightarrow Sustain oscillations of the thickness h(x,t) for Dr > Dr_c

Nonlinear regime (Comsol)

$$Dr = 21.2$$

$$Dr = 30$$

Exercise 1: Stretching sheet in Comsol

- Geometry: interval for $x \in [0,1]$
- PDE general form and BC:

$$e = h$$
$$\nabla = \partial_x$$

$$e_t + \nabla(eu) = 0$$
$$e(0,t) = 1$$
$$u(0,t) = 1$$
$$u(1,t) = D$$

- set the correct flux condition (flux/source) at x=1: $-\mathbf{n} \cdot \Gamma = -eu$

- <u>Stationary solution</u>: Solutions for a given value of D that can be compared to the analytical solutions for q = eu = 1: $e_s = D^{-x}$ and $u_s = D^x$
 - Initial values: e = u = 1
 - If it is not satisfying, refine the mesh
 - Play with the control parameter D (you can use parametric sweep)
- <u>Time-dependent solution</u> (a thickness perturbation should be introduced)
 - Initial values: $e = D^{-1.1x}$ and $u = D^{x}$
 - Look for time interval of 5 by step of 0.1
 - Look at the behavior of the system for $D \Leftrightarrow D_c$ where $D_c = 20.218$
 - Plot the value of e at x=1 versus time.
 - If the system is damped even for $D > D_{\rm c}$, it shouldn't and it means you probably have to decrease the relative and absolute tolerances.

Exercise 2: Inertia and gravity effects Read the paper and reproduce the stationary and the time-dependent results

Available online at www.sciencedirect.com

SCIENCE d DIRECT®

International Journal of Solids and Structures 42 (2005) 5734-5757

www.elsevier.com/locate/ijsolstr

Effect of inertia and gravity on the draw resonance in high-speed film casting of Newtonian fluids

Fang Cao^a, Roger E. Khayat ^{a,*}, J.E. Puskas ^b

^a Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9 ^b Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9

> Received 16 June 2004; received in revised form 25 October 2004 Available online 17 May 2005

Exercise 3: "Honey" sheet • Viscous sheet stretching due to gravity (i.e. its own weight) $e_t + \nabla(eu) = 0$ $\nabla(eu_x) = -\frac{G}{4}e$ gravity number $G = \frac{R}{F} = \frac{\rho g L^2}{\mu L}$ e(0,t) = 1u(0,t) = 1 $\mathbf{x} \equiv 0$ h(x,t g

 $X \equiv 1$

 $e(1,t)u_x(1,t) = 0$ no stress condition $x \ge 1$ moving 1

Master equation including surface rheology (1D)

Mass balance

 $\partial_t h + \partial_x (hu) = 0$

Transport equation for insoluble surfactant at the interface

 $\partial_t \Gamma + \partial_x (\Gamma u) = D_{\rm s} \partial_{xx} \Gamma$

2D stretching sheet

- Solved with COMSOL
 - moving mesh/boundaries (ALE method)oscillation of half the width :

[Scheid et al., 2009]

Self-alignment

Outline

- Surface Rheology
 - Complex interface
 - Surface viscosity
 - Surface elasticity
 - Surface boundary conditions
- Liquid Film Dynamics
 - Shear vs. extensional flow
 - Soap film vs. dip coating
 - Experiments with surface elasticity
 - Experiments with surface viscosity
- Applications to Microfluidics

Droplet-based Microfluidics

- Droplet = microreacteur $\rightarrow 10 \text{kHz}$
- Sum of basic operations \rightarrow lab-on-a-chip

Make » Fill » Mix » Split » Combine » Drive » Sort

Important role of surfactants in microfluidics !!!

1. Droplet generation in microchannels

Monodispersed droplets can be formed with immiscible fluids in microchannels

 $[Anna \ et \ al., \ 2006]$

Typical values

- Droplet speed: 10 $\mu m/s$ 1 cm/s
- Droplet volume: 1 pL 1 μL (10 μm 1 mm)
- Droplet frequency: 1 1000 Hz

air

L

R

(Simplified explanation)

Liquid volume V, Surface tension γ

Surface energy for a cylindre? $E_{s} = 2\pi R L \gamma = 2V \gamma / R$

destabilisation \Rightarrow dynamical problem

Surface energy for a sphere ?

$$E_{\rm s} = 4\pi N R_{\rm c}^2 \gamma = 3V \gamma/R_{\rm c}$$

If $R_{\rm c} > 3R/2 \Rightarrow$ the droplets are energetically favourable

 \Rightarrow surface tension is responsible for the formation of droplets (or bubbles) in microfluidics

1. Droplet/bubble generation in microchannels

 \Rightarrow Surface tension is responsible for droplet formation BUT····:

A. Confinement

B. Geometry and Hydrodynamic (viscosities, flow rates, ...)

C. Walls and wetting properties

D. Surfactants

 \Rightarrow There is no simple and accurate theory today that can predict the complexity of the observed phenomena

A. Role of confinement

Active research: how the threshold absolute/convective is modified by surface viscosity

B. Role of geometry and hydrodynamics

Christopher & Anna, J. Phys. D: Appl. Phys. 40 (2007) R319–R336

Flow parameters: Q_c , Q_d

C. Role of wetting properties

D. Role of surfactants

Surfactants used to avoid coalescence

Application:

- high-throughput screening
- 2D foam

All effects combined: double emuslion

silanisation of glass to make it hydrophobic

Okushima et al. Langmuir 2004

All effects combined: Multiple emuslion

continuous phase
intermediate phase 1
intermediate phase 2
internal phase

Application: microencapsulation

Weitz group

2. Bubble displacement in microchannels2.1 Unconfined bubbles

Gas/liquid absorption: local approach for bubbly flow

[Mikaelian, Haut, Scheid, Microfluidics & Nonofluidics 2015]

2. Bubble displacement in square microchannels

Importance of boundary conditions on the flow structure

[Mikaelian, Haut, Scheid, Microfluidics & Nonofluidics 2015]

2. Bubble dissolution in square microchannels

[Mikaelian, Haut, Scheid, Microfluidics & Nonofluidics 2015]

2. Bubble displacement in microchannels 2.2 Confined bubbles

[Günther et al., Lab. Chip 2004]

2. Bubble displacement in microchannels

2.3 Bretherton problem

Landau-Levich-Derjaguin: Universal solution

2. Bubble displacement in microchannels Correction to the radius of curvature

$$\frac{h}{\ell_{\rm men}} \approx \left(\frac{\mu U}{\gamma}\right)^{2/3} = Ca^{2/3}$$

Thick film increases curvature !!! \rightarrow h < R

2. Droplet/bubble displacement in microchannels

At what speed travels a confined bubble ?

Mass balance in the frame of reference of the bubble:

$$(\hat{u} - U)\pi R^2 = -2\pi RhU$$
$$\frac{U - \hat{u}}{U} = \frac{2h}{R} \propto \left(\frac{\mu U}{\gamma}\right)^{2/3}$$

2. Bubble displacement in microchannels

The presence of surfactant can "rigidify" the interface as in the LLD problem

Conclusions

- Importance of surfactants in microfluidics
 - Generation of droplets/bubbles
 - Displacement of droplets/bubbles
- Confined droplets/bubbles
 - Lubrication film near the walls
 - Bretherton // Landau-Levich-Derjaguin
- Role of surface rheology
 - Surface elasticity \rightarrow rigidity
 - Nothing has been done so far on surface viscosity effects in microfluidics !!!

Thank you for your attention

Special Thanks: (KUL) Jan Vermant (ETHZ) Tom Verwijlen Joe Samaniuk (LPS) Dominique Langevin Emmanuelle Rio Frédéric Restagno Lorène Champougny (Princeton) Howard Stone (LOF) Jean-Baptiste Salmon (TUDelft) Michiel Kreutzer