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The onset of circulating waves, i.e. waves with a circulating eddy in the main wave
hump, and the onset of flow reversal, i.e. a vortex in the first capillary minimum,
in inclined falling films is investigated as a function of the Reynolds number and
inclination number using the weighted integral boundary layer (WIBL) model and
direct numerical simulations (DNS). Analytical criteria for the onset of circulating
waves and flow reversal based on the wave celerity, the average film thickness and
the maximum and minimum film thickness have been approximated using self-similar
parabolic velocity profiles. This approximation has been validated by second-order
WIBL and DNS simulations. It is shown that the onset of circulating waves in the
phase diagram for homoclinic solutions (waves of infinite wavelength) is strongly
dependent on the inclination, but independent of the streamwise viscous dissipation
effect. On the contrary, the onset of flow reversal shows a clear dependence on the
viscous dissipation. Furthermore, simulation results for limit cycles (finite wavelength)
reveal a strong increase of the corresponding critical Reynolds number with the
excitation frequency. Additionally, a critical ratio between the maximum and substrate
film thickness (value of approximately 2.5) was found for the onset of circulating
waves, which is independent of wavelength, inclination, viscous dissipation and
Reynolds number.

Key words: interfacial flows (free surface), thin films

1. Introduction
Falling liquid films, i.e. thin liquid layers flowing down a vertical or inclined

wall driven by gravity, are used in various applications such as refrigeration, cooling
of heated mechanical or electronic systems, chemical processing (Hu et al. 2014),
petroleum refineries, desalination (Kouhikamali et al. 2014) and food processing
(Alekseenko, Nakoryakov & Pokusaev 1994; Kalliadasis et al. 2013), allowing high
heat transfer coefficients. The understanding of wave dynamics and the identification
of the various phases in the parameter space have a direct impact on the optimization
of those processes.

For low film flow rates flowing down a vertical wall, the wave patterns that occur
are characterized by small-amplitude waves. The streamlines of those small-amplitude
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FIGURE 1. Streamline plot in the frame of reference moving at the wave speed c
illustrating the characteristics of (a) non-circulating and (b) circulating waves. The
maximum speed of the fluid is denoted umax. The two insets show (a) the onset of flow
separation and (b) flow separation with an open vortex in the fixed frame of reference.
The black dots indicate stagnation points.

waves are, if drawn in a reference frame moving with the wave celerity c, roughly
aligned with the wave profile (see figure 1a). Further, the highest (interfacial) velocity
is found at the wave crest and is lower than the wave celerity. For higher flow rates,
the wave peak height and the maximum surface velocity at the wave crest increase.
At a critical flow rate, the maximum surface velocity is equal to the wave celerity,
which results in a stagnation point (see Maron, Brauner & Hewitt 1989), found to be
located in the vicinity of the wave crest.

With a further increase in flow rate, the single stagnation point splits and the two
points travel down the wave hump on both sides (see figure 1b). The region bounded
by the two interfacial stagnation points confines a circulating eddy on the interfacial
side. Owing to the circulating eddy, these waves are called circulating waves. At
the interfacial stagnation point located at the front of the wave, the fluid motion
points inwards from the wave hump, which can have a significant influence on the
interfacial heat and/or mass transfer. In Islam (2009), for instance, temperature profiles
of a falling liquid film are shown and depict the intrusion of a hot finger originating
at the stagnation point for a Reynolds number of 50. However, the interpretation of
the streamlines in the moving frame of reference, indicating the circulation at the
main hump, may also be misunderstood as a trapping of fluid particles (Malamataris
& Balakotaiah 2008). For a different illustration of the fluid motion, Malamataris
& Balakotaiah (2008) use pathlines of the fluid particles near the main hump. The
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pathlines reveal an upwards and downwards movement, in which the streamwise
velocity of the fluid particle increases as it moves to the top and decreases as it
moves to the bottom.

The identification of circulating eddies in falling films goes back to the work
of Davies (1960), who observed that injected tracers in a wavy film flow do not
spread laterally. He concluded that streamlines of the flow must depict a closed
recirculation zone. However, his physical explanation revealed some deficits, such
as for instance the existence of streamlines aligned with the free surface above the
recirculation vortex in the moving frame of reference. In Portalski (1964), a first
physical picture of circulating eddies was presented. However, the location of those
eddies was found to be in the wave’s trough, for which they cannot be attributed
directly to the circulating waves found in the wave hump.

One of the first works showing the possible existence of a stagnation point on
the wave’s back is the physical model of Brauner & Maron (1983), based on the
withdrawal theory. Originally intended to model the substrate thickness that remains
after a lump of liquid is flowing over the slow-moving thin substrate, the withdrawal
theory also reveals the existence and the position of a stagnation point located on the
wave’s back. The ratio between the height of the stagnation point from withdrawal
theory, hb, and the substrate thickness, hs, leads to a threshold for the occurrence
of a stagnation point. This threshold was found to be hb/hs = 2.72. In a later work,
Maron et al. (1989) estimated this threshold based on numerical simulations, finding
the transition from non-circulating to circulating waves to be located between 2.5
and 3.

In Wasden & Dukler (1989), velocity fields inside solitary waves were shown.
Although those results were iteratively calculated based on experimental film thickness
measurements, they revealed a clear picture of the wave dynamics. Full numerical
simulations, including a deformable surface of circulating waves, were published
in the late 1990s. Miyara (2000), for instance, numerically investigated waves of
different frequencies, inclinations, Reynolds number and Weber number using the
experimental results of Liu & Gollub (1994) as a basis for validation. They found
that the size of the recirculation zone decreases with decreasing Reynolds number
and that the vortex centre moves near the wave crest. For film flows on inclined
plates, the amplitude of the main wave hump decreases and the recirculation zone
becomes suppressed (for otherwise constant parameters). In Roberts & Chang (2000),
the recirculation mechanism and the influence of this recirculation on mass transfer is
shown together with a criterion for the onset of circulating waves based on a critical
wave speed. A detailed comparison and discussion of their findings will be given
here in the results section.

In addition to the onset of circulating waves, the onset of flow reversal and flow
separation can be seen as distinct characteristics of the instantaneous structure of
the flow field in falling films (Malamataris, Vlachogiannis & Bontozoglou 2002;
Malamataris & Balakotaiah 2008). The phenomenon of flow separation is shown
in the lower insets of figure 1 in the fixed ‘laboratory’ frame of reference. Flow
separation is caused by the gradient in surface curvature resulting in a capillary
pressure acting in the opposite direction to the flow and thus reducing the velocity
beneath the minima of the capillary ripples preceding the main hump of a wave. If
the intensity of this force and the time for which it acts are sufficient (starting beneath
the first capillary ripple preceding the main hump of a wave), the flow beneath the
capillary minima can change direction, leading to a back-flow and consequently to a
separation vortex (Dietze, Leefken & Kneer 2008; Dietze, Al-Sibai & Kneer 2009).
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In the inset of figure 1(a), a widening of the streamlines is shown below the wave
trough, illustrating a significantly reduced streamwise velocity. The inset of figure 1(b)
shows the case with flow separation and a reverse flow between the two cross-stream
streamlines, which both end in a stagnation point at the wall.

Besides these flow characteristics discussed above, the transition between the
drag–gravity to drag–inertia regimes can be investigated for inclined films. This
transition was identified by Ooshida (1999) based on the tail structure of solitary
waves. The character of the drag–gravity regime is similar to the Nusselt solution
for a flat film such that wall-friction drag and gravity are the most dominant effects.
Contrarily, the drag–inertia regime is characterized by a steep wave front, where
gravity, viscous drag and surface tension balance, and a long tail, where gravity,
viscous drag and inertia play a significant role (Kalliadasis et al. 2013). Knowledge
of this transition is essential for modelling purposes, since Scheid et al. (2005) have
shown that the Benney equation properly describes the falling film dynamics in the
drag–gravity regime, while the weighted integral boundary layer (WIBL) model is
needed in the drag–inertia regime.

In this study, the simplified WIBL model is used to derive criteria for the phase
transitions. However, the domain of validity of this model is limited to certain
parameter values. As a consequence, we have validated our findings by the full
second-order WIBL model, which itself has been validated recently by Chakraborty
et al. (2014) by way of direct numerical simulations (DNS). In addition, our own
results of fully resolved numerical simulations have been used for validation purpose.

The remainder of this paper is structured as follows. Section 2 provides a
description of the numerical methods applied and the criteria used for the onset
of circulating waves, flow reversal and flow separation, as well as for the transition
from the drag–gravity regime to the drag–inertia regime. Section 3 presents the results
for homoclinic orbits and limit cycles, including validation with DNS. Section 4
concludes.

2. Methods
In this section, the WIBL method and its dynamical system for steady travelling

waves will be described. Subsequently, criteria for the onset of circulating waves and
flow reversal will be presented using self-similar parabolic velocity profiles in terms of
the averaged variables, namely film thickness and flow rate. Next, the flow conditions,
either on the average film thickness or on the average flow rate, are revealed. Finally,
a description of the DNS methodology is given, which is used besides experimental
data for a validation of the WIBL model.

2.1. Weighted integral boundary layer model
The WIBL method, whose derivation was first proposed by Ruyer-Quil & Manneville
(2000) for modelling falling liquid films, consists in reducing a two-dimensional
system of conservation equations (for mass and momentum) and the boundary
conditions (at the wall and at the free surface) to a one-dimensional model of
evolution equations for the local film thickness h and the streamwise flow rate q.
The full second-order model consists of a system of four evolution equations for the
unknowns h, q, s1 and s2, where s1 and s2 are at most first-order inertia corrections
to the parabolic velocity distribution. The full model is given in appendix A. In
this study, most of the results are obtained using a simplified version of the full
model, obtained by cancelling the corrections s1 and s2. Alternatively, this ‘simplified’
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second-order model can be obtained by integrating the boundary layer equations using
the Galerkin method with a parabolic test function. The resulting conservation and
momentum equations are

ht + qx = 0 (2.1)

and
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where the subscripts indicate the partial derivative with respect to t or x, δ denotes
the reduced Reynolds number, ζ the reduced inclination number, and η the viscous
dissipation number according to Shkadov scaling (Kalliadasis et al. 2013). Note that,
for η=0, this model reduces to first order in the gradient expansion accounting for the
separation of scales inherent to the boundary layer theory. The dimensionless numbers
are

δ = (3Re)11/9

Γ 1/3
, ζ = Ct(3Re)2/9

Γ 1/3
and η= (3Re)4/9

Γ 2/3
. (2.3a−c)

Therein, the Reynolds, Kapitza and inclination numbers are defined as

Re= g sin θ h
3

3ν2
, Γ = σ

ρν4/3(g sin θ)1/3
and Ct= cot θ. (2.4a−c)

The symbol g describes the gravitational acceleration, h the film thickness of the
Nusselt flat film solution, ρ the density, σ the surface tension, ν the kinematic
viscosity and θ the inclination angle. Note that the overbar is used for dimensional
quantities in the following. The lengths in the streamwise (x) and crosswise (y)
directions scale with κhN and hN , respectively, where κ = 1/

√
η is a compression

factor for the streamwise coordinate. Further, the time scale is νκ/(g sin θ hN) and
the velocity scale is g sin θ h

2
N/ν.

For stationary periodic travelling waves moving with the wave celerity c, integration
of (2.1) with x′= x− ct gives a relation between the local flow rate q(x′) and the local
film thickness h(x′):

q(x)= ch(x)+ q0. (2.5)

Here the prime has been dropped for the sake of simplicity and q0 denotes the rate
at which the fluid moves under the wave, namely backwards in the moving frame of
reference. Integrated over the wavelength λ, this equation gives a relation between the
average flow rate and the average film thickness:

〈q〉λ = c〈h〉λ + q0. (2.6)

The system of equations (2.1) and (2.2) can also be rewritten in the moving frame
of reference for stationary periodic travelling waves. Replacing the time derivative of
the flow rate qt with −cqx and subsequently all expressions for q with an expression
for h according to (2.5) results in the third-order dynamical system

hxxx = 3{q0 + ch− 1
3 h3 + 1

3ζh3hx − δN(h, c)hx − η[I(h, c)h2
x + J(h, c)hxx]}/h3 (2.7)



Phase diagram in inclined falling films 327

with
N(h, c)= 18
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This equation is solved by using the continuation and bifurcation tool for ordinary
differential equations in the software AUTO-07P (Doedel 2008), and the package
HOMCONT for homoclinic solutions.

2.2. Criteria for phase transitions
2.2.1. Onset of circulating waves

Non-circulating waves are characterized by a wave celerity that is higher than the
maximal surface velocity of the wave, while it is opposite for circulating waves, as
illustrated in figure 1. Thus, for the onset of circulating waves, the maximal velocity
of the wave, umax, has to be equal to the wave celerity. The velocity profile neglecting
first-order corrections is parabolic and given by

u(y, x, t)= 3
q(x, t)
h(x, t)

(
y

h(x, t)
− 1

2

(
y

h(x, t)

)2
)
, (2.9)

with the maximum velocity found at the interface for y = h(x, y). Malamataris &
Balakotaiah (2008) have shown by numerical simulations that the velocity in the
region of the wave crest is well described by a parabolic profile. Substituting the
local flow rate by (2.5) leads to the maximal surface velocity

umax = 3
2

(
c+ q0

hmax

)
. (2.10)

Note that q0 represents the flow rate in the moving frame of reference and is
always negative. Consequently, the maximum surface velocity is found when q0/h
is minimum, i.e. for h = hmax. Comparing the surface velocity to the wave celerity
yields the condition for the onset of circulating waves:

ccirc + 3
q0

hmax
= 0. (2.11)

The same criterion is derived by Malamataris & Balakotaiah (2008) using the stream
function in a moving frame of reference, setting the gradient with respect to the
crosswise coordinate to zero at the position y=hmax. The condition can be transformed,
if q0 is replaced by using (2.6), to

ccirc = 3〈q〉λ
3〈h〉λ − hmax

. (2.12)

This expression for the critical wave speed is different from the value of c̄= gh̄2
max/2ν

(or in dimensionless form ccirc = 2h2
max) proposed by Roberts & Chang (2000), which

was obtained from the Nusselt velocity profile

ū(y, x, t)= g
ν

(
y h̄− ȳ2

2

)
, with ȳ= h̄= h̄max, (2.13)

using the flat film solution between the local flow rate and the local film thickness,
i.e. q= h3/3.
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2.2.2. Onset of flow reversal
The onset of flow reversal can be attributed either to a vanishing local flow rate

q = 0 (equal to a zero net flux) or to a surface velocity of zero, both in the fixed
frame of reference. Equation (2.5) allows again for a critical wave celerity

crev =− q0

hmin
, (2.14)

or if q0 is replaced by using (2.6)

crev = 〈q〉λ
〈h〉λ − hmin

. (2.15)

2.2.3. Onset of flow separation
The onset of flow reversal in the vicinity of the wave trough is closely related to

the occurrence of flow separation. In the case of flow separation, a separation vortex
is formed at the wall, leading to a counter-current flow in the near-wall region. Above
this vortex, the flow can still travel in the direction of the main flow. The onset of
flow separation is thus associated with a locally vanishing wall shear stress

τW(x)= ∂u
∂y

∣∣∣∣
y=0

= 0. (2.16)

This transition criterion becomes at leading order

τW(x)= 3
q
h2
= 0, (2.17)

which coincides with the approximation given by Malamataris & Balakotaiah (2008).
We see that at leading order, the criterion for flow separation coincides with that
for flow reversal, i.e. q = 0. However, with first-order corrections, the onset of flow
separation also becomes dependent on the spatial derivatives of the flow rate and the
film thickness (see (B 3) in appendix B).

2.2.4. Transition drag–gravity to drag–inertia
Using a regularized long-wave evolution equation for the film thickness, Ooshida

(1999) identified two different wave regimes: (i) one at small Reynolds number
dominated by the balance between viscous and gravity forces, the exact balance of
which gives the Nusselt flat film solution, and referred to as the ‘drag–gravity’ regime,
and (ii) one at larger Reynolds number for which inertia forces become important, and
referred to as the ‘drag–inertia’ regime. Ooshida found that the tail length decreases
(or increases) for increasing Reynolds number in the drag–gravity (drag–inertia)
regime, the transition between the two regimes then being at the smallest tail length.
Kalliadasis et al. (2013) have reproduced Ooshida’s results using the WIBL model
for vertical plates.

Having in mind that the tail length behaviour versus Reynolds number allows one
to identify the transition between the drag–gravity and drag–inertia regimes, namely
when there is a minimum, we track this transition for various inclinations. The length
of the wave tail is computed by writing the eigenvalue problem from the dynamical
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system (2.7), namely substituting h=1+ eλx, where λ is the eigenvalue, and linearizing
around h= 1. The obtained characteristic equation is

λ3 + λ2η

(
−12

5
+ 27

5
c
)
+ λ

{
δ

(
6
5

c2 − 34
35

c+ 6
35

)
− ζ
}
− 3(c− 1)= 0, (2.18)

and gives one real solution, denoted λr, and two complex conjugates. Following
Ooshida (1999), the tail length of a wave is proportional to 1/λr and can be
determined using the calculated data of c versus δ for a fixed ζ as later provided in
figure 2(c).

2.3. Flow conditions
To solve the dynamical system (2.7), one additional constraint, either on the flow
rate or on the average film thickness, is needed. Both constraints will be applied in
this study. A fixed flow rate, denoted as open flow condition (Scheid et al. 2005),
describes the flow behaviour under experimental conditions in which a periodically
modulated flow rate is imposed at the inlet, provided the wave has not experienced
any secondary instability (subharmonic), breaking the initial forcing period. Thus for
stationary periodic waves, the time-averaged flow rate over one period in a fixed
reference frame (or equivalently the spatially averaged flow rate over one wavelength,
λ, in a moving reference frame) remains constant, which changes (2.2) and (2.6) to

〈q〉λ = 1
3

and 〈h〉λ = 1/3− q0

c
. (2.19a,b)

The second possible constraint is a fixed amount of liquid enclosed in the spatial
period, λ, also denoted as closed flow condition (Scheid et al. 2005). This constraint is
equivalent to periodic boundary conditions, which are often used in numerical studies
and will also be used later in the direct numerical approach. The fixed volume of
liquid enclosed yields a constant average film thickness and thus

〈h〉λ = 1 and 〈q〉λ = q0 + c. (2.20a,b)

Note that q0 can be parametrized with the substrate film thickness, hs, which is the
thickness of the flat film region surrounding a wave. For a flat film, (2.2) gives
q= h3

s/3. Together with (2.5), this then gives

q0 = h3
s

3
− chs, (2.21)

which will be used for computing homoclinic solutions by setting hs to unity. Now,
with the closed flow condition, the volume of liquid enclosed corresponds for a
given Reynolds number to the liquid enclosed in the flat film solution λhN (in the
dimensional form). Thus, the Reynolds number (denoted as RehN

or equivalently in
Shkadov scaling δhN

) is directly tied to the average film thickness. On the contrary,
for the open flow condition, corresponding to a fixed Reynolds number, the average
film thickness is adjusted. Thus, this Reynolds number is directly tied to the (time-)
average flow rate, denoted as Req or equivalently δq. A direct transformation between
the two different Reynolds numbers is not possible, except for a flat film, for which
they coincide. However, the flow rate-based Reynolds number for the closed flow
condition can be calculated based on the flow field obtained. A comparison of the
periodic travelling waves obtained for the closed and open flow conditions using
either the flow rate-based Reynolds number or the film thickness-based Reynolds
number reveals identity of the two solutions.
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2.4. Fully resolved two-phase modelling using the volume of fluid approach
The free-surface flow of two immiscible and incompressible fluids is numerically
calculated by solving the fully resolved Navier–Stokes equations for mass,

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (2.22)

and momentum,
∂ρui

∂t
+ uj

∂ρui

∂xj
=− ∂p

∂xi
+ η ∂

2ρui

∂xj∂xj
, (2.23)

combined with the volume of fluid (VOF) method (see Hirt & Nichols 1981) using the
Open Field Operation and Manipulation library (OpenFOAM; see Jasak 1996; Ubbink
1997; Rusche 2002). The VOF approach has often been used in the field of falling
liquid films, such as for example in Gao, Morley & Dhir (2003), Dietze (2010), Doro
& Aidun (2013), Albert, Marschall & Bothe (2014) and Dietze et al. (2014).

In the VOF approach, a scalar transport equation for the volume fraction α is
introduced

∂α

∂t
+ ∂(uiα)

∂xi
= 0. (2.24)

Similar to the works of Dietze (2010) and Doro & Aidun (2013), an interface
compression scheme (see also Rusche 2002) of the form

∂α

∂t
+ ∂uiα

∂xi
+ ∂ui,rα(1− α)

∂xi
= 0, (2.25)

where ui,r is an artificial ‘compression velocity’, is used to counteract interface
smearing by numerical diffusion. The surface tension force, f σi , is calculated by the
continuum surface tension model (see Brackbill, Kothe & Zemach 1992):

f σi = σκ =−σn(∇ · n). (2.26)

A possible way to calculate the surface curvature κ (also implemented in the original
interFoam solver) is to determine the second derivative of the volume fraction field α,
which yields

κ = ∇α|∇α|(∇α). (2.27)

However, this second derivative can lead to strong non-physical oscillations (parasitic
currents) on the wave, even for small interfacial smearing. In order to increase the
accuracy of the calculation of the surface tension force, we introduce a height function
(see also Binz, Rohlfs & Kneer 2014; Rohlfs, Binz & Kneer 2014), on the basis
of which the surface curvature is calculated. Therein, the height of the fluid layer,
i.e. the film thickness, is determined by a local integration of the volume fraction
α in crosswise direction from the wall to the upper boundary. Note that the fixed
orientation of the integration is valid only if the main orientation of the surface normal
is in the crosswise direction, which is true for the waves examined and consistent with
small spatial and temporal modulation of the interface.

Based on the distribution of the film thickness, h(x), the local curvature is calculated
by

κ = hxx

(1+ h2
x)

3/2
. (2.28)
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The fluid properties are obtained through volume averaging of the respective phase
properties, i.e.

ρ = αρ1 + (1− α)ρ2 and µ= αµ1 + (1− α)µ2. (2.29a,b)

For the spatial discretization of the two-dimensional domain, hexagonal cells
with a uniform cell size in the streamwise and crosswise directions have been
chosen according to previous work of Dietze et al. (2014). The spatial and temporal
resolution has been identified for each flow condition examined by a rigorous mesh
independence analysis. For the temporal discretization, a uniform time-step size has
been applied. The second-order central differences scheme is used for all spatial
discretization and a first-order bounded implicit scheme is chosen for temporal
discretization (Rusche 2002).

3. Results
The results presented in this section are divided into two parts. First, the onset of

circulating waves is studied for the homoclinic waves by using the WIBL model.
In addition, the onset of circulating waves is compared to the transition from
the drag–gravity to the drag–inertia regime and to the onsets of flow separation
and flow reversal. In the second part, waves of finite wavelength, or respectively
finite frequency, are analysed using the DNS and WIBL approaches. Additionally,
comparisons to experimental results are provided in this part.

Although a complete ‘zoology’ of waves exist in falling films, such as hole waves
(γ1 type wave) or hump waves (γ2 type wave) – see Chang & Demekhin (2002) – as
well as one- or multiple-hump waves, we only focus in this work on one-hump waves,
as they have the largest amplitude and are thus primarily subject to the occurrence of
recirculation eddies.

3.1. Homoclinic orbits
The basic characteristics, i.e. wave peak height and wave speed, of one-hump
homoclinic solutions (γ2 type waves; Chang & Demekhin 2002) as a function of the
reduced Reynolds number δ and the inclination number ζ are shown in figure 2 using
the full second-order model (grey lines) and the simplified second-order model (black
lines). The filled circles indicate the border with the stable flat film solution, i.e. for
δ < 5/2ζ . Stars and crosses are placed at the position of transition to circulating
waves and transition to flow reversal, respectively, in accordance with the criteria
(2.12) and (2.15) for the critical wave celerity, which simplify for homoclinic orbits,
taking hs = 1, and thus with 〈q〉λ = 1/3 and 〈h〉λ = 1, to

ccirc =− 1
hmax − 3

(3.1)

and
crev = 1

3(1− hmin)
. (3.2)

Note that the closed and open flow conditions coincide for homoclinic solutions.
Furthermore, the transition between the drag–gravity and drag–inertia regimes is
illustrated by the open circles, whereby the transition is taken at the position where
the tail length is minimal (see figure 2c), as explained earlier. Because this transition
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FIGURE 2. (a) Maximum film thickness, (b) ratio between maximum and minimum film
thickness, (c) wave tail length and (d) wave speed as functions of the reduced Reynolds
number δ for η = 0.1. The grey lines and symbols correspond to the full second-order
model, whereas the black ones correspond to the simplified model. The stars indicate the
onset of circulating waves, the crosses the onset of flow reversal, the open circles the
transition between drag–gravity and drag–inertia regimes, and the filled circles the onset
of waves.

occurs for low-amplitude waves, for which Scheid et al. (2005) have shown that the
Benney equation is valid, no significant difference between the simplified model and
the full second-order model is expected.

Figure 2(a) shows the maximum film thickness, revealing a rather constant value
hmax ≈ 2.5 for the transition to circulating waves (stars), despite the model used. An
additional variation of the viscous dissipation number (0.01 6 η 6 0.2) confirms this
threshold value (see figure 3a). Beyond the onset of circulating waves, the solution of
the two models diverges significantly. Owing to the fixed substrate film thickness in
the homoclinic solution that we fixed to unity, the plot for hmax is equal to the plot for
hmax/hs. For modelling the wavy flow in inclined thin films, Brauner & Maron (1983)
apply the withdrawal theory in order to estimate the substrate thickness as well as the
location of a stagnation point at the rear interface. The ratio between this location and
the substrate thickness is found to take a constant value of 2.72, which they associate
with a critical ratio for the onset of circulating waves. This value agrees reasonably
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FIGURE 3. Influence of viscous dissipation number: (a) maximum film thickness and
(b) wave speed as functions of the reduced Reynolds number δ for η = 0.01, η = 0.1
and η= 0.2 using the full second-order model. The stars indicate the onset of circulating
waves and the crosses the onset of flow reversal.

with our simulation results of 2.5 and with the value proposed by Maron et al. (1989)
based on numerical simulations (hmax/hs ∈ [2.5–3]). Using the minimum film thickness,
found in the wave’s trough, as an evaluation criterion reveals for the ratio hmax/hmin a
value slightly above 3.

The maximum film thickness at the onset of flow reversal is illustrated by the
crosses in figure 2(a). This threshold value decreases from 2.4 for ζ = 0 to 2.15
for ζ = 2. In contrast to the onset of circulating waves, figure 3 shows a significant
influence of the viscous dissipation number on the onset of flow reversal. The
simulation results reveal that the onset of flow reversal can be either below the onset
of circulating waves (for lower values of η) or above (for higher values of η). Note
that high values of η correspond to low values of the Kapitza number, and thus a
reduced surface tension, resulting in less intense capillary ripples.

The wave’s propagation speed is presented in figure 2(d). According to Ruyer-Quil
& Manneville (2005), the wave speed reaches a constant value of c∞ = 2.738 as
δ→∞ using the simplified second-order model and c∞= 2.564 using the full second-
order model. Recently, Chakraborty et al. (2014) have shown by DNS an asymptotic
value of c∞ = 2.560, and have more generally validated the full second-order model
in a wide parameter range, including the one covered by the present work. As shown
in figure 2(d), the difference in the wave speed of the two models is rather small at
the onset of circulating waves, but diverges thereafter. The wave speed at the onset
of circulating waves shows a significant decrease with the inclination number ζ . A
different representation of the wave speed dependence on the two parameters, i.e. the
reduced Reynolds number and the inclination number, is through the square of the
Froude number, Fr2= δ/ζ , which compares the speed of the ‘kinematic wave’ and the
speed of the ‘surface gravity wave’ (Kalliadasis et al. 2013). In terms of this number,
the critical threshold for the long-wave instability is Fr2 = 5/2. Figure 4 shows the
dependence of the wave speed on the square of the Froude number obtained with the
full second-order and the simplified model. The results of the two models agree well
before the onset of flow reversal. For Fr→∞ the curves (representing different values
of ζ ) converge due to the presence of an asymptote for the phase speed for large
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FIGURE 4. Wave speed as a function of the Froude number (Fr2 = δ/ζ ) for η= 0.1. For
the symbol legend, see caption of figure 2. The graph shows the divergence of the results
of the full second-order model (grey lines) and the simplified model (black lines) near the
onset of flow reversal.

values of δ (Chakraborty et al. 2014). This convergence is found to occur earlier for
larger values of ζ . Note that the curves for ζ = 1 and ζ = 2 overlap very well even
before the onset of circulating waves. Nevertheless, the threshold value for the various
‘phases’ in terms of c and Fr2 for the onsets are significantly different.

The onset of circulating waves for one-hump homoclinic solutions as a function
of the reduced Reynolds number δ and the reduced inclination number ζ for various
values of the streamwise viscous dissipation number η is calculated based on the
criterion (3.1) and depicted in figure 5. The diagram shows the borders of three
different phases: no waves, non-circulating waves and circulating waves.

For low values of δ, i.e. δ 6 5/2ζ (or Fr2 6 5/2), a stable flat film solution exists.
Above this threshold, the film is unstable against infinitesimal long-wave disturbances
such that sinusoidal waves develop on the film surface. The film surface velocity is
always lower than the wave propagation velocity, such that these waves are of non-
circulating wave type. The upper three threshold lines mark the onset of circulating
waves for different values of the viscous dispersion number η. Using the simplified
second-order model, only a minor influence of the viscous dispersion number on the
threshold value is found. In contrast, the threshold value increases with the dispersion
number for higher values of ζ if the full second-order model is applied. For the
vertical case (ζ = 0), the threshold value for all values of η and both models is
δ = 1.65± 0.025.

Using the data obtained from the full second-order model yields the following
correlation for the onset of circulating waves,

δcirc ≈−1.28+ (2+ ζ )0.46η+1.6, (3.3)

which fits the numerical data with R2 = 0.995 for 0.01 6 η6 0.2. (The coefficient of
determination, R2, is defined as 1− (SSE/SST), where SSE denotes the sum of squared
error and SST the sum of squared total.)

Figure 6 shows the onset of flow reversal based on criterion (3.2). Both models
reveal a strong dependence of the onset on the inclination number and a less strong
influence on viscous dissipation. However, compared to the onset of circulating waves,
the onset of flow reversal is more significantly influenced by viscous dissipation. The
difference in the results obtained with the two models is found to increase with



Phase diagram in inclined falling films 335

0.5 1.0 1.5 2.00

1

2

3

4

5

6

7

8

9

10

No waves

Circulating waves

Non-circulating
waves

Full second-order model

FIGURE 5. Transition from non-circulating to circulating waves for homoclinic solutions:
dependence on the dissipation number η.

Full second-order model
Simplified model

Flow reversal

No flo
w reversal

No waves

0.5 1.0 1.5 2.00

1

2

3

4

5

6

7

8

9

10

FIGURE 6. Onset of flow reversal for homoclinic solutions: dependence on the dissipation
number η.

inclination number. With the obtained data from the full second-order model, the
following correlation for the onset of flow reversal is obtained:

δrev ≈−1.28+ (2+ ζ )1.2η+1.5, (3.4)

which fits the numerical data with R2 = 0.995 for 0.01 6 η6 0.2.
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FIGURE 7. Phase diagram for one-hump homoclinic solutions with η = 0.1. Drawn by
simulation results obtained from the simplified WIBL model.

Similarly to the circulating wave transition, the onset of the transition between the
drag–gravity and the drag–inertia regimes has been found to be independent of the
viscous dissipation parameter η using the simplified model (not shown).

Figure 7 illustrates how the onset of circulating waves is located in the phase
diagram compared to the transition between the drag–gravity and drag–inertia regimes
for η= 0.1. The simulation results reveal that this transition occurs before the onset of
circulating waves, which agrees with the fact that the flow field of circulating waves
differs significantly from the Nusselt flat film solution. The width of the drag–inertia
regime without circulating waves increases with the inclination number ζ , which
suggests that strong deviations from the Nusselt flat film solution are necessary at
the onset of circulating waves for inclined films.

The onset of flow separation also depicted in figure 7 is not calculated by the
continuation solver directly, but in a post-processing step for a large number of
solutions with different values of ζ based on the first-order approximation of the
wall shear stress, estimated by (B 3) in appendix B. The onset of flow separation
is consequently associated with the vanishing of the absolute minimum wall shear
stress, denoted |min(τW)|. For validation, the streamline plots in the vicinity of the
transition region have been revealed, showing that the onset of flow separation occurs
in this area. For η = 0.1, the onset of flow separation is found to occur for smaller
values of the Reynolds number than the onset of circulating waves. Again, the width
of the flow separation regime without circulating waves increases with the inclination
number ζ .

Besides the onset of flow separation, the onset of flow reversal is calculated based
on the criterion (3.2). Figure 7 shows a significant difference between the onset of
flow separation and the onset of flow reversal for larger inclination numbers. This
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Parameters Case 1 Case 2

Exp. Req 6.8 15
f̄ (Hz) 24 16

DNS RehN
5.99 10.76

Ka 509.6 509.6
λ̄x (mm) 7.24 20.5

WIBL δhN
4.28 8.747

η 0.057 0.073
kx 0.897 0.337

Note: the film thickness-based Reynolds number RehN
and the wavelength λ̄x have been

determined iteratively by DNS with periodic boundary conditions, for which the closed
flow condition applies, with the aim of matching the flow rate-based Reynolds number
Req and the frequency f̄ from the experiment, for which, in turn, the open flow condition
applies.

TABLE 1. Parameters used in the simulations and corresponding to experimental data for
a vertical film.

reveals the existence of a small vortex at the wall, slowly growing with an increase
in Reynolds number. A further discussion on the onset of flow separation and flow
reversal is given later for the limit cycles.

3.2. Limit cycles
The homoclinic orbits in the previous section describe solitary wave solutions of
infinite wavelength. For naturally developing waves or for a monochromatic excitation,
however, waves of finite length develop. Owing to the additional degree of freedom,
an additional independent parameter (the wave frequency or the wavelength) arises
together with the reduced Reynolds number and the reduced inclination number.

3.2.1. Validation by experimental and direct numerical comparison for vertical plates
To compare the results of the WIBL model with data from experiments and DNS,

parameters have been chosen according to the experimental conditions investigated in
Dietze (2010). Using dimethyl sulfoxide (DMSO) as a working fluid in a vertically
inclined cylinder of large radius, the values for the viscosity, density and surface
tension are ν = 2.85 × 10−6 m2 s−1, ρ = 1098.3 kg m−3 and σ = 0.0484 N m−1,
respectively. From the various flow conditions presented in that work, a case that
is characterized by no circulating waves (Req = 6.8 and f̄ = 24 Hz) and a case that
is characterized by the presence of circulating waves (Req = 15 and f̄ = 16 Hz)
have been chosen. The values of the dimensional and dimensionless parameters (in
Reynolds and Shkadov scaling) are presented in table 1.

The closed flow condition has been applied in the WIBL model in order to
correspond to the periodic boundary conditions imposed in the DNS. Consequently,
the dimensionless film thickness takes a constant value of 〈h〉λ = 1, for which the
critical wave celerities for the onset of circulating waves (2.12) and flow reversal
(2.15) simplify to

ccirc = 3〈q〉λ
3− hmax

(3.5)
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FIGURE 8. Comparison of experimental (Dietze 2010) and numerical results for the cases
of table 1: (a) case 1, Req = 6.8; (b) case 2, Req = 15. The streamwise velocity is given
at 0.1 mm from the plate.

and

crev = 〈q〉λ
1− hmin

, (3.6)

respectively.
In order to examine the experimental conditions numerically, the a priori unknown

wavelength (i.e. domain size of the DNS) and initial film thickness (i.e. thickness-
based Reynolds number) have been iteratively adjusted such that the flow rate, Req,
and the frequency between simulations and experiment match (table 1). For DNS
and WIBL simulations, equivalent flow conditions have been applied, whereby the
dimensionless wavenumber is

kx = 2π

λx
κhN . (3.7)

Quantitative comparisons for the dimensional film thickness h̄ and the streamwise
velocity ū (at the crosswise position ȳ= 0.1 mm) are shown in figure 8. For Req= 6.8,
the film thickness of the WIBL model and the DNS are in very good agreement.
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FIGURE 9. Wave topology (thick line) and flow field (streamlines) for case 1, for closed
flow condition with δhN

= 4.28, i.e. RehN
= 5.99, ζ = 0 and η = 0.057: (a) full second-

order WIBL model, ψ̄ = [2, 4, 6, . . . , 22] × 10−6 m2 s−1, c̄ = 0.1762 m s−1; (b) DNS,
ψ̄ = [2, 4, 6, . . . , 20] × 10−6 m2 s−1, c̄ = 0.1736 m s−1. The range of the dimensional
stream function is as shown in brackets.

However, the film thickness amplitude of the experimental results is slightly lower
compared with the simulations. Similar agreement is found for the streamwise velocity.
For Req = 15, the film thickness profiles of the WIBL model and the DNS agree
very well in the capillary region, for the residual layer and for the back of the wave.
The wave front is found to be steeper and the wave peak height is increased by
approximately 8 % in the DNS results. In comparison with the experimental data,
the highest deviations are found in the region of the wave’s back, which has more
concave shape in both simulations compared to the experiment. The streamwise
velocity beneath the wave crest at ȳ = 500 µm was found experimentally to be
between 0.34 and 0.36 m s−1 (Dietze 2010, not shown) and is already larger than
the wave speed of c̄DNS= 0.328 m s−1 and c̄WIBL= 0.3395 m s−1 obtained by the two
numerical approaches. Although the wave celerity was not measured experimentally,
the comparison suggests the existence of circulating waves for the experimental
conditions examined.

A comparison between the two methods (full second-order WIBL and DNS) for
the wave topology and flow field is shown in figures 9 and 10 for cases 1 and 2,
respectively. The stream function ψ has been calculated from the velocity field (see
appendix B), including corrections to the parabolic profile. The agreement between
the two methods for case 1, characterized by the absence of circulating waves, is
excellent. For case 2, for both methods the streamlines show circulating fluid in the
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FIGURE 10. Same as figure 9 for case 2, with δhN
= 8.747, i.e. RehN

= 10.76, ζ = 0 and
η= 0.073: (a) full second-order WIBL model, ψ̄ =[0, 5, 10, . . . , 55, 58, 60]× 10−6 m2 s−1,
c̄= 0.3375 m s−1; (b) DNS, ψ̄ =[0, 5, 10, . . . , 50, 54, 55]× 10−6 m2 s−1, c̄= 0.328 m s−1.

main wave hump. Although the main flow behaviour is identical in both simulations,
a difference is found in the position and the shape of the recirculation zone. In the
results obtained by the WIBL model, the centre of the roll is located closer to the
position of maximum film thickness. In contrast, the position of the vortex in the
DNS is located behind the wave crest and is significantly stretched in the cross-stream
direction. Additionally, the positions of the stagnation points are different. The shape
found in the DNS agrees with the experimental observation of Alekseenko et al.
(2007) and the numerical results obtained by Wasden & Dukler (1989) and Islam
(2009). The DNS results also reveal the global maximum of the streamwise velocity
(marked in the plot) to be located not at the point of highest film thickness but at
the wave’s back, significantly below the wave crest.

3.2.2. Dissection of wave features for inclined plates
The suppression of circulating waves by a volume force acting in the direction

normal to the wall (i.e. gravity) for the same Reynolds number as examined in
case 2 is shown in figure 11. Again, the direct numerical and the integrated boundary
layer approaches reveal very similar results. Figure 12 depicts the streamlines for the
onset of circulating waves (ζ = 0.3958) at which the condition of (3.5), based on
the parabolic velocity profile, is fulfilled. The streamline plot including the first-order
velocity corrections (see (B 1) in appendix B) shows the existence of two stagnation
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FIGURE 11. Same as figure 10 for an inclined plate, i.e. ζ = 1: (a) full second-order
WIBL model, ψ̄ = [0, 5, . . . , 55] × 10−6 m2 s−1, c̄ = 0.312 m s−1; (b) DNS,
ψ̄ = [0, 5, . . . , 55] × 10−6 m2 s−1, c̄= 0.310 m s−1.
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FIGURE 12. Onset of circulating waves according to (3.5): wave topology and film
thickness profile calculated by the full second-order WIBL model for closed flow condition
corresponding to case 2 for an inclined plate, i.e. ζ = 0.3958; ψ̄ = [0, 5, 10, . . . , 55] ×
10−6 m2 s−1; c̄= 0.325 m s−1.

points located close to the wave crest. The streamwise velocity between the two points
exceeds the wave speed c, such that the onset of circulating waves occurs slightly
earlier. However, the short distance between the two stagnation points validates the
simplification of the first-order velocity profile used to derive (2.11), hence (3.5).
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The ratio between maximum and minimum film thickness (h̄max = 537.2 µm and
h̄min = 163.1 µm) is 3.29. Approximating the residual layer film thickness by the
average film thickness between the first capillary’s minimum and maximum yields
h̄s = 219.0 µm and thus a ratio of h̄max/h̄s = 2.45, which is close to the threshold
found by Maron et al. (1989) (h̄b/h̄s = [2.5–3]).

The transition from waves with flow reversal to waves without this feature is shown
in figure 13, and the transition from waves with flow separation to waves without
both characteristics is shown in figure 14. All simulation results are presented for
case 2 using DNS and the WIBL model. As both phenomena are present in the case
of a vertical plate (ζ = 0), the inclination number has been increased stepwise up
to the point where neither flow reversal nor flow separation exists. The left panels
in figure 13 show the case where the criterion for the onset of flow reversal is met
(WIBL) or slightly exceeded (DNS). Note that the inclination number for the transition
is different, namely ζDNS≈ 1 and ζsWIBL= 0.85. In terms of the inclination angle β, this
translates to βDNS≈ 15.2 and βsWIBL= 17.7◦. The DNS and the full second-order model
show a similar form of the separation vortex, with a steep gradient towards the main
wave hump and a smaller gradient towards the first capillary maximum. Using the
simplified model, the velocity over the entire cross-section is zero, for which both the
flow rate and the first derivative of the flow rate must be zero (according to (B 1)).
Besides the streamline plots, the wave celerity and the critical wave celerity for the
onset of flow reversal are given for all 12 cases based on criterion (3.6) for DNS and
based on the equivalent criterion (2.14) for the WIBL models. Criterion (2.14) has
been used because q0 is known from the WIBL simulations, contrary to the average
flow rate 〈q〉λ. Note that the two criteria show different behaviour for larger values
of ζ , such that the wave celerity is below the criterion in the DNS results for the
absence of flow reversal, while for the WIBL results the wave celerity exceeds the
criterion.

An increasing inclination number leads to a reduction in size of the separation
vortex up to the point where it disappears. This transition process is found to be well
captured by the WIBL model as suggested by the comparison of the streamline plots
to the DNS results. However, the difference of the inclination number remains, such
that the onset of flow separation occurs also for lower values of ζ in the WIBL model
compared to the DNS.

3.2.3. Fixed frequency
The results of the DNS shown in the previous section were computed using

periodic boundary conditions in streamwise direction. For consistency, the closed flow
condition has been used in the WIBL model. However, experiments and applications
are often characterized by a fixed flow rate at the inlet (Req or δq) and, if excited
externally, by an excitation frequency and not by a constant wavelength. Thus, we
apply here the open flow boundary condition for the WIBL simulations. Consequently,
the dimensionless flow rate takes a constant value of 〈q〉λ= 1/3, for which the critical
wave celerities for the onset of circulating waves and flow reversal given by (2.12)
and (2.15) simplify to

ccirc = 1
3〈h〉λ − hmax

(3.8)

and
crev = 1

3(〈h〉λ − hmin)
, (3.9)

respectively.



Phase diagram in inclined falling films 343

–2

–1

0

1

2
0 0.2 0.4 0 0.2 0.4

0 0.2 0.4 0 0.2 0.4

O
ns

et
 o

f 
fl

ow
 r

ev
er

sa
l

Criterion: not exceeded

Criterion: exceeded

–2

–1

0

1

2

D
N

S

O
ns

et
 o

f 
fl

ow
 r

ev
er

sa
l

Fu
ll 

se
co

nd
-o

rd
er

 W
IB

L

Criterion: not exceededO
ns

et
 o

f 
fl

ow
 r

ev
er

sa
l

Criterion: met

Si
m

pl
if

ie
d 

W
IB

L

Criterion: not exceeded

Criterion: met

–2

–1

0

1

2

–2

–1

0

1

2

–2

–1

0

1

2

–2

–1

0

1

2
0 0.2 0.4 0 0.2 0.4

FIGURE 13. Onset of flow reversal: flow field (streamlines in a fixed frame of reference)
in the region of the capillary minimum calculated by DNS and WIBL for closed flow
condition with δ = 8.747, i.e. RehN

= 10.76: ψ̄ = [0, −1.25, −5, −10, −15, . . .] ×
10−6 m2 s−1. Thick lines show the interface and the flow separation streamline with ψ̄=0.
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FIGURE 14. Onset of flow separation: legend as in figure 13.

In addition to the dimensionless parameters introduced earlier, we introduce the
dimensionless frequency according to

f = fκ
tν lν
hN
, (3.10)

where f denotes the dimensional frequency (in Hz), and lν = (ν2/g sin θ)1/3 and
tν = (ν/(g sin θ)2)1/3 denote the viscous length and time scale, respectively.
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FIGURE 15. Phase diagram for the onset of circulating waves as a function of reduced
inclination number ζ and dimensionless excitation frequency f . Data are obtained by using
the full second-order model.

Figure 15 shows the phase diagram for the onset of circulating waves as a function
of reduced inclination number ζ and dimensionless excitation frequency f as well
as for two different viscous dissipation numbers η. The full second-order model is
used for all calculations. The transition from no waves to non-circulating waves is
plotted for homoclinic solutions, revealing the absolute stability of the film flow for
low reduced Reynolds numbers and finite values of ζ . Additionally for comparison,
the transition for the homoclinic solution is shown by the black line. The dashed lines
illustrate the onset of circulating waves for higher frequencies, and thus for waves of
shorter wavelength. Obviously, the Reynolds number at which the onset of circulating
waves occurs increases with excitation frequency. A small increase in the threshold
value with the viscous dissipation number is found, similar to the influence observed
for the homoclinic solution.

Based on the simulation results, a correlation equation for the critical reduced
Reynolds number δcirc can be deduced including the effect of finite frequencies.
Expanding the correlation (3.3) established for the homoclinic orbit by introducing
two frequency dependences (modifying the constant for ζ = 0 and the slope) yields

δcirc =−(2+ 24 f )+ (2+ ζ )1.76+23f , (3.11)

which fits the numerical data with R2 = 0.995 for η= 0.1.
The same picture as for circulating waves can be drawn for flow reversal as shown

in figure 16. A similar dependence of the onset on the excitation frequency f is
obtained, shifted towards higher values of the inclination number. Nevertheless, the
significant influence of the viscous dissipation number, already observed for the
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FIGURE 16. Phase diagram for the onset of flow reversal as a function of reduced
inclination number ζ and dimensionless excitation frequency f . Data are obtained by using
the full second-order model.

homoclinic solution, is also found for finite limit cycles. Owing to the multifactorial
dependence of the onset of flow reversal, a simple correlation function cannot be
given.

Figure 17 shows that the ratio between the maximum film thickness and the
substrate thickness at the onset of circulating waves remains rather constant
irrespective of the inclination, frequency and viscous dissipation number. Thus, this
ratio can be a sufficiently suitable criterion for the onset of circulating waves. For
the onset of flow reversal, the ratio between maximum film thickness and substrate
film thickness indicated by the grey crosses is found to be dependent on Reynolds
number and viscous dissipation number. The ratio decreases with both parameters,
but does not depend on frequency.

A comparison with the critical value for the onset of circulating waves proposed
by Roberts & Chang (2000) is shown in figure 18. According to their value for the
critical wave speed, we have plotted the ratio between the square of the dimensionless
maximum film thickness and the wave velocity. Following Roberts & Chang, this ratio
should take a constant value of 2 whatever the frequency. Our results also reveal a
nearly constant threshold for a vertical falling film (ζ = 0), but with higher value of
2.95. The difference in the results arises from the assumption made by Roberts &
Chang that the average velocity underneath the wave’s crest q(x)/h(x) is equal to the
averaged value of 1/3. Additionally, we would like to recall that the critical wave
speed is ccirc = 1/(3〈h〉λ − hmax) according to the WIBL model (3.5) and c = h2

max/2
according to the assumption in Roberts & Chang. If inclination is also considered
(ζ > 0), the value of the ratio increases, but still remains rather constant on varying
the frequency.
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FIGURE 17. Critical ratio between the maximum film thickness and the substrate film
thickness at the onsets of circulating waves and flow reversal. The markers include results
for different frequencies and inclination numbers. Data are obtained by using the full
second-order model.
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FIGURE 18. Validation of the criterion for the onset of circulating waves proposed
by Roberts & Chang (2000), i.e. h2

max/c = 2. Data are obtained by using the full
second-order model.

4. Conclusion

In this study, the onset of circulating waves and the onset of flow reversal has
been investigated as a function of the Reynolds number and the inclination number ζ .
For this, the simplified and full second-order WIBL models have been applied after
validating the method with experimental data and DNS. An analytical criterion for the
onset of circulating waves has been determined from the WIBL model based on the
wave celerity, the average film thickness and the maximum film thickness (2.12). For
the onset of flow reversal, a similar criterion based on the minimum film thickness
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is given (2.15). In addition, flow separation and the transition from drag–gravity to
drag–inertia regimes have been considered.

It has been found by the numerical simulations that the onset of circulating waves
and the transition from the drag–gravity to the drag–inertia regime are not significantly
influenced by the viscous dissipation number, and that the critical reduced Reynolds
number increases significantly for inclined film flows. In contrast, the onset of flow
reversal is significantly influenced by the viscous dissipation number. For low values
of the viscous dissipation number, the onset of circulating waves occurs for higher
Reynolds numbers than the onset of flow reversal in the first capillary minimum. For
high values of the viscous dissipation number, the transition changes. The results of
this study also reveal that the threshold for the onset of circulating waves based on
the ratio between maximum and substrate film thicknesses is appropriate.

Simulation results in the limit cycle, i.e. on a finite domain length, reveal a strong
increase of the threshold Reynolds number with the excitation frequency for both
flow reversal and recirculation. Nevertheless, the ratio between the maximum film
thickness and the substrate film thickness is found to be rather constant for the onset
of flow recirculation irrespective of the inclination, frequency and viscous dissipation
number. For the onset of flow reversal, this ratio is found to decrease with Reynolds
number and to be dependent on the dissipation number, but not on the excitation
frequency. These findings support the practical use of the results obtained by the
homoclinic solution. Finally, a correlation equation (3.11) is given for the critical
reduced Reynolds number at the onset of circulating waves as a function of the
reduced inclination number and the dimensionless frequency. We believe that this
correlation, together with the definitions (2.3) and (2.4), can be of practical interest
for future experimental identification of the different phase regions, as each phase
change is believed to have a significant influence on heat transfer behaviour.
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Appendix A
The four evolution equations for the full second-order model read

∂th= ∂xq, (A 1)

δ∂tq = 27
28

h− 81
28

q
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− 3069
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δ∂ts1 = 1
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Appendix B
The velocity field obtained in deriving the second-order WIBL model is calculated

by evaluating the streamwise and cross-stream velocities (for details, see e.g.
Kalliadasis et al. 2013). The streamwise velocity, including the first-order corrections
to the parabolic velocity profile, is given by

u(x, y) = δ

140h7
(hy− 1

2 y2)
{

21y4q2hx − 28ch6qx + 2h5(35cy+ 36q)qx

− 7y3hq(12qhx + yqx)+ 14y2h2q(3qhx + 2yqx)+ 28yh3q(3qhx + 2yqx)

− h4[48q2hx + 35cy2qx + 84q(−5/δ + 2yqx)]
}
, (B 1)

and the cross-stream velocity is straightforwardly calculated based on

v(x, y)=
∫ y

0

∂(u(x, Y))
∂x

dY. (B 2)

For the evaluation of the shear stress, the derivative of (B 1) is evaluated at the wall
(y= 0), leading to

τW(x)= 1
35h2
[−12δq2hx − 7cδh2qx + 3q(35+ 6δhqx)]. (B 3)
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