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• The draw resonance effect in film casting is quantitatively analysed.
• A Newtonian model including inertia and gravity effects is used.
• Using fluidity and inlet velocity as dimensionless control parameters reveals non-monotonic stability behaviour.
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• Correlations between the critical draw ratio and the control parameters are given.
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a b s t r a c t

The influence of viscosity and inlet velocity on the draw resonance instability of film casting processes
is quantitatively analysed. By linear stability analysis of a Newtonian model including inertia and gravity
effects, stability curves for different control parameter values are calculated numerically. For this purpose,
we propose a scaling law which separates the fluidity, i.e. the reciprocal viscosity and the inlet velocity
into two independent dimensionless parameters. This new scaling evidences a minimum of stability,
separating two regimes of opposite behaviour: one for which increasing the inlet flow rate has a
destabilizing effect due to viscosity and one for which increasing the inlet flow rate has a stabilizing effect
due to gravity and inertia; increasing the fluidity has always a stabilizing effect. By fitting the stability
curves with an appropriate postulated function, we are able to construct correlations between the critical
draw ratio, the fluidity and the inlet velocity. For the first time regimes of negligible inertia or negligible
gravity effects are revealed as well as a regime of unconditional stability. The proposed correlations for
each of these regimes can further be used as an analytical solvable criterion for determining the onset of
draw resonance in film casting.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

The process of film casting is of great importance in polymer
and glass industry. In general,material, which ismostly in amolten
state, is extruded through a slit die and drawn at higher speed, such
that its thickness becomes thinner. Exceeding a critical take-up
velocity, or equivalently exceeding the so-called critical draw ratio,
oscillation in both flow velocity and width can be observed, which
leads to minor quality of the end-product and eventually to the
breakdown of the process. Miller [1] observed this phenomenon
for the first time in fibre spinning and named it as draw resonance.

Since then, a lot ofwork has been done on the description of film
casting processes, most of the studies focusing on the prediction of
draw resonance, some including three-dimensional effects [2]. A
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comprehensive review is given in Chapter 10 of the book edited
by Hatzikiriakos and Migler [3]. Yeow [4] has been the first who
applied linear stability analysis on the process of isothermal film
casting of a Newtonian fluid, neglecting all secondary forces like
inertia, gravity, surface tension and air drag.

Shah and Pearson [5] investigated the effect of secondary forces
on the stability of fibre spinning for the first time.1 Newer results
regarding the effect of inertia and gravity in film casting have
been published by Cao et al. [6]. Using linear stability analysis,
they investigated the dependence of the critical draw ratio and the
oscillation frequency on Reynolds number Re and Froude number
Fr . Moreover, a nonlinear analysis has been carried out in order
to examine the influence of inertia and gravity on the oscillation
amplitudes, film rupture and the time needed to reach sustained

1 Besides a numerical factor, two-dimensional film casting and fibre spinning are
mathematically equivalent, as will be also mentioned in Section 2.

http://dx.doi.org/10.1016/j.euromechflu.2015.02.005
http://www.elsevier.com/locate/ejmflu
http://www.elsevier.com/locate/ejmflu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euromechflu.2015.02.005&domain=pdf
mailto:mathias.bechert@fau.de
http://dx.doi.org/10.1016/j.euromechflu.2015.02.005


M. Bechert et al. / European Journal of Mechanics B/Fluids 52 (2015) 68–75 69
oscillation. One of their main conclusions is that both gravity and
inertia effects improve stability, with inertia being the dominant
force regarding stability. However, up to now a quantitative
correlation between experimental processing parameters and the
onset of instability is still missing. Cao et al. [6] considered a
parameter range of Re ∈ [0, 0.25] and Re/Fr ∈ [0, 25]. This
covers a wide practical range, but as presented here, it still misses
experimental important parameter sets, including a regime where
the instability vanishes completely.

Besides full numerical simulations some approximating
methods have been developed, which greatly facilitates the com-
putation of the critical draw ratio with respect to the system pa-
rameters. One of such alternative approaches is Hyun’s stability
criterion [7], later adapted by Kim et al. [8], which correlates the
cycle time of draw resonance with the travelling time of a mass el-
ement through the system. Hagen published several mathematical
analysis on draw resonance, including some works on the asymp-
totic behaviour of the eigenvalue spectrum of the linearised so-
lutions for both isothermal [9] and non-isothermal [10] models.
Moreover, Van der Hout [11] derived another stability criterion for
fibre spinning of Newtonian and power law fluids. However, to our
knowledge no correlations between the critical draw ratio and pro-
cess and material parameters including the effects of inertia and
gravity have been revealed yet.

In our work, the inlet velocity and the fluidity, i.e. the reciprocal
viscosity, are used as control parameters as it is the case in practical
settings. We start with a short presentation of the common
model equations and introduce a scaling rule which facilitates the
examination of the influence of the control parameters on the
onset of the instability. This is followed by a description of the
stability analysismethod, including the postulation of an analytical
solvable expression for the stability curves, which can be fitted to
the numerical data and used as an estimator for the critical draw
ratio. As a result, we can identify regimes where gravity, or inertia
respectively, can be neglected, as well as a regime of unconditional
stability. These are all summarised in a stability map covering the
practical range of the control parameters. The paper closes with
conclusions and outlook.

2. Model equations and scaling

We follow the usual procedure of modelling the film casting
process for stability analysis, as presented for example by Cao
et al. [6]. Fig. 1 shows the three-dimensional sketch of a filmwhich
is drawn along the x-axis over a total distance L. In this work a one-
dimensional model is used, using the assumption of infinite width.
Under the assumption that the film thickness h(x, t) is small com-
pared to L, i.e. h/L ≪ 1, the flow velocity in x direction, denoted
by u, does not change across the thickness at leading order, i.e.
u = u(x, t), t being the time. The continuity equation can then
be written,

∂th + ∂x(hu) = 0. (1)

Following Yeow [4],we use aNewtonian constitutive equation. The
momentumbalance equation then has the following form, neglect-
ing surface tension and air drag2:

ρh (∂tu + u∂xu) = ∂x (4hη∂xu) + gρh, (2)

where the left-hand side accounts for inertia and the two terms on
the right-hand side account, respectively, for viscous stresses and
gravity; ρ and η are, respectively, the density and the dynamical

2 As indicated by a referee, these assumptions may be inappropriate for
modelling of fibre spinning, limiting the comparability of these resultswith the fibre
spinning process.
Fig. 1. Sketch of film casting process.

viscosity of the material, both assumed to be constant, and g is the
acceleration of gravity. The factor 4 in Eq. (2) is the so-called ‘Trou-
ton ratio’.

Within the process of film casting, material is extruded with a
certain velocity u0 through a slit die of thickness h0 and taken up by
a chill roll rotating with predefined speed. This sets the boundary
conditions, which are

u(0, t) = u0, u(L, t) = DRu0, h(0, t) = h0, (3)

where DR is the so-called draw ratio, strictly larger than unity.
In this work, we are considering that the length L is fixed

and that the adjustable control parameters, in addition to the
draw ratio, are the inlet velocity and the viscosity. The former
can be changed by different extrusion dies or different flow rates,
the latter by modifying the temperature or the material itself. In
order to get dimensionless variables, we are therefore using the
following transformation rules:

x → Lx, u →

gL u, h → h0h, t →


L
g
t. (4)

Applying the transformations (4) to (1) and (2) leads to the
following system:

∂th + ∂x(hu) = 0, (5a)
Fh(∂tu + u∂xu − 1) − ∂x(h∂xu) = 0, (5b)

where F =

√
gL3ρ
4η is the fluidity parameter, i.e. the dimensionless

reciprocal viscosity. The boundary conditions in (3) become

u(0, t) = Q , u(L, t) = DRQ , h(0, t) = 1, (6)

where Q =
u0√
gL is the dimensionless inlet velocity. The pure

viscous model reported in [4] is recovered by setting F = 0, for
any Q ≠ 0; for convenience, we have set Q = 1. It is worth
mentioning that all the equations mentioned here can merely be
transferred to the fibre spinning model first proposed by Matovich
and Pearson [12] by substituting the thickness h(x, t) with the
cross-sectional area of the fibre and additionally changing the
Trouton ratio 4, which appears in F , to 3. Nevertheless, surface
tension effects induced by transverse curvature variations along
the fibre have to be considered in addition to gravity and inertia.

Notice that the velocity scale
√
gL is the characteristic velocity

of a fluid particle falling along the length L under gravity. For a
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Table 1
Practical ranges of the process parameters and resulting ranges of the dimensionless
parameters. Note that although the length L may vary for different applications, it
is assumed to be constant for a particular process.

Parameter Unit Range

L m 10−2–1
η/ρ m2 s−1 10−1–102

u0 ms−1 10−3–1

Q 1 10−4–1
F 1 10−5–10

film of fixed length, this velocity is fixed, hence independent of the
control parameters, which is the aim of this scaling. Having used
the inlet velocity u0 as a scale, instead, as usual in the literature,
would have lead to similar equations but expressed in terms of the

Reynolds number Re =
ρu0L
4η and the Froude number Fr =

u20
gL .

In our scaling, the velocity u0 only appears in the parameter Q .
The correspondence between the two scalings is straightforward,
but nonlinear, namely Re = QF and Fr = Q 2. Table 1 shows
all parameter regimes, which have practical importance, and the
resulting ranges of F and Q .3

3. Stability analysis

In order to examine the stability of the process, we apply the
standard tools of linear stability analysis and use the following
ansatz:

u(x, t) = us(x)(1 + U(x)eλt), (7a)

h(x, t) = hs(x)(1 + H(x)eλt), (7b)

where us(x) and hs(x) represent the steady state solutions, U(x)
and H(x) the spatial modes of the perturbations and λ the eigen-
values.

Looking for the base state first by neglecting the time deriva-
tives, Eq. (5a) leads together with the boundary conditions (6) to

hs =
Q
us

, (8)

while Eq. (5b) becomes

u′′

s = F

usu′

s − 1

−

h′
su

′
s

hs
, (9)

where the prime denotes the derivative with respect to x. The evo-
lution equations for the perturbations are gained by substitution
of (7) into (5) and rearranged by using the steady state Eqs. (8) and
(9):

H ′
= −


Hhsλ

Q
+ U ′


, (10a)

U ′′
=

1
Qhs


hsQFU(λ + u′

s) + QU ′(−h′

s + QF)

+ h2
s


FU − u′

s(H
′
+ 2U ′)


. (10b)

In order to compute the neutral stability curves, which separate
the parameter space in stable and unstable regimes, we use the
method presented by Scheid et al. [13]. According to linear sta-
bility theory, the steady states are unstable if there exists at least
one eigenvalue λ with Re(λ) > 0, otherwise they are stable.

3 Some parameter combinationswithin these ranges aremore exotic than others,
such as for instance small length (∼10−2 m) and large inlet velocity (∼1 m/s).
However, for reasons of completenesswe do not introduce further constraints here.
Fig. 2. Stability curves for various values of the dimensionless inlet velocityQ (top)
and various values of the dimensionless fluidity F (bottom).

Table 2
Comparison of calculated DR,C and Im(λ) for some values of F and Q with the
corresponding solutions presented by Cao et al. [6].

Process parameters This work Cao et al. [6]
F Q DR,C Im(λ) DR,C Im(λ)

0 1 20.218 14.011 20.218 14.011
0.25 0.1 30.343 1.5895 30.343 1.5895
0.5 0.1 56.273 1.7732 56.267 1.7731

Therefore we need to find solutions having a spectrum of eigen-
values with the largest real part being zero. Neglecting inertia and
gravity forces, i.e. F → 0, there exists an analytical solution for
Eqs. (8)–(10) [14,15], even though various authors [4,16,17] found
it first numerically, which leads to a critical draw ratio of DR,C =

20.218 and a dimensionless pulsation of Im(λ) = 14.01. Starting
from this known solution, a continuation method is used via the
software auto-07p [18] to obtain solutions and track DR,C for arbi-
trary values of fluidity F and inlet velocity Q . A comparison with
the values calculated by Cao et al. [6] in Table 2 shows excellent
agreement. For all parameter combinations which have been ana-
lysed in this work, we have computed the solutions up to values
of DR,C of at least 106. This definitely covers all practical relevant
regimes for drawing processes.

Fig. 2 shows some of the computed stability curves for constant
values of Q and F , respectively. From a qualitative point of view
it can be stated, on basis of the curves with constant Q , that the
system becomes unconditionally stable if the fluidity F is larger
than a certain threshold value. This threshold depends on Q , e.g.
for Q = 1 it is approximately 10−1 and grows with decreasing
Q . Additionally, the curves start earlier to raise with decreasing
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Fig. 3. Fitting parameters A, B and C from the correlation function (11) for several values of Q .
Q , which can be seen especially for Q = 10−4. The curves for
constant values of F show distinct behaviour for low and high
values of Q . While the critical draw ratio decreases with increasing
Q if Q itself is small, it increases with increasing Q for large Q . In
other words two distinct regimes exist, one for which increasing
the inlet velocity has a destabilising effect and one for which it
has a stabilising effect. Between these two regimes, a minimum of
stability occurs. This minimum increases with F , depicting again
the stabilising effect of fluidity. For values of F which are large
enough, the regime of unconditional stability appears as well in
the practical range of Q .

Our goal is to achieve a quantitative analysis of the stability
behaviour with respect to the dimensionless parameters F and Q .
For this purpose, we postulate an empirical function which can be
fitted to the numerically calculated curves for constant Q , as they
have a simpler shape compared to the curves with constant F . The
fit function itself is defined in the following way:

DR,C = f (F; A, B, C) := 20.218


1 +


AF

B − F

C


, (11)

with fitting parameters A, B and C . Analysing these fitting
parameters, which quantify characteristic properties of the curves
with respect to Q , will then lead to deeper insight in the influence
of both F and Q on the draw resonance behaviour.

The choice of the correlation function (11) is explained in
the following. As already mentioned above, the viscous limit of
DR,C = 20.218 is reached for F → 0. Therefore this value appears
explicitly in (11) in order to fulfil this condition by default. For the
description of the divergency, the simplest function type showing
divergent behaviour, i.e. f (x) ∝
1
x , has been chosen. So parameter B

corresponds to the threshold value of F for unconditional stability.
It has to be mentioned that we do not prove the divergence of
the numerical data rigorously. However, the critical draw ratio has
been calculated for all practical relevant values and therefore, it is
reasonable to assume a divergent behaviour here as inferred from
Fig. 2. The numerator AF accounts for the fact that the curves have
different steepness for different Q . The exponent C has been added
for technical reasons, as itmakes a fine tuning of the slope possible,
but it appears to remain close to unity for all Q .

The fitting is performed using the Python package scipy.odr,
which is an interface to the fortran-77 library odrpack. This
algorithm is based on the so-called Deming regression [19], which
is explained in detail in Appendix.

Themotivation of the quantitative analysis lies in the advantage
of being able to calculate adequate processing windows easily.
We shall give a simple example for that. In a typical film casting
process, the thickness of the final product is prescribed to be below
a certain value, or alternatively the draw ratio has to be above a
certain value. If the material is prescribed as well, the fluidity is
fixed, at least to a small interval. If a correlation like (11) is known,
it is possible to directly calculate values for the inlet velocity which
allow stable processing.

4. Results

A various number of curves for values of the inlet velocity Q
between 10−4 and 10 have been analysed, in accordance with the
range of practical values (cf. Table 1). Fig. 3 shows the dependencies
of the fitting parameters A, B and C on Q .
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Fig. 4. Stability diagram for the ‘viscous–inertia’ model, i.e. neglecting gravity
effect, togetherwith a fit function. The deviations δ and ε in both variables show the
accuracy of the fit and are explained in Appendix. Only few points of the numerical
data are shown for the sake of readability. Additionally, the curve presented by
Hagen and Langwallner [20] is drawn for comparison purpose.

It is possible to fit parameters A and B with the following
functions:

A(Q ) := a0


1 +


a1
Q

a2
, (12a)

B(Q ) :=
b0

Q/b1 + 1
, (12b)

as shown in Fig. 3. We will concentrate on these two parameters
first. Parameter C varies only in a small range and will not be in-
cluded in the first part of the analysis, ignoring the small discrep-
ancies in the various fitting results.

Both parameters A and B show two qualitative distinct regimes
for small and large values of Q , as qualitatively identified in Fig. 2.
According to the fitting parameters a1 and b1 shown in Fig. 3, the
transition fromone regime to the other appears at aboutQ ≈ 0.06.
In the following, each regime is analysed separately.

4.1. Q ≫ 0.06 and ‘viscous–inertia’ model

Regarding only large values of Q , or more precisely regarding
the region of Q ≫ a1, b1, we get the following limit behaviour:

A(Q ) ≈ a0, (13a)

B(Q ) ≈
b0b1
Q

. (13b)

Inserting (13) into (11) gives

DR,C ≈ 20.218


1 +


a0FQ

b0b1 − FQ

C


. (14)

Eq. (14) shows a dependency of DR,C only on the product FQ ,
which means that all curves in this region can be mastered by one
single curve. As FQ is identical to the Reynolds number Re, it is
possible to directly compare this master curve with the stability
curve of a model considering only viscous and inertia forces and
neglecting gravity, which corresponds to dropping the third term
Fig. 5. Stability diagram for the ‘viscous–gravity’ model, i.e. neglecting inertia
effect, togetherwith a fit function. The deviations δ and ε in both variables show the
accuracy of the fit and are explained in Appendix. Only few points of the numerical
data are shown for the sake of readability.

in the momentum balance equation (5b). Fig. 4 shows the stability
curve for this ‘viscous–inertia’ model.

Itwas fittedwith the function resulting fromsubstituting F with
FQ into (11). The fitting parameters shown in Fig. 4 are in good
agreement with the corresponding parameters in (14), i.e. a0 and
b0b1. This shows that, regarding the stability, gravity effect can be
neglected in comparison to inertia effect, if the inlet velocity is
above a certain threshold value.

It is worthmentioning that this divergent behaviour can also be
seen in the figures given by Shah and Pearson [5] and Hagen and
Langwallner [20]. The result of the latter is plotted in Fig. 4 that
shows perfect coincidence with our curve, including the threshold
value for FQ , b0b1 = 0.11.

4.2. Q ≪ 0.06 and ‘viscous–gravity’ model

If only small values of Q , i.e. Q ≪ a1, b1, are taken into account,
Eqs. (12) simplify to

A(Q ) ≈ a0


a1
Q

a2
, (15a)

B(Q ) ≈ b0. (15b)

If we further approximate a2 ≈ 1, (11) can be written as

DR,C ≈ 20.218


1 +


a0a1(F/Q )

b0 − F

C


. (16)

In contrast to Eq. (14), this expression cannot directly be mastered
by one single curve. If F ≪ b0, however, the denominator in (16)
can be approximated by b0, resulting in an expression which only
depends on F/Q . The resulting error of neglecting the denominator
is smaller than 10% if F < 0.2. For this region, we can compare
the curve with the stability analysis of a model including only
viscous and gravity effects, as F/Q is equivalent to Re/Fr , which
compares gravity and viscous forces. Such an analysis can be
achieved by neglecting the first two terms in (5b). Fig. 5 visualises
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Table 3
Correlations between the critical draw ratio and the control parameters F and Q ,
dependent on the different regimes visualised in Fig. 6(a). The expressions of A(Q )

and B(Q ) are given in (12), while C(Q ) should be inferred from Fig. 3.

Label Regime DR,C/20.218

I Viscous 1

II Viscous–gravity 1 +


0.034 F

Q

0.972

III Viscous–inertia 1 +


0.703FQ
0.104−FQ

0.924

IVa Viscous–gravity–inertia 1 +


0.0468F/Q
2.062−F

C(Q )

IVb Viscous–gravity–inertia 1 +


A(Q )F
B(Q )−F

0.94

V unconditionally stable –

this ‘viscous–gravity’ model. The fit function can be obtained from
(11) by replacing F with F/Q and omitting the denominator. Again,
the fitting parameter A of the ‘viscous–gravity’ model matches to
the limit value a0a1/b0, indicating thatwithin this particular region
inertia effect is negligible and only viscous and gravity effects are
responsible of the stability behaviour.

4.3. Regimes and stability maps

Eqs. (11), (14) and (16) show that the critical draw ratio can
be seen as a superposition of the result of the viscous model,
i.e. DR,C = 20.218, and a term describing the inertia and/or
gravity effects, tuned by the control parameters F and Q . Therefore
there exist parameter combinations which lead to negligible small
contributions of both inertia and gravity effects, resulting in a
pure viscous regime. The area of this regime has been determined
arbitrarily by restricting 20.218 < DR,C < 21, i.e. a variation of less
than 4% of the critical draw ratio as compared to the viscousmodel.

Together with the results of the viscous-gravity and viscous-
inertia models described above it is possible to reveal regimes in
the parameter space (F ,Q ), where either viscous or viscous and
gravity or viscous and inertia effects have the most influence on
stability. Fig. 6(a) visualises these regimes together with Table 3.
The threshold values for Q limiting regime IVb have been obtained
by fitting constant or reciprocal, respectively, functions to the cor-
responding regimes of A(Q ) and B(Q ) and determining the values
of Q , where the deviation from the numerical data is larger than
10%. It is remarkable that inertia effect is always dominant if the
inlet velocity Q is large enough, whereas it can be neglected for
small Q only if the fluidity F is below 0.2. This asymmetry can also
be observed in the evolution of parameter C in Fig. 3. For large Q ,
the value of 0.924 of the ‘viscous–inertia’ regime is approached. In
contrast to that, for low Q no trend to a limit value for C can be
observed, as the divergence of the stability curves does not vanish
like it does for the ‘viscous–gravity’ model. In the region around
Q ≈ 0.06, the value of C can be approximated by 0.94.

In Table 3, corresponding correlations between the critical draw
ratio DR,C and the control parameters F and Q are given for the
various regimes aswell. In the ‘viscous–gravity–inertia’ regime IVa,
i.e. for Q ≪ 0.06, parameter C has to be estimated directly from
Fig. 3. For the ‘viscous–gravity–inertia’ regime IVb, the expressions
for A and B given in (12) have to be used, with the numerical values
of the correlation constants given in Fig. 3.

Fig. 6(b) shows a stability map for the control parameters F and
Q . The dashed lines indicate parameter combinations where the
critical draw ratio DR,C is constant. In between two of those curves,
DR,C shows monotonical behaviour. For materials with low fluid-
ity F ,DR,C is more or less constant, as viscous effects are dominant.
Especially in the transition region around Q ≈ 0.06, the stability
of the system does not change notably within more than two or-
ders of magnitude in F . On the other hand, for sufficiently large F
the instability disappears, no matter which value the inlet velocity
has. The threshold value, i.e. parameter B of (11), decreases with
increasing Q , which means that for high inlet velocities, materials
with F ≈ 0.1 may already show unconditionally stable behaviour.

The region underneath the grey dotted lines in Fig. 6(b)
corresponds to the parameter sets covered by the analysis of Cao
et al. [6]. To our knowledge, this is the first time that a regime
of unconditional stability is revealed and correlated with process
parameters. A three-dimensional visualisation of the stability map
can be seen in Fig. 6(c).

One of the results of Shah and Pearson [5] and Cao et al. [6] is
thatwhile both inertia and gravity enhance stability, gravity shows
a rather weak influence in comparison to inertia. However, our
results show that a comparison of both forces is more subtle. For
Q ≪ 0.06 and F < 0.01, which belongs to the ‘viscous–gravity’
regime, DR,C increases faster with increasing fluidity as it does for
Q ≫ 0.06, i.e. in the ‘viscous–inertia’ regime.

4.4. Stabilising mechanism of gravity and inertia

Note that the transition to the regime of unconditional stability
can be described in terms of the Reynolds number Re = FQ only
for large values of Q , as it has been shown above. If Q is small, a
constant value of F indicates the divergence of DR,C . This reveals
that although the effect of unconditional stability is caused by
inertia effect, the onset point can be altered by gravity. A possible
explanation for this stabilising effect of gravity has been given by
Schultz and Davis [14], who stated that a constant force along
the streamline enhances stability. They describe the mechanism
of draw resonance by perturbation waves travelling from the
inlet to the chill roll, where they are reflected back upstream. If
the force at the chill roll is fixed instead of a prescribed outlet
velocity, the waves can only travel downwards, preventing an
onset of draw resonance. If the boundary condition at the chill
roll is a combination of prescribed velocity and force, the waves
are partially reflected. Depending on the degree of reflection, the
perturbations are amplified or not. Thus, a constant force like
gravity hinders the waves to be reflected at the chill roll, leading
to higher stability. Similarly, high inertia forces damp down the
force perturbations near the chill roll and increase the critical draw
ratio. In the present work, we observed that there exists a critical
Reynolds number, beyond which no instability exists for all values
of draw ratio. In the picture of the stability mechanism this implies
that nothing of the downward perturbation wave is reflected at
the chill roll if inertia forces are beyond a finite threshold value.
Unfortunately, we do not have a comprehensive explanation for
this phenomenon yet and leave it open to future work.

5. Conclusions and outlook

We have investigated the influence of the dimensionless inlet
velocity Q and fluidity F on the onset of draw resonance in film
casting processes including gravity and inertia effects. For this pur-
pose, stability curves with F as independent parameter have been
computed numerically for various values of Q using a continua-
tion method. These curves have been fitted with an appropriately
postulated function with three fitting parameters, one of which
representing a threshold value of F beyondwhich the system is un-
conditionally stable. Correlations between these parameters and
Q have been revealed, discussed and quantified. With respect to
F and Q , we could identify a regime where viscous and inertia ef-
fects are dominant and gravity effect can be neglected, as well as a
regime where viscous and gravity effects are dominant and inertia
effect can be neglected. For the first time, we revealed a regime of
unconditional stability, which shows up for materials with rather
high fluidity andwhich is caused by inertia effects. Themechanism
behind this effect is not completely understood yet. Besides a sta-
bility map which visualises the stability behaviour of the system
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(a) Visualisation of different regimes in the control parameter space. The
labels are explained in Table 3, together with corresponding correlations
between the critical draw ratio and parameters F and Q .

(b) Stability map with control parameters F and Q . The dashed lines
belong to parameter sets with a constant critical draw ratio DR,C of
21, 25, 100, 500 and 5000. The dark shaded area marks the region where
no draw resonance occurs due to inertia effect. In the dotted region, the
critical draw ratio is between 20.218 and 21, i.e. the viscous regime. The
solid grey line in the middle separates the regime where increasing Q is
stabilising from the regime where increasing Q is destabilising for
constant F . The region underneath the grey dotted lines encompasses the
parameter range covered by Cao et al. [6].

(c) Three-dimensional visualisation of the stability map with control parameters
F and Q .

Fig. 6. Results of the stability analysis. Plots (a) and (b) are complementary and need to be considered together.
with respect to the control parameters, we showed an analytical
solvable criterion for the critical draw ratio which enables a quick
and highly accurate determination of stable processing conditions.

The model presented in this paper neglects several effects
which are known to be crucial for the stability of the process, e.g.
thermal cooling or non-Newtonian material effects. However, we
believe that the presented method can be extended to cover the
most important effects necessary to provide a predictive tool for
practical use. To realise this, supporting experimental investiga-
tions are mandatory to be able to carve out the essential model
assumptions. We hope to approach this goal further in forthcom-
ing work.
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Appendix. Deming regression

The method of Deming regression [19] is similar to the method
of least squares but with the additional possibility of considering
variances of the independent variable. In other words, χ , defined
by

χ :=

n
i=1


w2

ε̃i
ε̃i

2
+ w2

δ̃i
δ̃i

2

, (A.1a)

with ε̃i = f (Fi + δi; A, B, C) − DR,C;i, (A.1b)

is minimised. The index i enumerates the data points, whose total
number is n; δ̃i is the deviation from each point Fi and wε̃i and wδ̃i
are the weights for the deviations. The minimum is searched for a
set of both (A, B, C) and the set of δ̃i. If δ̃i → 0 for all i, the common
least squares method is obtained. We are using this extended
method because of the divergent character of the data. A small shift
of the fit function in horizontal direction near the threshold point
leads to a high change in the residual sum of squares because of the
high gradient in this region. This has the effect that the parameters
are mostly fitted to a small interval of data points, having larger
residuals for the rest. Allowing uncertainty also in F reduces the
accuracy of the threshold value but improves the coincidence of
numerical data and fit function in total (see Fig. A.7). As weights
wε̃i and wδ̃i

, the reciprocal values of DR,C;i and Fi are used so that
the relative error is minimised. In this work, we use the relative
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Fig. A.7. Comparison of deming regression and method of least squares. Only few
points of the numerical data are shown for the sake of of readability.

error values

δ := wδ̃ δ̃, ε := wε̃ ε̃. (A.2a)

Fig. A.7 also shows the absolute value of δ and ε for both
fit methods, which makes a quantitative comparison possible.
Moreover, it can be seen that the correlation function in (11) seems
to be appropriate to describe the stability curves, as the error in
both variables DR,C and F is only 1%–2% maximum.
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