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We study the formation of a free liquid film that is pulled out of a bath at constant
speed and stabilized by the action of thermocapillary stresses prescribed at the free sur-
faces. The basic concept was introduced recently by Scheid et al. [“Thermocapillary-
assisted pulling of thin films: Application to molten metals,” Appl. Phys. Lett. 97,
171906 (2010)]. The theory suggests that very thin ribbons of molten material can
be drawn out of a melt by adequately tuning the temperature gradient along the
dynamic meniscus that connects the static meniscus at the melting bath to the re-
gion of the drawn flat film. In the present paper, we extend our original analysis
by investigating the roles of inertia and gravity on the film thickness, and show
how the results depend on heat transfer/conduction properties. Furthermore, we
analyze the one-dimensional transverse stability of the free film with respect to
the long-wave thermocapillary instability. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3692097]

I. INTRODUCTION

The push for renewable energy technologies has led to the desire, and associated challenges, to
manufacture silicon films at high speed. One technique used in industry is the film-casting process,1

which consists of depositing the molten silicon through the bottom of a casting frame with a moving
and sub-cooled substrate, so that a layer of the liquid metal crystallizes on the substrate and a silicon
film is formed.2 In this process, the molten silicon is in contact with a solid substrate, which can
alter the quality of the ribbon. Alternatively, silicon sheets produced by vertical growth from a melt
are contact-free, but production speeds are much smaller than in the aforementioned technique:3

the speed for free-standing sheets is typically limited to a few cm/min to avoid breaking the liquid
bridge between the melt and the foil. In fact, no stable film can be pulled out of a liquid bath if
only extensional viscous and capillary forces are in balance.4 Nevertheless, in the analogous process
of pulling soap films from a liquid bath, large speeds (cm/s) can be attained due to shear stresses
induced by surfactant concentration gradients at the free surfaces.5 Surfactant can obviously not
be used to produce foils of pure materials but interfacial thermocapillary stresses can be generated
instead by prescribing temperature gradients along the free surfaces.

We recently reported on this concept of assisting the formation of free liquid films by thermo-
capillary stresses.6 Though the idea should be applicable to the production of contact-free foils at
industrially competitive speeds, we focus here on the fluid dynamics aspects of this concept. First, we
reiterate and expand on the problem formulation (Sec. II) and discuss different distinguished limits
of the dominant balances associated with the relevant stresses that act on the film (Sec. III). We next
go beyond the analysis presented before,6 addressing the roles of inertia and gravity (Sec. IV), the
influence of heat transfer and conduction (Sec. V), and the possibility of a transverse thermocapillary

a)Electronic mail: bscheid@ulb.ac.be.
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FIG. 1. Sketch of the film pulling problem for producing contact-free films. The dashed line indicates a static meniscus (not
to scale). The film is pulled from a liquid bath and is assumed to solidify above x = 0 (gray shading).

instability (Sec. VI). Understanding these themes is important for the control and practice of this
processing idea.

II. PROBLEM FORMULATION

We consider a liquid film withdrawn with speed u0 from a bath of temperature Tb as shown in
Fig. 1. The film cools and solidifies at some distance above the bath. Symmetry is assumed about
the x-axis. The far-field ambient temperature, denoted Ta(x), is assumed to vary. The film thickness
h(x, t) is assumed to eventually approach a constant value h0 at a distance sufficiently far above the
bath and before it solidifies, as sketched in Fig. 1. The density ρ is taken to be constant7, 8 and the
viscosity η(T) depends on the temperature T.

We denote the surface temperature of the film as Ti(x, t) and consider a linear decrease of the
surface tension with temperature, which applies to most liquids including molten silicon,

γ (Ti ) = γs − γ ′(Ti − Ts), (1)

where γ s = γ (Ts), Ts is the solidification temperature, and γ ′ = ∣∣ dγ

dT

∣∣ is a positive constant.

A. Mass conservation equation and stress balance

The mass conservation equation has the form

ht + (hū)x = 0, (2)

where ū is the cross-sectionally averaged velocity, and the subscripts t and x indicate the time and
space derivatives, respectively. For steady state, Eq. (2) reduces to

ūh = u0h0. (3)

In the framework of lubrication theory, and following Breward,9 we can write a master equation
including all possible sources of axial stresses in a film of pure liquid (see, e.g., Refs. 4 and 10):

4
(
η̄(T̄ )hūx

)
x − 2γ ′Ti x + γs

2
hhxxx − ρgh = ρh(ūt + ūūx ), (4)

where η̄ and T̄ are the cross-sectionally averaged viscosity and temperature, respectively. The first
term on the left-hand side in Eq. (4) represents the extensional viscous stress, where the factor 4
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is the Trouton ratio. The second term accounts for thermocapillary stresses at both interfaces, the
third term accounts for the stress induced by the gradient of the film curvature, and the fourth term
represents stresses due to gravity. The right-hand side accounts for inertial effects.

B. One-dimensional temperature equation

We assume that the temperature distribution is one-dimensional, i.e.,

T (x, y, t) ≡ T̄ (x, t) = Ti (x, t), (5)

where T̄ (x, t) is the cross-sectionally averaged temperature. This approximation is valid as a conse-
quence of the thin-film asymptotic expansion, at least to first order, as outlined in Appendix B. The
resulting energy equation is

ρcph
(
T̄t + ūT̄x

) = −2α(T̄ − Ta), (6)

where cp is the specific heat capacity and α is the effective heat transfer coefficient at the free surfaces
due to both convective and radiative cooling. Even though the radiative heat transfer contribution
is proportional to T4, its linearize form is sufficient for the present problem as demonstrated in
Appendix C. Consequently, α = αR + αC, where αR and αC are, respectively, the radiative and
convective heat transfer coefficients. The former is estimated in Appendix C, while the latter depends
on the properties and the velocity of the surrounding gas. We assume here that forced convection
removes at least as much energy as radiative transfer such that α ≈ 103 W/(m2 K) is taken for
numerical examples that follow.

Heat conduction has been neglected here but will be treated later in Sec. V B. We also neglect
energy released during solidification because it is assumed to occur after the geometry is no longer
changing.11 In practical settings of course, this latent heat would need to be transported away from
the film.

Finally, the viscosity is presumed to decrease linearly with temperature,

η̄(T̄ ) = ηs − η′ (T̄ − Ts
)
, (7)

where ηs = η̄(Ts) and η′ = ∣∣ dη

dT

∣∣ is a positive constant. This approximation is valid for small tem-
perature changes, i.e., |T̄ − Ts |/Ts � 1.

C. Non-dimensionalization

We next nondimensionalize using the scalings

X = x

�
, H = h

h0
, Ū = ū

u0
, ϒ = η̄

ηs
, �̄ = T̄ − Ts

	T
, �a = Ta − Ts

	T
, (8)

where � is the characteristic length scale (to be determined) in the x-direction and 	T = Tb − Ts.
As we are interested in steady pulling, we consider here stationary conditions, i.e., from Eq. (3),

Ū H = 1. (9)

The stress balance (4) thus becomes

4ε2

(
ϒ

HX

H

)
X

+ 2εMa�̄X − ε3

2Ca
HHXXX + G H − εRe

HX

H 2
= 0, (10)

where ε = h0/� is the slenderness parameter, and the Marangoni, capillary, gravity, and Reynolds
numbers are, respectively,

Ma = γ ′	T

ηsu0
, Ca = ηsu0

γs
, G = ρgh2

0

ηsu0
, Re = ρh0u0

ηs
. (11)
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The asymptotic expansion leading to Eq. (10) is given in Appendix A. The dimensionless viscosity
function has the form

ϒ(�̄) = 1 − μ�̄, (12)

where μ = η′	T/ηs measures the sensitivity of the viscosity to temperature changes.
Likewise, the steady temperature equation (6) becomes

�̄X = −St
(
�̄ − �a(X )

)
. (13)

The asymptotic expansion leading to Eq. (13) is given in Appendix A. The Stanton number, St,
which measures the rate of energy transfered at both interfaces relative to the rate of energy advected
by the main flow, is defined as

St = 2α�

ρcpu0h0
≡ St ′

εCa
with St ′ = 2α

ρcp(γs/ηs)
. (14)

The parameter St′ only depends on the fluid properties and on the heat transfer coefficient. Note that
Eq. (13) is decoupled from the stress equation and can thus be solved independently provided that
the ambient temperature �a(x) is specified.

D. Controlled ambient temperature

To close the system of equations, we need to know the form of the ambient temperature �a(x).
We assume here that the function is prescribed and varies smoothly, in dimensionless form, from
unity in the liquid bath to zero in the flat film region where the liquid solidifies. We can choose for
instance a hyperbolic tangent function of the form

�a(X ) = 1

2

(
1 − tanh

{
2π

D
(X + s D)

})
, (15)

where D = d/� is approximately the dimensionless distance over which the temperature difference 	T
is applied, with d the dimensional distance. We note that other functions such as an error function
variation would lead to similar results as those that follow. Because the problem is invariant by
translation, we have shifted the temperature variation by the quantity sD, with s the shift parameter.
For s = 1, �a(0) ≈ 0. In the following, the value of s has been fixed to ensure �(0) ≈ 0 such that
x = 0 coincides approximately with the solidification front, i.e., T̄ ≈ Ts . In practice, we have set s
= 1 in the limit of infinite Stanton number (Sec. IV) and s = 6 in the case of finite Stanton number
(Sec. V).

III. DOMAIN DECOMPOSITION

In the stationary regime, the film-pulling problem represented in Fig. 1 can be decomposed into
three regions, each of which corresponds to a specific force balance: (A) a capillary static meniscus
near the liquid bath where gravitational and capillary forces balance (third and fourth terms in
Eq. (10)); (B) a flat film region of constant film thickness h0; (C) a transition region between the (A)
and (B), referred to as the “dynamic meniscus,” in which, in principle, all forces can be in balance.
An analogous decomposition relying on the slenderness assumption ε � 1 was used by Breward
and Howell12 to describe the drainage of a foam lamella. Next, we detail the specificities of each
region:

(A) In the static meniscus region, the curvature can be calculated by balancing gravity and capillary
forces. The curvature obtains a constant value, hxx = √

2/�c, with �c = √
γ0/(ρg) the capillary

length (see, e.g., Ref. 13), near the dynamic meniscus (C). This characterization is identical
to the treatment of this region in the classical Landau-Levich-Derjaguin problem.14, 15

(B) As mentioned above, the geometry is assumed to no longer change beyond the dynamic
meniscus, and up to the solidification front. Relaxing this assumption would require also
solving for the film thickness in this region. In such a case, there will be a balance be-
tween at least the three first terms in Eq. (10), with a plug flow velocity profile (to leading
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order). The flow in this region would indeed be primarily extensional, with a decrease
of the film thickness along the x-direction until the solidification front. According to
Ref. 12, this extensional flow regime corresponds to the distinguished limit of the master
equation (10) where Ma = O(ε) and Ca = O(ε). Nevertheless, we will show that in the limit
of large Marangoni stresses as in region (C), the effect of extensional viscous stress can be
neglected, and the film thickness can be assumed effectively constant, as considered below.

(C) As pointed out in Ref. 4 no free film can be stably pulled out of a liquid bath in the extensional
flow limit. In order to pull a film, sufficiently large shear stress should be present at the
free surface, as is assumed to be the case here. The flow is therefore shear-driven in this
region, and has a parabolic velocity profile across the film. Consequently, capillary and
Marangoni effects primarily balance and the extensional viscous stress is negligible. Again,
according to Ref. 12 this shear flow regime corresponds to the distinguished limit of the master
equation (10) where Ma = O(ε−1) and Ca = O(ε3). This limit thus requires the Marangoni
number to be much larger than unity.

Based on this domain decomposition, the film thickness profile in the transition region (C) must
match with the curvature of the static meniscus (A) as the film thickens, namely HXX = √

2�2/(�ch0)
as X → −∞. Therefore, the matching condition allows the determination of h0:

h0

�c
= HXX√

2
ε2 as X → −∞, (16)

where HXX(−∞) remains to be determined. Also, ε = h0/� needs to be explicitly given, which will
appear to be independent of h0, i.e., for � ∝ h0.

Furthermore, the film thickness equation (10), with only the relevant terms, should be solved in
the transition region (C) with the boundary conditions:

H → 1 , HX → 0, HXX → 0 as X → ∞, (17)

i.e., approaching the flat film region (B) above the bath. This condition is mathematically rigorous
as long as the film remains liquid. In case of a solidification front somewhere in the film region (B),
the bound for the boundary conditions (17) should rather be finite for consistency. In any case, the
numerical solution for H should be sought in a finite domain, X ∈ [−L1, L2], such that the boundary
conditions (17) and the matching condition (16) are replaced by H(L2) = 1, HX(L2) = 0, HXX(L2) = 0
and HXX (−L1) = √

2�2/(�ch0). As mentioned, a steady flat film can only exist through the presence
of thermocapillary stresses at the interfaces induced by the imposed temperature gradient. Therefore,
the position of the dynamic meniscus should be obtained relative to the position of the imposed
temperature distribution �a(X). The origin X = 0 can thus be anywhere between +∞ and −∞ or,
for the numerical solution, between −L1 and L2. Now, the hyperbolic tangent function chosen for
the temperature distribution quickly approaches the solidification temperature as X tends to +∞, in
fact over a length of about D. Therefore, translating �a by the distance sD, with s ≥ 1 ensures �(0)
≈ 0, and allows us to set L2 = 0, which simplifies the subsequent developments. For the value of L1,
we simply choose it to be large enough in numerical computations to ensure that HXX → constant
as X → L1 so that HXX(−L1) = HXX(−∞) within the numerical accuracy.

IV. PARAMETRIC STUDY

Based on the physical properties of silicon and on the control parameters, we assess the values
of the dimensionless numbers in Table I. The value of ε has been assessed by assuming that the
length of the dynamic meniscus is much smaller than the length of the static meniscus, i.e., � � �c.
Since the lubrication approximation also implies that � � h0, a first estimate of � can simply be the
geometric mean � = √

h0�c, such that ε = O(
√

h0/�c), which inserted into Eq. (16) gives HXX(−∞)
= O(1) as expected. For films of about 100 μm, which is typically the order of magnitude in industrial
processes we are interested in, ε = O(10−1). From Table I, we then get Ma ≥ O(ε−1) and Ca ≤ O(ε3),
which matches the conditions for the “shear” distinguished limit of the thin film stress equation for
which the extensional viscous effects can be safely neglected. Moreover, we find in Table I that
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TABLE I. Set of parameters for silicon. The physical properties are given at the melting temperature Ts = 1687 K.7

Properties: density ρ kg/m3 2583
dynamic viscosity ηs Pa s 5.57 × 10−4

viscosity variation η′ Pa s/K 5.39 × 10−7

surface tension γ s N/m 0.721
surface tension variation γ ′ N/(m K) 6 × 10−5

heat capacity cp J/(kg K) 910
thermal conductivity κ W/(m K) 22.1
gravitational acceleration g m/s2 9.81
capillary length �c m 5.3 × 10−3

Control parameters: pulling velocity u0 m/s 10−2

temperature difference 	T K 102

length of T variation d m 10−3

heat transfer coefficient α W/(m2 K) 103

Output parameters: film thickness h0 m 10−4

dynamic length � m 10−3

Dimensionless numbers: capillary number Ca ηsu0/γ s 10−5

Marangoni number Ma γ ′	T/(ηsu0) 103

aspect ratio ε h0/� 10−1

gravity number G ρgh2
0/(ηsu0) 10

Reynolds number Re ρh0u0/ηs 1
Péclet number Pe ρcpu0h0/κ 10−1

Biot number Bi αh0/κ 10−1

Stanton number St 2α�/(ρcpu0h0) 1
alternate Stanton number St′ 2αηs/(ρcpγ s) 10−6

Weber number We ρ�cu2
0/γs 10−3

surface tension variation  γ ′	T/γ s 10−2

viscosity variation μ η′	T/ηs 10−1

μ = O(ε), and the assumed dependence of the viscosity with temperature (12) ensures that ϒ

remains of the order of unity. These estimates are reasonable at least for liquids with viscosities that
do not diverge when approaching the solidification temperature, as is the case for silicon.16

Now, as in our previous work,6 we construct the length scale � in the x-direction for the dynamic
meniscus from the dominant balance between surface tension and Marangoni effects. This step
yields

ε2 = 4 or � = h0

2
√


, (18a)

where  ≡ CaMa = γ ′	T

γ0
, (18b)

which measures the relative change of surface tension with temperature. Multiplying Eq. (10) by
2Ca/ε3 and using Eq. (18a) leads to

ζ

(
HX

H

)
X

+ �̄X − HHXXX + βH − δ
HX

H 2
= 0 , (19)

where

ζ = 4Ca√


, β = 1

43/2

h2
0

�2
c

and δ = We

2

h0

�c
, (20)

with We = ρ�cu2
0/γs the Weber number. According to Table I, using h0 ≈ 100 μm, we get

ζ = O(10−4), β = O(10−1), and δ = O(10−2) such that viscous, gravity, and inertia terms remain
small compared to capillary and Marangoni terms in Eq. (19), as assumed initially. Nevertheless,
because We varies with the square of the pulling speed, for the parameters in Table I a pulling speed

Labo
Cross-Out

Labo
Typewritten Text
s
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1

FIG. 2. Matching curvature HXX(−∞) versus the dimensionless length D over which the temperature varies along the
X-direction: solid line corresponds to no inertia, δ = 0; dashed line corresponds to finite inertia, δ = 1. The dotted lines
correspond to the asymptotes for D → 0 and D → ∞, and the black dot indicates the crossover (see text for details).

of a few tenths of centimeters per second would make δ = O(1), which thus requires including
inertia in the calculation. An increase of the film thickness would also make gravity significant. The
roles of inertia and gravity are thus addressed hereafter.

A. Role of inertia

Integrating Eq. (19) without viscous and gravity terms, i.e., ζ = β = 0, using H → 1, HX → 0,
HXX → 0 and � → 0 as X → ∞, we obtain

H HXX − 1

2
H 2

X + δ

(
1 − 1

H

)
= �̄. (21)

This equation should be coupled to the heat equation (13), which we initially simplify in the limit of
large Stanton numbers. Indeed, in the case St � 1, Scheid et al.17 have shown that �̄ ≈ �a , which
corresponds to a “prescribed temperature” limit. In such a case, Eq. (21), using Eq. (15), becomes

2H HXX − H 2
X + 2δ

(
1 − 1

H

)
= 1 − tanh

{
2π

(
X

D
+ 1

)}
. (22)

Note that for the typical parameters in Table I, a large Stanton number of St = 10 for instance would
correspond to an effective heat transfer coefficient of α ≈ 104 W/(m2 K), which is technologically
challenging. Therefore, the more realistic case of St = O(1) is treated separately later in Sec. V.

Solving Eq. (22) numerically with the boundary conditions H(0) = 1 and HX(0) = 0, the
curvature of the thickness profile tends to a constant as X → −∞. The value of HXX(−∞) versus
D is reported in Fig. 2 with and without inertial effects, i.e., for δ = 1 and 0. Using the value of
HXX(−∞) in Eq. (16) finally allows determination of the film thickness of a thermocapillary-assisted
contact-free film.

1. Strong temperature gradient: D � 1 or d � �

We observe in Fig. 2 that HXX(−∞) tends to a constant value as D → 0, and even for D � 1.
Contrary to the case without inertia, i.e., δ = 0, for which HXX(−∞) tends to unity (dotted line), we
have not been able to determine (as in Ref. 6) an analytical solution for HXX(−∞) in the limit of
D → 0. Nevertheless, we numerically obtain the relation

HXX (−∞) ≈ 1 − δ

2
for D � 1. (23)

Obviously, Eq. (23) requires δ < 2 for the film thickness to be finite. Combining Eq. (16) with
Eq. (23), and using Eq. (20), leads to

h0 ≈ 2
√

2 �c 

(
1 + We√

2

)−1

for D � 1. (24)
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This result shows that the thickness is proportional to the amplitude of the surface tension change
along the interface, but does not depend on the distance d along which this change occurs, provided
this distance remains shorter than or equal to the characteristic length of the dynamic meniscus �.
Additionally, the thickness decreases as the Weber number, or equivalently as the pulling speed,
increases.

As an example, consider producing a silicon film of 100 μm thick at a pulling speed of 10 cm/s,
which would require a value of  = 0.008, or a variation of surface tension of 5 mN/m over at most
the length � ≈ (

√
2 − We)�c

√
 (i.e., D � 1). This feature requires lowering the temperature of the

surface of the film by about 100 K over a distance smaller than or equal to 1 mm. We observe here
that the estimate is very similar for a pulling speed of 10 cm/s as for 1 cm/s and this is true as long
as We � 1. In the limit of We = 0, we recover our previous result reported in Ref. 6 for which the
thickness was independent of the pulling speed.

2. Weak temperature gradient: D � 1 or d � �

We observe in Fig. 2 (dotted line) that HXX(−∞) scales like D−1 as D → ∞, at least for
δ = 0. This behavior suggests that, in the limit corresponding to a weak temperature gradient,
another scaling than Eq. (24) applies for the film thickness. The dotted line in Fig. 2 corresponds
to 7/D, which we shall take to approximate HXX(−∞) when D � 1. In such a case, the matching
condition (16) becomes h0 ≈ 2

√
2�c(7/D). Substituting D = d/� and eliminating � by taking the

original length-scale for the dynamic meniscus � = √
h0�c (indeed, the length-scale (18a) does not

hold in this regime), we obtain

h0 ≈ 392 �3
c

2

d2
for D � 1. (25)

This result shows that the thickness is proportional to the square of the temperature gradient 	T/d.
An identical scaling law has been obtained by Carles and co-workers18, 19 for the problem of a liquid
film climbing up a vertical plate driven by a temperature gradient. The scaling law (25) could also
have been obtained from Eq. (4), apart for the prefactor, by balancing the Marangoni and the surface
tension terms as follow:

γ ′ 	T

d
∼ γs

h2
0

�3
for d � �, (26)

and eliminating � = √
h0�c. Also, the scaling law for the case of a strong temperature gradient is

recovered by replacing d by � in Eq. (26), which gives h0 ∼ �c, as found in Eq. (24) for We = 0.
In the case of δ = 1, we observe in Fig. 2 (dashed line) that HXX(−∞) scales like D−n as

D → ∞, with n > 1, indicating again in this regime that for a given temperature, the thickness will
be smaller with inertia than without it, and increasingly so for large D. However, the correction is
weak in any event.

As an example, taking again  ≈ 10−2, but imposing the temperature difference over a length
d = 1 cm, the film thickness estimated with Eq. (25) is now about 10 μm. If the length is further
increased to d = 10 cm, the film thickness reaches 100 nm, which is known to be critical for rupture
due to van der Waals forces. It seems there is thus a minimum temperature gradient below which no
film can be formed, which is typically 1 K/mm for silicon film. In reality, the temperature gradient
should be much larger than that value to counterbalance the effect of gravitational drainage as shown
next in Sec. IV B.

3. Crossover between the two above regimes

The crossover between the two regimes described above, and indicated by a black dot in Fig. 2
for the case with no inertia, is obtained by equating (24) with We = 0 and Eq. (25). The result is

d∗ ≈ 12�c

√
. (27)

Consequently, if d � d∗, the scaling law for the thickness is Eq. (24) and if d � d∗, the scaling law
is Eq. (25).
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FIG. 3. Matching curvature HXX|max versus the dimensionless length D for various β, solving Eq. (19) with ζ = δ = 0. The
curve for β = 0 has been matched with HXX(−∞) as previously. The thick dashed line is the loci of the minimum of HXX|max

corresponding to the “drainage limit.”

B. Role of gravity

We now examine the influence of gravity, i.e., for β �= 0, by considering the stress balance
(19) without extensional viscous and inertial effects, i.e., ζ = δ = 0. As obtained from our nu-
merical results (not shown), the solutions do not tend to a constant curvature as X → −∞, as
was the case for β = 0. Instead, as X → −∞ the curvature passes through a maximum before
decreasing and eventually becoming negative. Following the work by de Ryck and Quéré20 on plate
coating, we match the static and the dynamic menisci using the maximum curvature, denoted by
HXX|max hereafter. This choice for the matching curvature possibly overestimates the film thick-
ness but has the advantage that it recovers the same curvature as the one obtained in the absence
of gravity for β → 0. The corresponding film thickness then follows from Eq. (16) once HXX is
determined.

For various values of the gravitational parameter β, we report in Fig. 3 the maximum cur-
vature HXX|max versus the length D, which controls the temperature gradient along the interface.
We find that as D increases, the maximum curvature HXX|max passes through a minimum be-
fore diverging. In Fig. 3, we only plotted the curves before that curvature minimum, and we
plot the loci of the minima as represented by the thick dotted line. Indeed, since the thickness
can only decrease due to gravity when the strength of the temperature gradient is reduced, we
conclude that the divergence of HXX|max (not shown) is unphysical and is the signature that the
Marangoni stresses become too weak to counterbalance gravitational drainage. The thick dotted
line thus corresponds to the “drainage limit” beyond which no stable film can be formed. The
fact that this “drainage limit” intersects with the curve obtained in the absence of gravity is be-
cause the two curves are constructed with two different matching curvatures (see Sec. IV C).
Nevertheless, this intersection occurs for β � 0.01, i.e., for regimes where gravity can safely be
neglected.

To illustrate the limitation due to drainage, we plot in Fig. 4 the thickness profile for various β

and at a fixed value of the parameter D = 2.5. The profiles for β = 0.1 and 0.3 show a minimum as
a consequence of the drainage. Indeed, conditions are such that they lie beyond the “drainage limit”
as depicted in Fig. 3, and should thus be avoided.

Analyzing the influence of gravity shows that the distance D—or alternatively the imposed
temperature gradient—should be small enough to sustain a free film that is not overcome by
gravitational drainage. Based on results in Fig. 3 as well as on the estimate β = O(10−1), if
the temperature gradient is imposed on a length equal to the length of the dynamic meniscus (i.e., D
≈ 1), the film thickness would be about 15% smaller than the thickness predicted by Eq. (24) with
We = 0 due to the sole action of gravity.
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FIG. 4. Thickness profiles for D = 2.5 and various β, solving Eq. (19) with ζ = δ = 0.

C. Coupling between gravity and inertia effects

In Sec. IV A, we investigated the sole influence of inertia using HXX(−∞) in the matching
condition (16) while in Sec. IV B we investigated the influence of gravity only using HXX|max as the
matching curvature, since the curvature never reaches a constant value in this latter case. In fact,
when considering inertial effects only, the curvature calculated from Eq. (19) with β = ζ = 0 also
passes through a maximum HXX|max as X is decreased before reaching a constant value HXX(−∞) as
X → −∞. Now that we want to analyze the influence of both inertia and gravity together, we should
first assess for inertial effects only the consequences of using HXX|max instead of HXX(−∞) as a
matching condition. Figure 5 shows both possible matching curvatures as a function of the inertia
parameter δ. We see that as δ increases, HXX|max decreases much less than HXX(−∞). Consequently,
using HXX|max instead of HXX(−∞) in the matching condition (16) will overestimate the film thickness
h0, as already anticipated. However, for reasonable values of δ = O(10−1), the difference between
both results is about 5% or less for δ � 0.1 but increases rapidly for δ > 0.1. In such a case, using
HXX(−∞) as a matching curvature is a more conservative approach as it gives smaller values of the
film thickness than with HXX|max.

Next, we evaluate the effect of both inertia and gravity using HXX|max since the curvature
does not reach a constant value as X → −∞. Results are shown in Fig. 6. For reasonable values
δ = O(10−1) and β = O(10−1) (based on parameter values in Table I), the film thickness will be
about 10% smaller than the thickness predicted by Eq. (24), which shows that this latter equation
provides a good estimate of the film thickness as long as δ � 0.1 and β � 0.1.

H
X

X

HXX(−∞)

HXX |max

δ

FIG. 5. Two different matching curvatures versus the inertia parameter δ with ζ = β = 0 and D = 1.
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FIG. 6. Matching curvature HXX|max for various gravitational parameters β with ζ = 0 and D = 1.

V. FINITE HEAT TRANSFER PHENOMENA

A. Influence of finite Stanton numbers

In this section, we relax the prescribed temperature assumption for an infinite heat transfer
coefficient, i.e., �̄ = �a(X ), and solve the steady temperature equation (13) for finite Stanton
numbers. The solution is expressed in terms of an hypergeometric function,

�̄(X ) = 2 F1

[
1,

St D

4π
; 1 + St D

4π
; −e

4π(X+D)
D

]
, (28)

where the integration constant has been set to zero to avoid the divergence of the solution as
X → −∞, ensuring that �̄(−∞) = 1. Figure 7 shows the dependence of the temperature distribution
in the film with the Stanton number. We see that decreasing the Stanton number, i.e., decreasing the
heat transfer coefficient, has the effect of increasing the effective length, say Deff, over which the
temperature decreases from 1 to 0 in the x direction. It thus weakens the thermocapillary stresses at
the free surfaces. Note also that the Stanton number decreases with increasing pulling speed, again
reducing the effective temperature gradient.

The important feature here is that solving the temperature equation for finite St does not change
qualitatively the results obtained in the limit of St → ∞. For example, in the case of silicon,
St ≈ 10 for a pulling speed of 1 mm/s and a heat transfer coefficient of 1000 W/(m2 K), which gives
a very small deviation from the limit of St → ∞, as shown in Fig. 7. Now, increasing the puling
speed to 1 cm/s gives St = 1 and thus, from Fig. 7, an effective temperature gradient which is about

X

St = ∞
St = 10

St = 2

St = 1
Θ̄

FIG. 7. Temperature distribution for various values of the Stanton number St, with D = 1 and s = 6.
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FIG. 8. Matching curvature versus the heat conduction parameter χ for various values of the Stanton number St. The results
are obtained numerically with ζ = δ = β = 0, D = 1 and s = 6.

3 times smaller than for St = 10. However, this negative effect could be compensated by decreasing
the ambient temperature to temperature much lower than the melting temperature, i.e., min (Ta)
� Ts, but this analysis is beyond the scope of the present paper (see also the Conclusions).

B. Role of heat conduction

As a consequence of considering finite St, we should also investigate the influence of heat
conduction in the liquid along the flow direction, as to some extent both effects, heat exchange with
the surrounding and heat conduction along the film, might become of the same order of magnitude.
Therefore, we rewrite the averaged temperature equation including a conduction term (see details in
Appendix B 3):

�̄X = −St
(
�̄ − �a

) + χ H�̄XX , (29)

where χ = ε/Pe is the effective heat conduction parameter that results from the scaling. According
to Table I, χ = O(1), which indicates that longitudinal heat conduction can have a non-negligible
influence, though is essentially limited to small speeds, namely for Pe � ε, which corresponds to
u0 � 1 cm/s in the example of silicon. Since Eq. (29) now depends on the film thickness H, this
equation should be solved together with Eq. (19) and the corresponding boundary conditions. We
used the software COMSOL to compute solutions with the shift parameter set to s = 6, ensuring
�̄(0) ≈ 0 for all solutions (see Sec. II D).

The matching curvature versus the heat conduction parameter χ is plotted in Fig. 8 for various
Stanton numbers and a fixed value of D = 1. Inertia and gravitational effects have been neglected
for the sake of clarity. As should be expected, increasing heat conduction decreases the effective
temperature gradient and therefore reduces the matching curvature, hence the film thickness. This
effect becomes negligible as St → ∞ but can be significant for St = O(1).

VI. TRANSVERSE MARANGONI INSTABILITY OF A UNIFORM FILM

We are also interested in analyzing the transverse stability of the stationary solutions h(x) and
T̄ (x) found above. However, the fact that the base state depends on the x-coordinate makes the
analysis more complex as it implies the resolution of an eigenvalue problem with complex eigen-
vectors that also depend on the x-coordinate. Here we simplify the stability analysis by considering
one-dimensional transverse modulations of the pulling film at a given position of the film profile
h(x0) = h0. This case is equivalent to the transverse stability analysis of a two-dimensional uniform
film of thickness h0 as sketched in Fig. 9. Now, because h0 is a parameter of the stability analy-
sis, changing its value corresponds to changing the position along the profile h(x). Of course, this
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Marangoni stress

FIG. 9. Transverse modulations h(z, t) of a uniform film of thickness h0 due to the long-wave Marangoni instability; λ is
the most amplified wavelength, w̄(z, t) is the thickness-averaged transverse velocity and u0 is the uniform velocity in the
x direction.

approach is simplistic as it does not account for convection of the perturbations in the x-direction.
However, our analysis provides relevant information about the instability mechanism and typical
wavelengths. The complete stability analysis of x-dependent base states is a subject for future work.

A. Mechanism and problem set-up

Here, we consider the stability of a two-dimensional unbounded film of mean thickness h0

as illustrated in Fig. 9. We denote z the transverse coordinate, t the time, w̄(z, t) the thickness-
averaged transverse velocity, and we neglect any variations with x. Considering the unsteady case,
the conservation equation for the film thickness h(z, t) takes the form

ht + (hw̄)z = 0, (30)

while the stress balance equation is similar to Eq. (4) without gravitational effects:

4η (hw̄z)z − 2γ ′Ti z + γs

2
hhzzz − ρh (w̄t + w̄w̄z) = 0. (31)

As for the x direction, we shall scale z by �. Also, since the transverse component of the velocity
can only exist through perturbations of the main flow, we shall scale w̄ by a small quantity εu0. The
scaling for the new variables is therefore

Z = z

�
, W̄ = w̄

εu0
, τ = �

εu0
t, and H = h

h0
.

The dimensionless conservation and transverse stress-balance equations become

Hτ + (H W̄ )Z = 0, (32a)

2We⊥ H (W̄τ + W̄ W̄Z ) = H HZ Z Z − �iZ + 8Ca(H W̄Z )Z , (32b)

where We⊥ ≡ ε2δ/2 = (h0/�c)We.
Equation (32b) needs to be complemented by an equation for the interfacial temperature �i.

Since we are considering the case of a uniform film, the heat can only be transferred through
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the interfaces, which is not compatible with a uniform temperature distribution across the film
as considered so far. We are thus restricted here to the large heat transfer limit as treated in
Appendix B 2 for which the temperature profile across the film has been assumed parabolic.
Equation (B8) thus provides

�i = �̄ + Bi
6 H�a

1 + Bi
6 H

, (33)

such that the surface temperature now depends on the film thickness. This dependence is reminis-
cent of the long-wave Marangoni instability whose mechanism is described below. Note that this
dependence was not included in calculating solutions in Secs. IV and V since we only considered
stationary conditions. However, the Marangoni instability in the longitudinal direction would not
have been relevant provided the temperature gradient across the layer, denoted 	T⊥/h0 with 	T⊥
the perpendicular temperature difference, i.e., along the y-direction, remains much smaller than
the temperature gradient imposed by the non-uniform ambient temperature, i.e., 	T/�. The corre-
sponding condition for neglecting the Marangoni instability in the longitudinal direction is therefore
	T⊥/	T � ε.

As we consider the stability of a film of uniform thickness, the thickness-averaged temperature
should also be uniform. Let us thus set �̄ = 1 and �a = 0, such that the only parameter that accounts
for the temperature constraint is the temperature difference 	T⊥ between the mean temperature of
the film and the temperature of the ambient. The interfacial temperature then becomes

�i = 1

1 + Bi
6 H

, (34)

which only depends on the thickness H(Z, τ ) and provides the instability mechanism for the long-
wave thermocapillary (Marangoni) instability: a perturbation leading to a thickening (respectively,
thinning) of the film will induce a decrease (respectively, increase) of the interfacial temperature,
hence an increase (respectively, decrease) of the surface tension.

B. Wavelengths and growth rates

Assuming normal mode perturbations of the uniform film, we write

H (Z , τ ) = 1 + a eik Z+στ , and W (Z , τ ) = b eik Z+στ , (35)

where a, b � 1 are small amplitudes, i = √−1, k is the dimensionless wavenumber, and σ is the
dimensionless growth rate. Inserting these perturbations (35) into (32) using Eq. (34) and linearizing
with respect to a and b, leads to the dispersion relation

σ = k

2We⊥

(√
2We⊥

(
k2

c − k2
) + 16Ca2k2 − 4Cak

)
, (36)

where the cut-off wavenumber for which σ vanishes in a nontrivial way is

kc =
√

6Bi

6 + 6Bi
. (37)

The film is therefore unstable for σ > 0, i.e., for 0 < k < kc. We can then write the growth rate and
the wavenumber of the most unstable mode,

σM = k2
c

8Ca + 2
√

2We⊥
and kM = kc√

2 + 8Ca√
2We⊥

. (38)

From Table I, we find that 8Ca/
√

2We⊥ � 1, such that in the large surface tension limit (Ca → 0),
we obtain the simplified forms

σ = k

√
k2

c − k2

2We⊥
, (39)
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FIG. 10. Universal dispersion curve from Eq. (39). The black dot represents the most amplified modes corresponding to
kM and σM.

σM = k2
c

2
√

2We⊥
and kM = kc√

2
. (40)

A universal dispersion curve is drawn in Fig. 10. We can observe that increasing the critical wavenum-
ber, or equivalently the Biot number, enhances the instability: it not only increases the growth rate
of the instability but also the range of unstable wavenumbers. In dimensional form, we have

k∗
c = 2

6 + α
κ

h0

√
α

κ

6⊥
h0

[
m−1

]
and σ ∗

M = k∗
c

2

√
γs

ρ

h0

8

[
s−1

]
, (41)

where ⊥ = γ ′	⊥/γ s. The wavelength of the most amplified mode is

λ∗
M = 2

√
2 π

k∗
c

. (42)

We plot in Fig. 11 the wavelength and growth rate of the most amplified modes. We observe that the
wavelength increases with the film thickness and that the maximum amplification of perturbations
will occur where the thickness is the thinnest, i.e., in the flat film region. Therefore, for a molten
silicon film of 100 μm thick, a heat transfer coefficient α = 1000 W/(m2 K) and a cross-stream
temperature difference 	T⊥ = 1 K, the wavelength of the Marangoni instability is 1.8 m and the
growth rate is about 0.001 s−1. Furthermore, any perturbations of the wavelength smaller than
1.3 m (i.e., ∼ 1.8/

√
2) will be stabilized by the system. This result means that a molten silicon sheet

h0 (m)

λ
∗ M

(m
)

h0 (m)

σ
∗ M

(s
−

1
)

FIG. 11. Wavelength and growth rate of the most amplified mode, versus the thickness h0 for various heat transfer charac-
teristics: solid line – 	T⊥ = 1 K and α = 1000 W/m2/K; dashed line – 	T⊥ = 10 K and α = 1000 W/m2/K; dotted line –
	T⊥ = 10 K and α = 10 000 W/m2/K. The other parameters are taken from Table I.
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that is less than 1.3 m wide will be unconditionally stable. The system becomes more unstable if the
heat transfer coefficient α and/or the temperature difference 	T⊥ is increased, as shown in Fig. 11.

VII. CONCLUSIONS

We studied the formation of a liquid film pulled out of a bath by means of using thermocapillary
stresses prescribed at the free surfaces. The resulting film thickness h0 essentially depends on the
capillary length �c and on the strength  of the surface tension variation along the interfaces. If the
surface tension variation is imposed over a distance d smaller than or of the order of the characteristic
length of the dynamic meniscus, i.e., � = √

�ch0 or equivalently d∗ ≈ 12�c

√
, the film thickness is

proportional to the temperature difference (or ) but is independent of d, as shown by Eq. (24). On
the contrary, if d � � ∼ d∗, the film thickness decreases with the square of the temperature gradient
(or /d), as shown by Eq. (25). However, gravitational drainage is shown to prevent the formation
of a film if d � �, such that this regime corresponds to temperature gradients that are too weak to
be relevant for liquid film manufacturing. As a consequence, liquid films can only be formed in the
case of strong temperature gradients, i.e., d � �, which corresponds, for instance, to temperature
gradient much larger than 1 K/mm for silicon films.

The final film thickness is affected by inertia, regardless the strength of the temperature gradient,
and decreases with increasing pulling speed. We also showed that larger heat transfer coefficients, i.e.,
larger thermocapillary stresses at the interfaces, result in larger thicknesses. Furthermore, if the heat
transfer coefficient and/or the pulling speed are not large enough, longitudinal heat conduction can
become significant and smooth out the temperature gradient along the interface. We finally address
the stability in the transverse direction and show that sufficiently thin films can experience a long-
wave Marangoni instability for sufficiently large heat transfer coefficient and/or large temperature
difference across the film.

One problem that remains to be analyzed is the longitudinal and transverse stability of the
one-dimensional solutions presented in this paper for the dynamic meniscus. Also, the concept of
thermocapillary-assisted (high speed) pulling of contact-free films presented in this work relies not
only on a very large temperature gradient, i.e., ≈100 K/mm, but also on a large effective heat transfer
coefficient, i.e., α > 103 W/(m2 K). Although perhaps technologically challenging, such conditions
might be approached, among other means, by decreasing the ambient temperature to values that
are much below the melting temperature, i.e., min (Ta) � Ts, in order to enhance the radiative
heat transfer. On the modeling front, this would require solution of the full radiative heat transfer
contribution rather than its linearized version, which is valid for min (Ta) ∼ Ts. But this configuration
also requires accounting for the heat removal at the solidification front as considered, for instance,
by Ref. 21 for the edge-defined film-fed growth method. These topics should be the subject of future
studies.

ACKNOWLEDGMENTS

We thank the anonymous referees for helpful feedback. B.S. thanks the Brussels Region for
funding through the program “Brains Back to Brussels” and acknowledge the support of the “Fonds
de la Recherche Scientifique – F.N.R.S.”

APPENDIX A: STRESS BALANCE IN THE SHEAR-LIKE DESCRIPTION

In Eq. (4), we give the relevant stress balance by considering all possible contributions to axial
stress, with an implicit assumption of extensional flow. However, as indicated in the text (Sec. III),
the final balance of stresses actually leads to a shear-like description of the flow; in fact, this feature
is a necessary condition to allow for stable film formation.4 Here, we demonstrate that an axial stress
balance that starts from the implicit assumption of shear flow ends up with the same stress balance
as Eq. (4), or equivalently Eq. (10) in dimensionless form.

We derive below the stress balance equation in the context of the lubrication approximation and
with the shear-like distinguished limit for which Ma = O(ε−1) and Ca = O(ε3) (see Sec. III). The
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continuity and the streamwise component of the Navier-Stokes equation in steady-state conditions
have the forms

∂x u + ∂yv = 0, (A1)

ρ
(
u∂x u + v∂yu

) = −∂x p + ηs
(
∂xx u + ∂yyu

) − ρg, (A2)

where the subscripts indicate the derivatives and the viscosity ηs is assumed constant. Following
lubrication theory, the pressure is assumed to be uniform in the film cross section and differs only
from the ambient pressure by the Laplace pressure −γ ∂xx(h/2). The pressure gradient can then be
written as ∂xp = −γ s∂xxx(h/2), in which variation of surface tension with temperature has been
neglected because γ ′	T/γ s ≡  � 1 (see Table I). This result would have been obtained by solving
the cross-stream component of the Navier-Stokes equation, together with the normal stress balance,
which we have by-passed here for the sake of simplicity, but can be found for instance in Ref. 9.
The symmetry conditions apply at y = 0 (see Fig. 1),

∂yu = 0, v = 0 , (A3)

and the tangential stress condition applies at y = h/2:

ηs

n

[(
1 − (∂x h)2

) (
∂yu + ∂xv

) − 4∂x h∂x u
] = −γ ′∂x Ti , (A4)

where n =
√

1 + 1
4 (∂x h)2. The dimensionless variables are

X = x

�
, H = h

h0
, Y = y

h0
, U = u

u0
, V = ε

v

u0
, �i = Ti − Ts

	T
,

where H(X) is the dimensionless film thickness. The dimensionless equations, truncated at order ε3

except for the surface tension term, become

VY = −UX , (A5a)

UYY = G + εRe (UUX + V UY ) − ε2UXX − ε3

2Ca
HXXX , (A5b)

V = 0 at Y = 0, (A5c)

UY = 0 at Y = 0, (A5d)

UY = −εMa�i X − ε2(4HXUX − VX ) at Y = H

2
. (A5e)

Assuming Ca = O(ε3) and Ma = O(ε−1) as indicated above, as well as Re = O(1) and
G = O(ε), and expanding the variables in powers of ε such as

U = U (0) + εU (1) and V = V (0) + εV (1), (A6)

the system of equations at leading order in ε has the form

V (0)
Y = −U (0)

X , (A7a)

U (0)
YY = − ε3

2Ca
HXXX , (A7b)

V (0) = 0 at Y = 0, (A7c)

U (0)
Y = 0 at Y = 0, (A7d)
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U (0)
Y = −εMa�i X at Y = H

2
. (A7e)

Integrating Eq. (A7b) twice with respect to Y, using Eq. (A7d) as well as mass conservation

2
∫ H/2

0
U (0) dY = 1, (A8)

gives the leading-order streamwise velocity profile

U (0)(X, Y ) = 1

H
+ ε3

2Ca
HXXX

(
H 2

24
− Y 2

2

)
. (A9)

Inserting Eq. (A9) into Eq. (A7e) yields the leading-order longitudinal stress balance

2εMa�i X − ε3

2Ca
H HXXX = 0. (A10)

To proceed to next order in the ε expansion, we first need to determine the leading-order
transverse velocity field by integrating Eq. (A7a) with Eq. (A7c),

V (0) = HX

H 2
Y − ε3

48Ca
Y

[
2H HX HXXX + (H 2 − 4Y 2)HXXXX

]
. (A11)

The problem to be solved at first-order is

U (1)
YY = εRe

(
U (0)U (0)

X + V (0)U (0)
Y

)
+ G, (A12a)

U (1)
Y = 0 at Y = 0, (A12b)

which can be integrated twice with respect to Y, while ensuring mass conservation with∫ H/2

0
U (1) dY = 0. (A13)

The first-order correction to the velocity profile is thus obtained as

U (1) =
(

ReHX

H 3
− G

) (
H 2

24
− Y 2

2

)
+ O(ε3). (A14)

Substituting U = U(0) + εU(1) into Eq. (A5e) truncated at first order leads finally to

2εMa�i X − ε3

2Ca
HHXXX + G H − εRe

HX

H 2
= 0, (A15)

which is identical to Eq. (10) without the extensional viscous term that is an ε2-order term in the
asymptotic expansion. Note also that the one-dimensional assumption for the temperature field
implies that �i = �̄(X ). This assumption is discussed in Appendix B.

APPENDIX B: ONE-DIMENSIONAL TEMPERATURE EQUATION

In this appendix, we demonstrate how the one-dimensional equation for the temperature field
is derived and how it can be corrected to account for a temperature variation across the film induced
by interfacial heat transfer. The steady-state energy equation has the form

ρcp
(
u∂x T + v∂y T

) = κ
(
∂yy T + ∂xx T

)
, (B1)

where cp is the specific heat capacity and κ is the thermal conductivity. The symmetry condition
applies at y = 0,

∂y T = 0, (B2)

and Newton’s cooling law applies at the interface y = h/2,

κ∂y T = −α (T − Ta(x)) , (B3)
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where a small slope, i.e., |∂xh| � 1, has been assumed for simplicity.22 Using the same scaling as
before, the dimensionless equations for the temperature become

�Y Y = εPe (U�X + V �Y ) − ε2�XX , (B4a)

�Y = −Bi(� − �a) at Y = H (X )

2
, (B4b)

�Y = 0 at Y = 0, (B4c)

where the Péclet and Biot numbers are defined as

Pe = ρcpu0h0

κ
and Bi = αh0

κ
,

and ε = h0/� is the slenderness parameter. Even though we consider St = 2Bi/(εPe) � 1, the way the
one-dimensional temperature equation is obtained will differ slightly depending on the magnitude
of the heat advected by the flow, transferred to the surrounding and conducted along the film, as
discussed next.

1. Small heat transfer: Bi = O(ε) and Pe = O(1)

In the case of small heat transfer from the film to the surroundings, by expanding the temperature
field as �(X, Y) = �(0) + ε�(1) + ε2�(2), the system of equations (B4a)–(B4c) at leading order
becomes

�
(0)
Y Y = 0, (B5a)

�
(0)
Y = 0 at Y = H

2
, (B5b)

�
(0)
Y = 0 at Y = 0. (B5c)

The solution is simply a uniform temperature profile across the film �(0) = �̄(X ). At first order,
the system becomes

�
(1)
Y Y = εPeU (0)�̄X , (B6a)

�
(1)
Y = −Bi(�̄ − �a) at Y = H

2
, (B6b)

�
(1)
Y = 0 at Y = 0, (B6c)

which can be integrated across the thickness using Eqs. (A9) and (A11) to yield

�̄X = −St
(
�̄ − �a

)
, (B7)

with St = 2Bi/(εPe). This equation is identical to Eq. (13).

2. Large heat transfer: Bi = 1 and Pe = O(1/ε)

In the case of large heat transfer from the liquid to the surroundings, the temperature profile
across the film cannot be uniform anymore at leading order. One can, for instance, assume a parabolic
profile that satisfies the boundary conditions (B4b) and (B4c), and is written in terms of the average
temperature �̄ = (2/H )

∫ H/2
0 � dY :

�(X, Y ) = �a +
(

�̄ − �a

1 + Bi
6 H

)(
1 + Bi H

(
1

4
− Y 2

H 2

))
. (B8)
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Inserting Eqs. (B8), (A9), and (A11) into Eq. (B4a) yields

�̄X = −St
(�̄ − �a)

1 + Bi
6 H

, (B9)

where the higher-order terms in Eqs. (A9) and (A11) have been neglected. We note that the only
difference between Eqs. (B9) and (B7) is the denominator of the right-hand side that accounts
for the parabolic temperature profile across the film. This equation has been used for instance in
Ref. 17 to model the heat transfer in stretching glass sheets, where it has been shown that a non-
uniform temperature profile across the film does not qualitatively change the film profile as compared
to the case of a uniform temperature profile.

3. Diffusive case: Bi = O(ε2) and Pe = O(ε)

We finally consider the case Pe = O(ε) corresponding to large heat conduction or equivalently
small pulling speeds. Because conduction terms are of order ε2, one should set Bi = O(ε2) to
have diffusive and interfacial transfer effects at the same order. Expanding then Eq. (B4) up to
second-order, with �(1) = 0, gives

�
(2)
Y Y = εPeU (0)�̄X − ε2�̄XX , (B10a)

�
(2)
Y = −Bi(�̄ − �a) at Y = H

2
, (B10b)

�
(2)
Y = 0 at Y = 0. (B10c)

Integrating Eq. (B10a) using Eqs. (B10b) and (B10c) yields

�̄X = −St
(
�̄ − �a

) + ε

Pe
�̄XX , (B11)

which is identical to Eq. (29).

APPENDIX C: LINEARIZATION OF RADIATIVE HEAT TRANSFER

The stationary version of the one-dimensional temperature equation with pure radiative heat
transfer has the form

ρcphūT̄x = −2εT σSB
(
T̄ 4 − T 4

a

)
, (C1)

where εT is the total emissivity of the molten liquid and σ SB is the Stefan-Boltzmann constant. In
dimensionless form, using the scales introduced in Sec. II C, Eq. (C1) becomes

�̄X = − St

4τ

[(
1 + τ�̄

)4 − (1 + τ�a)4
]
, (C2)

where τ = 	T/Ts and St is constructed with α ≡ αR = 4εT σSBT 3
s . Since 	T/Ts � 1 (see

Table I), Eq. (C2) can be linearized around τ , which leads back to the convective heat transfer
equation (13) that is used throughout this paper. The corresponding radiative heat transfer coeffi-
cient can be evaluated by taking εT = 0.3 for the total emissivity of liquid silicon23 and with σ SB

= 5.67 × 10−8 W/(m2 K4), which gives αR = 327 W/(m2 K).
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