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The behavior of thin liquid films is known to be strongly affected by the presence of surfactants at the

interfaces. The detailed mechanism by which the latter enhance film stability is still a matter of debate, in

particular concerning the influence of surface elastic effects on the hydrodynamic boundary condition at

the liquid/air interfaces. In the present work, “twin” hydrodynamic models neglecting surfactant transport

to the interfaces are proposed to describe the coating of films onto a solid plate (Landau–Levich–

Derjaguin configuration) as well as soap film pulling (Frankel configuration). Experimental data on the

entrained film thickness in both configurations can be fitted very well using a single value of the surface

elasticity, which is in good agreement with independent measurements by mean of surface expansion

experiments in a Langmuir through. The analysis thus shows that soap films or dip coating experiments

may be used to measure the surface elasticity of surfactant solutions in the insoluble limit, namely as

long as the film generation dynamics is fast compared to the surfactant adsorption timescale.
1 Introduction

The formation of thin liquid lms, either free standing (soap
lms) or deposited on a solid substrate (coated lms), is of
utmost importance for many applications. The thickness of
soap lms within a foam is indeed one of the key ingredients
controlling foam destabilization. Understanding the physical
and physicochemical parameters that control lm thickness is
thus necessary when stable foams are required, as in cosmetics
or food products for instance, but also if quick foam collapse is
sought for.1 The coating of thin liquid lms onto solid
substrates is a widespread industrial process, used for surface
functionalization as well as surface protection or lubrication.2

In many cases, the deposition of a liquid layer of controlled
thickness is needed. Understanding the inuence of physical
chemistry on lm thickness is all the more crucial as complex
liquids, such as colloidal dispersions or emulsions, are oen
used as coating agents.3

The major difference between free and coated lms is that
liquid lms can be coated onto a solid substrate by viscous
entrainment, whereas viscous forces alone are not sufficient to
generate a stable free-standing lm.4,5 The additional support
that helps pulling a soap lm upwards stems from interfacial
shear stress, which usually results from spatial gradients in the
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concentration of surface active agents adsorbed at the liquid/air
interfaces,6,7 but can also be generated by temperature
gradients.8,9

Despite their different elds of applications, the generation
of a free-standing lm and the coating of a liquid lm on a plate
are similar from the hydrodynamic point of view but have
mostly been studied separately in the literature. In particular,
no quantitative parallel has been drawn, to our knowledge,
between free lms and coated lms generated from identical
surfactant solutions. The rst hydrodynamic descriptions of
those processes were respectively given by Mysels, Shinoda and
Frankel6 for soap lms and by Landau, Levich and Derjaguin10,11

for coated lms. Both models assume the uid properties to be
independent of position and, using the Stokes equation
combined with suitable boundary conditions, they yield the
same scaling law for the thickness h0 of a lm generated at a
constant velocity V:

h0 ¼ K‘cCa
2/3. (1)

In the above equation, the thickness h0 is dened as
sketched in Fig. 1 and K is a numerical prefactor, while
‘c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g0=rg

p
and Ca ¼ hV/g0 are respectively the capillary

length and the capillary number, in which g0 is the equilibrium
surface tension, r is the liquid density, g is the gravitational
acceleration and h is the liquid bulk viscosity. This scaling law
follows from a balance between viscous shear entrainment and
capillary suction and should be valid as long as gravitational
drainage can be neglected, i.e. for Ca1/3 � 1. The value of the
prefactor K in eqn (1) essentially depends on the lm boundary
Soft Matter
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Fig. 1 Sketches introducing the main notations used in this paper for
(a) Frankel configuration, i.e. soap film pulling, and (b) LLD configura-
tion, i.e. plate coating. The velocity field u(x,y) is defined in the refer-
ence frame of the laboratory and is represented in the case of rigid
liquid/air interfaces in both Frankel and LLD configurations. Note that
h(x) is defined as half the film thickness for a soap film, whereas it
stands for the actual thickness of a coated film.

Fig. 2 (a) Frankel configuration: the film thickness 2h0 normalized by
the capillary length ‘c is plotted as a function of the capillary number
Ca. Symbols correspond to experimental data from ref. 39 for soap
films pulled from C12E6 solutions of two different concentrations,
respectively 3 and 10 times the critical micellar concentration (cmc).
The solid lines are fits using the model described in Section 3 and the
dotted lines give an estimation of the maximal error on the fit. Finally,
the dashed line corresponds to Frankel's law (eqn (1) with KFr), namely
the limit of rigid liquid/air interfaces. (b) LLD configuration: same as (a)
for coated films entrained from C12E6 solutions26 at the same
concentrations as in Frankel configuration. The dashed line corre-
sponds to the LLD law in the limit of a rigid liquid/air interface (eqn (1)
with KrigidLLD ) and the dash-dotted line to the limit of a stress-free liquid/
air interface (eqn (1) with KsfLLD).

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
6 

Fe
br

ua
ry

 2
01

5.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
E

 P
A

R
IS

 S
U

D
 o

n 
24

/0
2/

20
15

 0
8:

52
:2

3.
 

View Article Online
conditions at the liquid/air interface. In the Landau–Levich–
Derjaguin (LLD) conguration with a pure liquid, a no-slip
condition is taken at the solid/liquid interface while the liquid/
air interface is simply assumed to be stress free. However, when
pulling a free-standing lm out of a solution containing surface
active agents, the presence of sustaining interfacial stresses
must be accounted for in the boundary condition at the liquid/
air interfaces.12 This is the reason why, in their original work,
Mysels, Shinoda and Frankel assumed that the interfaces
behave as if entrained without slip by a solid wall; such
boundary condition is here referred to as “rigid”.

The hydrodynamic hypothesis of rigid liquid/air interfaces
was found in good qualitative agreement with many experi-
ments for both soap lms7,13–17 and coated lms18–20 at low
capillary numbers (Ca < 10�5). It turned out to hold as well in
other geometries, like uid coating on bers21,22 or bubbles
moving in tubes.23 Nevertheless, the dispersion of data points
from one experiment to another,24 as well as the deviations from
eqn (1) observed at higher capillary numbers (Ca � 10�5 to
10�4), where the condition Ca1/3 � 1 still holds,13,17,25,26 remain
unexplained.

To go beyond the assumption of rigid interfaces, several
models have been proposed to account for the elastic and/or
viscous behavior of the liquid/air interfaces for both LLD27–30

and Frankel5,31,32 congurations. Because the mechanical
response of the interfaces is dictated by the interfacial dynamics
of surfactants, most of the models make the assumption of
water-insoluble surfactants, for which the complex adsorption–
desorption dynamics can be disregarded. Still, the surface
rheological parameters involved in the models – surface elas-
ticity and viscosity – are difficult to measure experimentally.
Quantitative comparison between thin lm models including
surface rheology and experimental data is scarce in the litera-
ture.5,33,34 Moreover, most experimental data available on thin
lms were obtained with water-soluble surfactant: comparison
Soft Matter
to models neglecting mass exchange between the surface and
the bulk is thus to be done with caution – but remains possible35

in certain conditions, as will be discussed later on.
Delacotte et al.26 have measured the thickness of the lm

coated on a solid plate as a function of the plate velocity for the
non-ionic surfactant C12E6 at various concentrations, and their
data are reported in Fig. 2a. Similar measurements have been
performed by Saulnier et al.17 on soap lms, using the same
surfactant and concentrations as Delacotte et al., and their data
are plotted in Fig. 2b. At high capillary numbers, both studies
observe a deviation from the Ca2/3 behavior, as predicted by eqn
(1), towards thinner lms. They suggest a qualitative explana-
tion based on the idea, developed by Prins et al.,36 Lucassen
et al.37 and later by Quéré,21 that the ability of the liquid/air
interfaces of a lm to sustain surface tension gradients
decreases when the lm thickness increases.
This journal is © The Royal Society of Chemistry 2015
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Building on the works of Park27 and Seiwert et al.,5 we
propose to rationalize quantitatively the deviations from
Frankel and LLD laws observed at high capillary numbers in a
unied description including the surface elasticity E. This
parameter, which quanties the compressibility of an interface,
is dened as38

E ¼ A
vg

vA
; (2)

where A is the area of the liquid/air interface and g is the surface
tension.

In Section 2, the different regimes exhibited by the data in
Fig. 2 and the corresponding transitions are discussed in terms
of scaling laws. “Twin” models, coupling the hydrodynamics
and the dynamics of insoluble surfactants at the liquid/air
interfaces, are then recalled in Section 3 and numerically solved
for soap lms as well as for coated lms. For the nonionic
surfactant C12E6, the adsorption timescale is indeed much
slower than the dynamics of lm generation, so we can neglect
the effect of surfactant exchange with the bulk and apply the
model derived in the insoluble limit. Quantitative comparison
between models and experiments using C12E6 is performed in
Section 4: we nd that the data can be well described assuming
that the surface elasticity in the insoluble limit is independent
of the pulling velocity. In Section 5, we nally report on Lang-
muir trough measurements of the surface elasticity of C12E6

solutions, which turn out to be in good agreement with the
values extracted from Frankel and LLD experiments.
2 Scaling analysis
2.1 The limiting cases of rigid and stress-free interfaces

The typical lengthscales in the x- and y-directions (dened in
Fig. 1) are respectively given by the lengthscale ‘ of the transi-
tion region – called the dynamic meniscus – which connects the
static meniscus to the at part of the lm, and the thickness h0
of the lm far from the liquid bath. The lengthscale ‘ � ffiffiffiffiffiffiffiffiffi

h0‘c
p

is
deduced from the scaling analysis of the asymptotic curvature
matching condition between the dynamic and static meniscii:

vxxh ¼
ffiffiffi
2

p

‘c
for x/�N (3)

and is typically of the order of 20–200 mm in the range of Ca
explored experimentally (Ca ¼ 10�6 to 10�3). In this paper, we
use the notation vi f to denote the derivative of the function f
with respect to the spatial coordinate i. If the pulling velocity V
is used to scale the velocity and the pressure P is assumed to be
uniform across the lm, and thus scales like the capillary
pressure in the static meniscus g0/‘c, eqn (1) can be recovered,
except for the prefactor K, from the scaling analysis of the
x-component of Stokes equations in the absence of gravity:

hvyyu ¼ vxP. (4)

The value of the prefactor K in eqn (1) is obtained by solving
the full hydrodynamicmodel as done in section 3, and using the
This journal is © The Royal Society of Chemistry 2015
asymptotic matching eqn (3). In the LLD geometry, the stress-
free boundary condition at the liquid/air interface yields10

K sf
LLD ¼ 0.9458, (5)

which is in good agreement with experimental data for pure
liquids.20,26 Because it assumes rigid liquid/air interfaces, the
Mysels–Shinoda–Frankel model – which we henceforth call
“Frankel's model” since it is referred to as such in the literature
– boils down to the LLD model with a factor 2, the liquid/air
interfaces being viewed as two solid walls and the stress along
the vertical symmetry axis of the free lm being zero. In our
notations (see Fig. 1), the prefactor in eqn (1) is still K sf

LLD ¼ KFr

but the actual thickness of the soap lm is twice the thickness of
a pure liquid LLD lm.

Finally, in the LLD geometry, the limiting case of a rigid
liquid/air interface changes the prefactor in eqn (1) into

Krigid
LLD ¼ 42/3Ksf

LLD. (6)

Note that KrigidLLD is larger than 2KFr, since the capillary suction
that opposes the entrainment is caused by the presence of only one
meniscus in the LLD case but two meniscii in the Frankel case.
2.2 Partially rigid interfaces

As soon as we want to rene the boundary condition at the
liquid/air interface, i.e. to explore intermediate cases between
the stress-free and rigid limits, the balance of tangential forces
at the liquid/air interface has to be considered:

hvyu|y¼h(x) ¼ vxg. (7)

This equation shows that spatial variations of the surface
tension generate a tangential stress, called Marangoni stress, at
the liquid/air interfaces. In the following, we will assume that
the surface tension gradient vxg scales like E/‘. This is equiva-
lent to saying that Marangoni stresses are locally controlled by
the surface elasticity E dened by eqn (2).

The viscous stress at the interface hvyu|y¼h(x) can be
computed by integrating (4) along y between 0 and h(x), so that
eqn (7) becomes

hvyu|y¼0 + hvxP ¼ vxg, (8)

where the lm thickness h (or half the lm thickness in the case
of a soap lm) scales like h0.
2.3 Frankel conguration

When considering a lm with partially rigid interfaces, it is no
longer obvious that the vertical velocity u scales like V, since the
interfacial velocity us introduces a second velocity scale, which
is a priori different from V, as pictured in Fig. 3a. However,
thanks to the symmetry of the lm with respect to the vertical
axis,40 vyu|y¼0 vanishes in eqn (8) in the case of Frankel
conguration, leading to the velocity-independent equation

vxg ¼ hvxP, (9)
Soft Matter
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Fig. 3 Sketches of the vertical velocity field u(x,y) for (a) Frankel
configuration and (b) LLD configuration in the case of partially rigid
liquid/air interfaces. The interfacial velocity us(x) is introduced to
account for finite surface elasticity. All velocities are defined in the
reference frame of the laboratory.

Fig. 4 log–log diagrams of the capillary number dependence of film
thickness for (a) Frankel configuration and (b) LLD configuration,
obtained by scaling analysis. (a) For soap films, a velocity-independent
regime is expected at high capillary numbers (Ca > Ca* given by eqn
(11)), whereas Frankel's power law (1) remains valid at lower capillary
numbers (Ca < Ca*). (b) For coated films, the limit of the LLD model
with a stress-free interface is obtained at “large” capillary numbers,
whereas the LLD model with a rigid interface should be recovered at
“small” capillary numbers. In between lies a transition regime, which
cannot be simply described in terms of a scaling law.
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where the le-hand side represents the Marangoni stress
dragging liquid up, while the right-hand side is the capillary
suction driving liquid down. From this equation we can draw a
velocity-independent scaling law for h0:

h0 � ‘c
E

g0

: (10)

In the case of partially rigid interfaces, the thickness of a soap
lm is thus found to scale independently of the pulling velocity.
Such a velocity-independent regime was already identied by
Scheid et al.8 in the case of surface tension gradients induced by
thermocapillary effects. It was also obtained in the context of thin
lms pulled from surfactant–polymer mixtures by Bruinsma
et al.7 The transition between this velocity-independent regime,
corresponding to partially rigid interfaces, and Frankel's regime,
corresponding to rigid interfaces, is found by comparing eqn (10)
to the scaling of Frankel's law (eqn (1)) and occurs for

Ca* �
�
E

g0

�3=2

: (11)

Experimental data (Fig. 2a) show that low capillary numbers
(Ca < Ca*) correspond to Frankel's regime. On the contrary, the
lm thickness seems to converge, without reaching it, towards a
velocity-independent regime at high capillary numbers (Ca [

Ca*). Fig. 4a summarizes this scaling analysis for Frankel
conguration. An order of magnitude for the critical capillary
number at which the transition occurs can be estimated from
Fig. 2a: for C12E6 solutions at concentrations 3 and 10 cmc, we
nd Ca* � 10�4. Using eqn (11), we can deduce an order of
magnitude for the surface elasticity E � 0.1 mN m�1, which is
consistent with the values found in Section 4 using the
complete model and measured experimentally in Section 5.

This brings evidence that the “rigidity” of liquid/air inter-
faces cannot be considered as a property of the surfactant
solution. We indeed show that, at a given position on the lm,
Soft Matter
the mechanical behaviour of the liquid/air interfaces of a free
lm can range from rigid (i.e. well described by Frankel's law) to
partially rigid upon increasing the pulling velocity. A similar
conclusion had already been reached by Stebe et al.41 in a
Bretherton-like conguration, namely for gas bubbles moving
in a capillary tube.

2.4 LLD conguration

In the LLD conguration, the symmetry of the lm with respect
to the vertical axis is lost and the vyu|y¼0 term in eqn (8) must be
kept. However, the no-slip condition at the solid/liquid interface
ensures that, in the case of a partially rigid (or even stress-free)
boundary condition at the liquid/air interface, V remains the
right velocity scale for u, as pictured in Fig. 3b. In the end, using
the scaling of eqn (3) to compute ‘, all terms in eqn (8) can be
estimated:

�hvyu
��
y¼0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

�
hV

h0

þ vxg|{z}
�

Effiffiffiffiffiffiffiffi
‘ch0

p

¼ hðxÞvxP|fflfflfflfflffl{zfflfflfflfflffl}
�g0

h0

‘c
3

� �1=2

: (12)

In the case of a partially rigid liquid/air interface (us < V), eqn
(12) expresses the balance between the forces that pull the lm
upwards (le-hand terms) and the capillary suction, which
This journal is © The Royal Society of Chemistry 2015
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Fig. 5 (a) Frankel configuration: the model-predicted film thickness
2h0 normalized by the capillary length ‘c is plotted as a function of the
capillary number Ca (see section 4.1 for details). Different symbols/
colors correspond to different values of the Marangoni number Ma.
The dashed line corresponds to Frankel's law, namely the limit of rigid
liquid/air interfaces. (b) LLD configuration: same as (a) for the coated
film thickness h0. The dashed line corresponds to the LLD law for the
limit of a rigid liquid/air interface and the dash-dotted line to the limit
of a stress-free liquid/air interface.
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drives liquid downwards (right-hand term). The le-hand terms
of eqn (12) account for two contributions: the viscous stress
associated to the lm entrainment and the Marangoni stress
associated to surface tension gradients. For “large” capillary
numbers, the viscous stress dominates and we recover the
classical LLD law in the stress-free limit, namely with prefactor
Ksf
LLD and us ( V. Upon decreasing the capillary number, the

Marangoni stress can become of the order of the viscous one.
This intermediate regime cannot be simply described by a
scaling law. For even lower capillary numbers, we expect to
observe a transition towards the rigid limit, dominated
by the Marangoni stress, namely LLD law with prefactor K rigid

LLD ¼
42/3K sf

LLD and us ¼ V.
The stress-free and rigid limits, as well as the transition, are

sketched in Fig. 4b, although both limits have never been
observed together experimentally for a given surfactant
concentration. For a given surfactant concentration, it is indeed
the value of the surface elasticity that determines which portion
of the curve sketched in Fig. 4b is observed in the range of
capillary numbers where our hypotheses (no gravitational
drainage, no inertia) are valid.

3 Hydrodynamic model including
surface elasticity
3.1 Assumption of water-insoluble surfactants

The typical timescale s in Frankel and LLD experiments can be
dened as the time spent by surfactants in the dynamic
meniscus, where the surface is stretched, namely s ¼ ‘/V. This
timescale, which lies in the range 3–600ms for the experimental
data discussed here, is to be compared to the characteristic
adsorption time of surfactants at the liquid/air interface,
denoted sads.

For the non-ionic surfactant C12E6, the adsorption is purely
diffusion-limited42 and sads is found experimentally43 to be of
the order of 100 s for a bulk concentration c ¼ 10 cmc. We thus
have s� sads for C12E6 for the whole range of capillary numbers
probed, hence a negligible contribution of adsorption to the
surface concentration of surfactants G. This supports the
assumption of insoluble surfactants to describe the water-
soluble surfactant C12E6, at least in the present context of
“rapid” lm formation. In this case, the general denition of the
surface elasticity (eqn (2)) becomes

ExEinsolh� G
vg

vG
for s � sads: (13)

Note that this insoluble limit has also been identied for
oscillatory deformations of interfaces laden with soluble
surfactants. For such deformations, the surface elasticity is
found to vary with the oscillation frequency u as44 E¼ Einsol f(u),
where the function f tends to unity as u tends to innity. At high
frequencies, surfactant exchange between the surface and the
bulk is suppressed and E tends to its insoluble value Einsol. In
the following, we make the further assumption that Einsol is
constant, so that eqn (13) can be integrated to nd the equation
of state
This journal is © The Royal Society of Chemistry 2015
gðGÞ ¼ g0 � Einsol ln

�
G

G0

�
; (14)

with g0 ¼ g(G0) the surface tension for the interface in equi-
librium with the bulk, i.e. far from the lm, and G0 the corre-
sponding surface concentration. Note that this equation of state
differs from the one used by Park27 and Seiwert et al.,5 which was
the linearized equation of state obtained when assuming that G
stays close to G0. The results presented in Fig. 6 will show that
this hypothesis is valid only at small capillary numbers.
Detailed comparison between the solutions obtained using the
linearized and non-linearized equations of state is discussed in
Appendix A.
3.2 Hypotheses and governing equations

Similar to the derivation of Frankel's and LLD laws, we assume
stationarity and the existence of a region far from the liquid
bath where the lm thickness is uniform and equals to h0.
Surface diffusion is neglected and all equations are written at
leading order in the frame of the lubrication approximation, i.e.
Soft Matter
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Fig. 6 The dimensionless surface concentration difference DG and the dimensionless surface tension difference Dg between the flat part of the
film and the liquid bath are plotted as functions of the capillary number Ca for (a and c) Frankel configuration and (b and d) LLD configuration. In
all cases, the Marangoni number Ma has been set to the value extracted from the fit of the corresponding experimental data (see Table 1). The
dotted lines stand for the confidence intervals on Dg and DG deduced from the confidence intervals on the value of surface elasticity in the
insoluble limit (see Table 1).
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h0/‘ � 1, corresponding to small interfacial slopes (vxh � 1).
Under those assumptions, the lm thickness h(x) for coated
lms, or half the lm thickness for soap lms, the vertical
velocity u(x,y), the vertical surface velocity us(x) ¼ u(x,h(x)),
the pressure P(x,y) and the surface concentration of surfactants
G(x) obey the following system of coupled differential equations:

� Lubrication equations:

vxP ¼ hvyyu;
vyP ¼ 0;

(15)

� Normal force balance at the liquid/air interface:

P|y¼h(x) ¼ P0 � gvxxh, (16)

� Tangential force balance at the liquid/air interface:

hvyu|y¼h(x) ¼ vxg, (17)

� Mass conservation at the liquid/air interface:

vx(usG) ¼ 0, (18)

� Mass conservation in the bulk of the lm:

vx(ūh) ¼ 0, (19)

where P0 is the air pressure and

uðxÞ ¼ 1

hðxÞ
ðhðxÞ
0

uðx; yÞdy; (20)
Soft Matter
is the average velocity in the lm (or half the lm for a soap lm)
at a given height x.

We refer the interested reader to ref. 27 and 5 for the details
of the derivation in the LLD and Frankel congurations,
respectively. The main difference with these references in the
present model is the use of the nonlinear equation of state (14)
in eqn (16), as well as in eqn (17) to account for the correction to
the capillary pressure gradient due to the variation of surface
tension, which was in fact accounted for in ref. 27 but not in ref.
5. The inuence of these choices on the results will be discussed
later in the text and in Appendix A.
3.3 Non-dimensionalization and boundary conditions

The pressure and velocity elds are eliminated from the previous
system using either the symmetry condition vyu|y¼0 ¼ 0 for the
Frankel conguration or the no-slip condition at the solid wall
u|y¼0 ¼ V for the LLD conguration, which leaves three one-
dimensional elds h(x), us(x) and G(x) to be determined.

The equations are non-dimensionalized as follows: y and h are
rescaled by h0, x by ‘, g by g0, us by V and G by G0. We also dene
the aspect ratio 3¼ h0/‘� 1, which scales the interfacial slope vxh.
Considering that the dominant balance is capillary suction versus
viscous entrainment – namely that the scaling of h0 is still given by
Frankel's law (1) – leads to 3 ¼ Ca1/3, as discussed in ref. 10.

To solve the problem, we take x ¼ 0 a position in the at
region of the lm (far from the liquid bath) and x ¼ �L the
position where the matching between the dynamic and static
meniscii is made. Note that the solutions do not depend on L as
This journal is © The Royal Society of Chemistry 2015
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long as it is large enough, so that the curvature h0 0(�L) has
converged towards a constant value, denoted h0 0(�N). The non-
dimensionalized boundary conditions then read: h(0) ¼ 1, h0(0)
¼ 0, h0 0(0)¼ a, us(0)¼ 1 and G(�L)¼ 1, with a a small parameter
(here a ¼ 10�3). Finally, the non-dimensionalized system of
equations to be solved are given below for each conguration,
using a prime to denote x-derivatives.
3.4 Frankel conguration

� Differential equation for the lm thickness h(x):

h000 ¼ 3
ð1� ushÞ

gh3
þMa

h00

g

G0

G
z 3

ð1� ushÞ
h3

; (21)

� Differential equation for the surface velocity us(x):

u0s ¼ � 3

L

us

h2
ð1� ushÞ; (22)

� Differential equation for the surface concentration G(x):

G0 ¼ � G

us
u0s; (23)

� Equation of state

g(G) ¼ 1 � Ma ln(G) z 1, (24)

where we have dened the Marangoni number as

Ma ¼ Einsol

g0

(25)

and the dimensionless parameter L as

L ¼ Ma

Ca2=3
: (26)

The above system of equations is solved under the assump-
tion that Ma � 1, i.e. neglecting the variation of surface tension
around its equilibrium value in eqn (21) and (24) for the whole
range of Ca probed experimentally. We shall justify this
assumption in Appendix A, where we compare the solution
obtained by solving the whole system to the one derived from the
approximated system. In the case of soap lms, we show that the
above approximation remains correct as long as Ma ( 0.1.

In the end, this leaves us with a single parameter, L, that
controls the solutions of the system and that we call the rigidity
parameter. Indeed the critical capillary number Ca* identied
in the scaling analysis (Section 2) corresponds to L ¼ 1. This
brings evidence that L is the natural parameter to describe the
transition between the limit of rigid liquid/air interfaces,
recovered for L[ 1, and the regime of partially rigid liquid/air
interfaces, obtained for L ( 1.
3.5 LLD conguration

� Differential equation for the lm thickness h(x):
This journal is © The Royal Society of Chemistry 2015
h000 ¼ 6
½2� ð1þ usÞh�

gh3
þMa

h00

g

G0

G
z 6

½2� ð1þ usÞh�
h3

; (27)

� Differential equation for the surface velocity us(x):

u0s ¼ � 2

L

us

h2
½3� ð1þ 2usÞh�; (28)

� Differential equation for the surface concentration: eqn (23).
� Equation of state: eqn (24).

The above system is solved under the assumption that Ma�
1, so that the Marangoni term in eqn (27) and (24) can be
neglected. In the case of coated lms, we show in Appendix A
that this approximation remains correct as long as Ma ( 0.01.
As in Frankel conguration, we are le with a single control
parameter L, dened in eqn (26).
4 Resolution of the model and fit of
experimental data
4.1 Computing lm thickness versus capillary number

The systems of equations described in subsections 3.4 and 3.5
are solved numerically using the continuation soware AUTO-
07p,45 for different values of the dimensionless parameterL. For
a given L and a given Ma, we compute the lm thickness h0 (or
half the lm thickness in the case of a soap lm) in the at part
of the lm using the curvature matching condition eqn (3) in its
dimensionless form (for x / �N):

h0

‘c
¼ h00ð�NÞffiffiffi

2
p Ca2=3: (29)

Setting a numerical value for the Marangoni number Ma, we
are able to deduce h0 as a function of the capillary number Ca¼
(Ma/L)3/2 from the mastercurve h0(L). For Frankel (resp. LLD)
conguration, we thus have a family of theoretical curves h0(Ca)
parametrized by Ma, as illustrated in Fig. 5a (resp. 5b). For both
congurations, the theoretical curves h0(Ca) superimpose on
the rigid limit (dashed line) at “low” capillary numbers and then
deviate from it around the critical capillary number Ca* that
increases with Ma. All these features are consistent with the
qualitative behavior predicted from the scaling analysis (Fig. 4).
Note that, in the case of soap lms (Fig. 5a), no velocity-inde-
pendent regime is truly reached at “high” capillary numbers in
the range of Ca and Ma relevant for experiments. Additionally,
in the case of coated lms (Fig. 5b), the stress-free limit itself is
not recovered at “high” capillary numbers in the relevant range
of parameters (see also Appendix A).
4.2 From experimental data to surface elasticity in the
insoluble limit

For practical use, a non-linear t of the mastercurve h0(L) is
proposed in Appendix B in both Frankel and LLD congura-
tions. We can then obtain an explicit expression for h0 as a
function of the capillary number Ca ¼ (Ma/L)3/2, where Ma is
Soft Matter
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the only adjustable parameter. This expression is used to t the
experimental data available on free-standing (resp. coated)
lms pulled from C12E6 solutions (symbols in Fig. 2) and extract
a value for Ma. The best ts are shown in Fig. 2 (solid lines) for
two different surfactant concentrations above the critical
micellar concentration (cmc). The corresponding values for the
Marangoni number Ma and surface elasticity in the insoluble
limit Einsol are summarized in Table 1. The condence interval
on the Marangoni number is estimated from the upper and
lower values associated to “reasonable” ts of the data, as
illustrated by the dotted lines in Fig. 2a for 10 cmc.

The main result of Table 1 is that the experimental data for
both Frankel and LLD congurations can be rationalized by a
single value of Einsol for a given surfactant concentration. This
brings evidence that surface elasticity in the insoluble limit is
an inherent property of a surfactant solution (e.g. independent
of the pulling velocity and on the conguration) and is thus
relevant for the description of thin lms stabilized by water-
soluble surfactants.
4.3 Surface tension gradient

For the particular values of Ma displayed in Table 1, the
(dimensionless) relative surface concentration variation
between the liquid bath and the at part of the lm, dened as
DG ¼ 1 � G(x ¼ 0), is computed as a function of the capillary
number Ca, for Frankel (Fig. 6a) and LLD (Fig. 6b) congura-
tions. The relative surface concentration difference DG between
the at part of the lm and the liquid bath increases with the
capillary number, and eventually becomes of the order of unity.
This shows that the linearization of the equation of state (14) is
no longer justied for CaT 10�4 and introduces biases that are
discussed in Appendix A.

Similarly, the (dimensionless) relative surface tension vari-
ation between the liquid bath and the at part of the lm,
dened as Dg ¼ g(x ¼ 0) � 1 is deduced from the equation of
state eqn (24) and plotted as a function of the capillary number
Ca for Frankel (Fig. 6c) and LLD (Fig. 6d) congurations, for the
particular values of Ma given in Table 1. The relative surface
tension difference Dg between the at part of the lm and the
liquid bath increases with the capillary number, but does not
reach more than a few percents in the range of capillary
Table 1 Summary of the fitted Marangoni numbers Ma obtained for
free-standing and coated films pulled from C12E6 solutions of
concentration 3 cmc and 10 cmc (see Fig. 2). The corresponding
surface elasticity in the insoluble limit Einsol ¼ g0 Ma was then deduced
taking the experimental values for surface tension g0¼ 34.5mNm�1 at
22 �C for Frankel configuration17 and g0 ¼ 32.3 mN m�1 at 25 �C for
LLD configuration26

C12E6 3 cmc 10 cmc

Frankel Ma � 103 16+2�3 5.0+1.5�1.0

Einsol (mN m�1) 0.54+0.08�0.09 0.17+0.05�0.03

LLD Ma � 103 18+7�8 4.7+1.3�1.9

Einsol (mN m�1) 0.59+0.21�0.27 0.15+0.04�0.06

Soft Matter
numbers probed experimentally, supporting the neglect of the
Marangoni terms in eqn (21), (24) and (27).

Numerically, this corresponds to a surface tension difference
Dg z 0.2 mN m�1 for a soap lm pulled from a C12E6 solution
at 3 cmc at a typical velocity Vz 2 mm s�1 (Maz 0.018, Caz 6
� 10�5). This order of magnitude is consistent with theoretical
results obtained by Seiwert et al.5 for Frankel conguration.
Combining the present study to the recent predictions by
Saulnier et al.46 for surface tension gradients in the upper non-
stationary part of soap lms, it is now possible to forecast the
surface tension difference across the whole lm. For a C12E6

solution at 3 cmc and Ca z 6 � 10�5, this total surface tension
difference is found of the order of 1 mN m�1, which is small
compared to the surface tension of usual surfactant solutions,
but well in line with recent experimental work on surface
tension gradients in soap lms by Caps et al.47
5 Langmuir trough measurements of
surface elasticity

To our knowledge, direct measurements of surface elasticity in
thin lms, such as Prins's ones36 for a solution of SDS at a
concentration of 3 times the cmc, do not exist for C12E6. The
surface elasticities of C12E6 solutions have beenmeasured using
a dynamic drop tensiometer,48 but only up to bulk concentra-
tions of 1 cmc. In this section, we present surface elasticity
measurements in a Langmuir trough for C12E6 at concentra-
tions above the cmc, to be compared to the values computed
independently in subsection 4.2.
5.1 Materials and methods

Five solutions, of concentrations 3, 5, 10, 20 and 50 times the
cmc (cmc¼ 0.07mM), are prepared diluting hexaethylene glycol
monododecyl ether (C12E6, purchased from Sigma Aldrich) in
Fig. 7 The dynamic surface tension is plotted as a function of the area
between the barriers during their expansion at a velocity v ¼ 30 mm
min�1, for C12E6 solutions at various concentrations. The red lines
correspond to linear fits of the data using eqn (30) in the area range
corresponding to a barrier displacement of 1 cm. The slope directly
gives the surface elasticity E.

This journal is © The Royal Society of Chemistry 2015
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Fig. 8 The surface elasticity measured in the Langmuir trough is
plotted versus the capillary number Ca¼ hv/g(t¼ 0) for different C12E6
solutions.
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ultrapure (twice-distilled) water. When changing solution, the
Langmuir trough and its barriers are thoroughly rinsed with
ethanol and ultrapure water, and the platinium Wilhelmy plate
used for surface tension measurements is rinsed with ethanol
and ultrapure water and nally put to the ame. The whole
setup is enclosed in a box, within which the atmosphere is
humidied up to about 80% in order to reduce evaporation
from the Langmuir trough. The trough itself is kept at a
constant temperature of 23 �C by a circulating thermostatic
bath.

An experiment is carried out as follows: the barriers are
initially at a given position, enclosing an area A0 ¼ A(t ¼ 0). At
time t¼ 0, the barriers are set into motion at a constant velocity
v, expanding the area A(t) between them, up to the user-set
maximum position, where they stop. The surface tension g(t) is
recorded during the whole experiment, using the Wilhelmy
plate technique. In our experiments, the velocity v can be varied
from 1 to 120 mm min�1, corresponding to capillary numbers
Ca ¼ hv/g(t ¼ 0) in the range 5 � 10�7 to 6 � 10�5.
Fig. 9 The surface elasticity is plotted as a function of surfactant
concentration (counted in number of cmc) for the non-ionic surfac-
tant C12E6. The squares and triangles are the values of Einsol obtained by
fitting the corresponding experimental curves h0(Ca), either in
Frankel39 or in LLD26 configuration, using the model described in
Section 3.5. The error bars stand for the maximal error on Einsol
deduced from the confidence interval on the Marangoni number
(details can be found in the caption of Table 1). The empty circles
correspond to independent measurements of the surface elasticity E
performed in a Langmuir trough, averaged over different barrier
velocities. The error bars then stand for the standard deviation.
5.2 Results and discussion

Fig. 7 shows the measured surface tension minus its initial
value g(t ¼ 0) as a function of the logarithm of the area between
the barriers, normalised by its initial value A0, for v ¼ 30 mm
min�1 and different C12E6 bulk concentrations. Under the
assumption of a constant surface elasticity E, one would expect
the curves shown in Fig. 7 to follow

g� gðt ¼ 0Þ ¼ E ln

�
A

A0

�
; (30)

that is to say, to be straight lines.
Let us estimate the amount of surface dilation involved in

lm pulling experiments. The area A � A0 created in the
dynamic meniscus, where surface stretching occurs, is propor-
tional to the surface velocity difference Dus across the dynamic
meniscus multiplied by the time ‘/V spent by uid elements in
the dynamic meniscus. Considering that the initial area A0 is
the area of the static meniscus and taking into account that ‘ �
‘cCa

1/3, we end up with�
A

A0

�
exp

� 1þ Dus
V

Ca1=3: (31)

The surface velocity difference Dus can be computed from
Fig. 11 and eqn (31) leads to ln[(A/A0)exp] < 0.1 for Ca in the range
10�6 to 10�3 and Ma � 0.01. This supports the linear t of the
data by eqn (30) (solid red lines in Fig. 7) for small values of
the area change, despite the global non-linear variation of g �
g(t ¼ 0) with ln(A/A0).

Repeating the experiment for different barrier velocities v, we
are able to compute the surface elasticity E as a function of the
capillary number Ca, as shown in Fig. 8. The surface elasticity
turns out to be independent of the capillary number in the
velocity range probed in the experiments, allowing to consider
the average elasticity E for each surfactant concentration. The
averaged surface elasticity can then be compared to the values
This journal is © The Royal Society of Chemistry 2015
tted from Frankel17,39 and LLD26 experiments, as described in
Section 4, for the same surfactant concentrations. The
comparison is shown in Fig. 9.

The values of the surface elasticity Emeasured in a Langmuir
trough, where the surfactant reservoir can be considered
innite, are in very good agreement with the values of Einsol
extracted from experiments on thin lms. This result may be
surprising since Prins et al.36 showed that the surface elasticity
decreases when the lm thickness increases, which has been
interpreted as a reservoir effect.21 The local surfactant concen-
tration in thin lms is thought to be much lower than the bulk
Soft Matter
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Fig. 10 The thickening factor a is plotted as a function of the
dimensionless parameter L for (a) Frankel configuration and (b) LLD
configuration. The different curves were obtained under different
assumptions: non-linear equation of state and Ma � 1 (solid lines),
linear equation of state and Ma � 1 (long-dashed lines), non-linear
equation of state and finite values for Ma (dotted and dot-dashed
lines). Note that, for a typical Marangoni number Ma � 10�2 (as
obtained from the experimental data) and capillary numbers between
10�6 and 10�3, the control parameter L ranges from 1 to 102.

Fig. 11 The surface velocity in the static meniscus us(�N) is plotted as
a function of the control parameter L. Note that us(�N) is equal to the
surface concentration in the flat part of the film G(0) thanks to the
surfactant number conservation eqn (18).
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concentration: since they lack surfactant molecules to populate
a newly-created interface, thin lms should sustain surface
tension gradients better than thicker lms do. Our data
however indicate that this reservoir effect does not contribute
signicantly to the value of the surface elasticity in thin lms
stabilized by C12E6.

It could seem surprising that the surface elasticity wemeasure
still depends on the surfactant bulk concentration, whereas we
can consider the surfactants as insoluble due to a deformation
timescale that is much smaller than the adsorption timescale.
This apparent contradiction may however be resolved by
considering the thermodynamics of the liquid/air interface: the
surface tension is xed by the equilibrium of the chemical
potentials at the surface and in the bulk. Surface tension,
surfactant surface concentration and surfactant bulk concentra-
tion are thus linked, even in the absence of a global ux between
surface and bulk. Hence surface elasticity, which is the spatial
derivative of surface tension (eqn (2)) is a priori a function of the
bulk concentration, even in the insoluble limit given by eqn (13),
as exemplied by Fig. 7 in ref. 44. The previous reasoning
remains valid although we are working at concentrations above
the cmc – where the equilibrium surface concentration is
expected to be constant – because the interface is kept out of
equilibrium by the continuous creation of fresh interface.

The observation that Einsol decreases with the bulk surfactant
concentration above the cmcmay be attributed to the fact that, in
this regime of fast deformation, advection brings bulkmaterial to
Soft Matter
the interface. With increasing bulk concentration, the concen-
tration of the newly created interface is higher, hence coming
closer to the equilibrium and thus lowering the value of Einsol.
Finally, the fact that this concentration dependence is indepen-
dent on the conguration – i.e. trough, LLD or Frankel – means
that the elasticity is an inherent property of the surfactant solu-
tions, at least in the range of parameters that have been explored
in the present work and for deformations that are faster than the
inverse of the surfactant adsorption time. For ionic surfactants,
the timescales of adsorption are typically faster than for nonionic
surfactants, and one may have complex effects of adsorption
timescales in addition to the effects of concentration observed
here on Einsol. For nonionic surfactants, the adsorption dynamics
are slower and then concentration effects on Einsol may dominate,
as it is demonstrated in this paper.
6 Conclusion

We have presented two consistent hydrodynamical models
including surface elasticity, for soap lm pulling and plate
coating experiments, respectively. The predictions of the models,
assuming that mass exchange with the bulk can be neglected, are
compared to experimental data available for soap and coated
lms stabilized by the nonionic water-soluble surfactant C12E6,
for which the adsorption timescale is sufficiently slow. For a
given surfactant concentration, both Frankel and LLD congu-
rations yield the same value of the surface elasticity in the
insoluble limit, which is conrmed quantitatively by indepen-
dent measurements in a Langmuir trough under similar fast
deformation conditions. The latter show that the surface elastic
behavior of the interface is dominated by the surface elasticity
which drives local Marangoni gradients, whereas the contribu-
tion of reservoir effects is negligible. Hence coating or lm
pulling experiments can be used in practice, together with the
results of themodels presented in this article (see Appendix B), to
measure the surface elasticity of surfactant solutions in the
insoluble limit, at least in the case of slowly adsorbing surfac-
tants. Additionally, we were able to predict the surface tension
difference between the liquid bath and the at part of the lm as
a function of the capillary number.

As a consequence of our analysis, it is found that the “rigidity”
of a liquid/air interface, i.e. the nature of the boundary condition at
This journal is © The Royal Society of Chemistry 2015
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this interface, cannot be considered as a property of the surfactant
solution. Saulnier et al.46 already demonstrated that the upper part
of the lm is well described by a stress-free boundary condition,
whereas its lower part obeys Frankel's law for Ca < Ca*, showing
that rigid interfaces are a good approximation in that zone. Simi-
larly, we have shown here that, for a given solution, the pulling
velocity dependency of the lm thickness is rationalized only when
considering that the mechanical behaviour of the liquid/air inter-
faces ranges from totally to partially rigid upon increasing the
pulling velocity. This change in the boundary condition stems
from a change in the relative contributions of viscous and elastic
entrainments to the force balance, and is controlled by the rigidity
parameter L ¼ Ma/Ca2/3. Our work thus shows that the paradigm
of a 2/3 power law in Ca, used to t experimental lm thickness for
both Frankel and LLD congurations by many different authors
and for decades, might well be obsolete in the case of lms con-
taining surface active agents.

Although we have been focusing here on a plane geometry,
the work presented in this paper could in principle be extended
to other geometries, like ber coating21,22,49 or bubbles moving
in capillaries,23 provided the curvature of the static meniscusffiffiffi
2

p
=‘c appearing in the matching condition (3) is replaced by

1/r, where r is either the ber radius or the bubble cap radius.
Appendix
A Comparison of linearized and non-linearized equations of
state

In this section, we discuss some assumptions we have made in
the models presented in Sections 3.4 and 3.5. Unlike in ref. 5
and 27, we have kept the non-linearized form of the equation of
state (14) instead of using its linearized version:

gðGÞ ¼ g0 � Einsol

G� G0

G0

: (32)

The main consequence of this choice is that the surface
tension gradient writes vxg ¼ �EinsolG0/G in our case, instead of
vxg ¼ �EinsolG0/G0 in the linear case. Using the conservation of
surfactants at the interface eqn (22), the surface tension
gradient can be expressed independently of the surface
concentration as vxg ¼ Einsolu

0
s/us in the non-linear case and vxg

¼ Einsolu*
su

0
s/us

2 in the linear case, where the surface velocity u*
s¼

us(�N) at the junction between the dynamic and static meniscii
needs to be determined a posteriori.

Still under the assumption Ma � 1 in eqn (21) and (27),
which shall be precised in the last paragraph of this section, we
compute the thickening factor aFr (resp. aLLD) in Frankel
conguration (resp. in LLD conguration) dened as

aFr ¼ h00ð�NÞffiffiffi
2

p
KFr

 
resp: aLLD ¼ h00ð�NÞffiffiffi

2
p

K sf
LLD

!
; (33)

as a function of the control parameter L. Comparison to eqn
(29) shows that the thickening factor aFr (resp. aLLD) is simply
the ratio between the lm thickness predicted by our model and
the one predicted by the Frankel (resp. LLD) model.
This journal is © The Royal Society of Chemistry 2015
The ratio aFr (resp. aLLD) is computed using the linearized
equation of state eqn (32) (dashed line) and compared to our
solution with the non-linear equation of state (solid line) in
Fig. 10a (resp. 10b). Note the dashed line in Fig. 10a (resp. 10b)
had previously been obtained by ref. 5 (resp. ref. 27) for soap
lm pulling and plate coating respectively. For both congu-
rations, we observe the following discrepancies between the
results obtained with the linear and non-linear equations of
state:

(i) The linearized equation of state gives a sharper transition
between the rigid and stress-free behaviors: the transitions only
spans over two decades, instead of three for the non-linear
equation of state,

(ii) Using the linearized equation of state can lead to
signicant underestimation of the lm thickness (up to a factor
of 3 forL� 1 in the case of soap lms), and thus on the deduced
surface elasticity,

(iii) In Frankel conguration, the curve h0(Ca) reconstructed
using the linearized equation of state (i.e. from the dashed line
in Fig. 10a) goes through a maximum. On the contrary, the
reconstruction using the non-linear equation of state (i.e. from
the solid line in Fig. 10a) yields a monotonous increase of the
thickness with Ca.

For Frankel conguration, the fully rigid case (Frankel's
model) is recovered at large L, namely at large Marangoni
number or low capillary number, no matter the equation of
state. For low L, the thickness tends to zero: in practice, the
interfacial stresses are no longer sufficient to pull a stable lm,
hence the “no lm” limit in Fig. 10a (lower short-dashed line).

For LLD conguration, the maximal thickening factor 42/3 z
2.52 corresponding to the rigid limit is also obtained at large L
for both the linear and non-linear equation of state. However,
the stress-free limit aLLD ¼ 1 of the LLD model is not recovered
for small values of L, neither for the linearized nor for the non-
linear equation of state. This is likely due to a loss of conver-
gence in our numerical calculations when decreasing L, and is
associated with the impossibility for the surface velocity to
become negative in the case of insoluble surfactants. As illus-
trated in Fig. 11 for LLD conguration, the concentration in the
at lm G(0) tends to zero when decreasing L, and so does the
surface velocity in the static meniscus us(�N), since they are
related by the conservation law eqn (18). On the contrary, as
shown by Stebe et al.,41 considering soluble surfactants modies
eqn (18) and makes it possible to reach negative surface veloc-
ities, and thus to recover the stress-free limit. The curves dis-
played in Fig. 10 are therefore stopped when the surface velocity
in the static meniscus becomes zero and this limitation is
intrinsic to the insoluble description of surfactants. Note that
the position of the stopping point is very sensitive to the model
used and that our simplied model (solid curves) provides the
widest range of converged solutions.

The Marangoni term in eqn (21) and (24) (subsection 3.4) and
(27) (subsection 3.5) has been neglected under the assumption
Ma� 1. Fig. 10 compares the curves aFr(L) and aLLD(L) obtained
by solving the system including theMarangoni terms (dotted and
dot-dashed lines) to the ones obtained by solving the approxi-
mated system (solid lines). All predictions including the
Soft Matter
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Marangoni terms fall on top of the approximated solution for Ma
( 0.1 in the case of soap lms and for Ma ( 0.01 in the case of
coated lms. Consequently, the assumption Ma � 1 does not
have the same meaning in Frankel and LLD congurations, but
remains valid in both cases given the values of Ma extracted from
the t of the experimental data (see Table 1).
B Non-linear t of h0 vs. Ca

B.1 Frankel conguration. For practical use, we here
propose a non-linear t of the thickening factor aFr dened as
h0 divided by the half lm thickness predicted by Frankel's
model, namely KFr‘cCa

2/3:

aFrðLÞz 1

2

�
1� tanh

�
186:3� 186:1L0:0026

	

: (34)

The theoretical half lm thickness as a function of the
capillary number is then recovered for a given Marangoni
number through

h0ðCaÞ ¼ KFr‘cCa
2=3 � aFr

�
Ma

Ca2=3

�
: (35)

B.2 LLD conguration. Similarly, we propose a non-linear
t of the thickening factor aLLD dened as h0 divided by the half
lm thickness predicted by LLD model in the stress-free limit,
namely K sf

LLD‘cCa
2/3:

aLLDðLÞz 1

2

�
3:603� 1:436 tanh

�
15:75� 15:52L0:030

	

: (36)

Since Ksf
LLD ¼ KFr, the theoretical lm thickness as a function

of the capillary number is also obtained from eqn (35), replac-
ing the function aFr by aLLD for coated lms.
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