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We study the thermocapillary stabilization of a free liquid film as it is formed by being pulled out
of a bath at constant speed. For sufficiently large stresses induced at the interface through a
controlled temperature gradient, a continuous film of liquid can be processed. For negligible inertial
effects, the film thickness only depends on the capillary length and on the strength of the surface
tension variation. The theory suggests that very thin ribbons or foils of molten material can be drawn
out of a melt over a wide range of thicknesses and at speeds relevant to manufacturing. © 2010
American Institute of Physics. �doi:10.1063/1.3505523�

Many objects used everyday are made of metallic foils,
the most obvious example being aluminum foil. An ancient
process to produce foils is by rolling,1 which is a forming
process where metal stock is passed through a pair of rolls.
Another technique is the foil-casting process, used for in-
stance to produce silicon foils.2 The method consists of de-
positing a liquid metal on a moving and subcooled substrate
through the bottom of a casting frame, so that a layer of the
liquid metal crystallizes on the substrate, and a metal foil is
formed.3 Both foil rolling and casting methods place the liq-
uid metal in contact, at least on one side, with a solid sub-
strate, which is undesirable for production of extremely pure
and flat materials.

Silicon sheets produced by vertical growth from a melt
are contact free but the production speed is much smaller
than the aforementioned techniques:4 the speed is typically
limited to a few millimeters per second to avoid breaking the
liquid bridge between the melt and the foil. In fact, no stable
film can be pulled out of a liquid bath if only extensional
viscous and capillary forces are in balance.5 Nevertheless,
soap films can be formed at large speeds �meter per second�
due to interfacial stresses induced by the presence of surfac-
tant concentration gradients at the free surfaces.6 Surfactant
can obviously not be used to produce foils of pure materials
but interfacial thermocapillary stresses could be used instead
by prescribing temperature gradients along the free surfaces.

The concept of stabilizing the formation of free liquid
films by thermocapillary effects has not been reported previ-
ously. The ideas should be applicable to the production of
contact free foils at competitive speeds, and here we focus on
the fluid dynamics aspects of this concept.

We consider a liquid film withdrawn with speed u0 from
a bath of temperature Tb �Fig. 1�. Symmetry is assumed
about the x-axis. The prescribed far-field ambient tempera-
ture is denoted Ta�x�. At steady state, a film of thickness h�x�
eventually reaches a constant value h0 at a distance suffi-
ciently far above the bath. We assume the film then solidifies.
The density � and the viscosity � are taken to be constant
because they do not change significantly over a modest tem-
perature interval near the solidification temperatures of typi-

cal materials that interest us. We denote ��x� as the cross-
sectional average temperature of the film and assume a linear
decrease in the surface tension � with temperature from the
solidification temperature Ts, ����=�s−�T��−Ts�, where �s

=��Ts� and �T= �d� /dT�, as is the case for most liquid
metals.7

Following the region decomposition applied in the con-
text of a foam lamella,8 determination of the shape of the
film requires solving the thin-film equation in an intermedi-
ate region of length � that connects the static meniscus at the
bath with the flat film region near the solidification front. The
static meniscus �dashed line in Fig. 1� is identical to a me-
niscus that would be attached to a perfectly wetting substrate
with curvature h�=�2 /�c, where the prime denotes the
x-derivative, and �c=��s / ��g� is the capillary length.9 Be-
cause of the downward capillary suction induced by the posi-
tive curvature of the free surface, no purely viscous film can
be stably pulled out of a liquid bath5 unless sufficiently large
shear stress is present at the free surface, which is ensured
here by the Marangoni stress induced by the gradients of
surface temperature on both sides of the film. According to
Breward and Howell8 this “shear flow” regime corresponds
to a distinguished limit where capillary and Marangoni ef-
fects provide the dominant balance in the intermediate region
and where the extensional viscous stress is always negligible.
This limit is applicable for,
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FIG. 1. Sketch of the pulling film problem. The dashed line indicates a static
meniscus �not to scale�.
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Ca =
�u0

�s
= O��3� and Ma =

�T�T

�u0
= O��−1� , �1�

with �=h0 /� and �T=Tb−Ts. The corresponding axial stress
equation, neglecting inertia and gravity effects �see justifica-
tions hereafter�, has the form,

�s

2
hh� − 2�T�� = 0. �2�

Terms in Eq. �2� account, respectively, for the capillary stress
induced by the curvature of the interface and for the ther-
mocapillary stresses at the two interfaces. Finally, in the case
where the rate of heat transfer across the free surfaces is
much larger than the rate of heat advected by the flow, the
local temperature of the film takes the temperature of the
ambient �the reader is referred to Scheid et al.10 for details on
this “prescribed temperature limit”�, such that the energy
equation reduces to,

��x� � Ta�x� . �3�

We also assume that heat released during solidification can
be neglected because it occurs after the geometry of the film
is no longer changing.11 In the present problem, we assume
the ambient temperature to be prescribed such that it varies
by the temperature difference �T over a distance d. For the
sake of subsequent analytical development, we chose a con-
tinuous and integrable function of the form,

Ta�x� = Ts +
�T

2
	1 − tanh
2�� x

d
+ 1�� . �4�

We note that the choice of a function other than an hyper-
bolic tangent �such as an error function for instance� leads to
the same conclusions as those presented in this letter. Be-
cause the problem is invariant by translation, and according
to the sketch in Fig. 1, we have also shifted in space the
temperature variation by the quantity d such that Ta�0��Ts.
This is valid so long as �T /Ts	1.

We next nondimensionalize using the scalings,

X =
x

�
, D =

d

�
, H =

h

h0
, 
 =

� − Ts

�T
. �5�

Defining the length scale � of the intermediate region as,

� =
h0

2��
with � =

�T�T

�s
, �6�

leads Eq. �2� to the parameterless equation,

HH� = 
�. �7�

Since the thickness is assumed to reach a constant near the
solidification front, the boundary conditions at X=0 are
H=1 and H�=H�=
=0. Integrating Eq. �7� and combining
with Eq. �3� and Eq. �4� in dimensionless form, yields,

2HH� − H�2 = 1 − tanh
2�� X

D
+ 1� , �8�

which straightforwardly relates the dimensionless length of
the temperature �or interfacial stress� variation D to the shape
of the film H�X�. Furthermore, this latter must match the
curvature of the static meniscus as the film thickens, i.e.,
H−�� =�2�2 / ��ch0� as X→−�. Therefore, the matching con-
dition that allows determination of h0, using Eq. �6�, yields,

h0 = 2�2�cH−�� � , �9�

where H−�� remains to be determined.
In the limit D→0 and for X0, the term tanh→−1 in

Eq. �8� so that an analytical solution can be found: H=1
+X2 /2. Replacing the corresponding curvature H−�� =1 in the
matching condition Eq. �9� yields the asymptotic determina-
tion of the film thickness as:

h0 = 2�2�c� as D → 0. �10�

This prediction for the typical film thickness is the main
result of this work showing that, for a given liquid, it essen-
tially depends on the amplitude of the surface tension varia-
tion, as measured by the parameter �. The film is thus pulled
out of the intermediate region with a thickness that does not
depend on the pulling speed. Increasing the speed will thus
increase the rate of liquid passing through this “virtual slot,”
whose the width is adjusted by the amplitude of the ther-
mocapillary stresses. As the pulling speed increases, how-
ever, eventually inertial effects will enter the axial stress bal-
ance Eq. �2�, and we comment on this influence below.

Equation �8� can be solved numerically for any value of
D; typical solutions are given in Fig. 2. We observe that even
though the numerical solution for D=1 is far from the ana-
lytical D→0 solution �contrary to the D=0.1 solution�, the
curvature H� still tends to a constant approaching unity as
X→−�.

We next report in Fig. 3 the constant value H−�� for a
wide range of D. It appears that H−�� is well approximated by
unity for D�1, which extends the range of validity of the
asymptotic result in Eq. �10�. However, for D�1, numerical
solutions in Fig. 3 should be used instead for H−�� , which
gives the film thickness by Eq. �9�. The results show that the
film thickness h0 decreases as D increases, i.e., as the im-
posed temperature gradient decreases.
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FIG. 2. Solutions to Eq. �8� showing H for various D and H� for D=1. The
dotted line also corresponds to H=1+X2 /2.
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FIG. 3. Matching curvature H−�� vs the length D over which the temperature
difference is applied.
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Table I shows the physical properties of various metallic
elements, which allows an assessment of the dimensionless
parameter � for a fixed value of the temperature difference
�T=100 K. We see that ��10−2 for all of the elements
reported in Table I, except for silicon which has a higher
value. However, Zhou et al.12 report smaller values of �s
=0.72 N /m and �T=0.06 mN /mK for silicon, which gives
�=0.01. The film thickness is therefore of the order of
100 �m for all of the elements in Table I.

Taking a practical example, to produce an iron film of
150 �m thick would require a value of �=0.01, or a varia-
tion in surface tension by 20 mN/m over a length smaller
than or about �=�c

�2� as found from Eq. �6� with the
asymptotic result in Eq. �10�. This case requires lowering the
temperature of the surface of the film by 50 K over a distance
smaller than or about 0.8 mm �i.e., D�1�. If the temperature
difference is to be imposed over a longer distance, the nu-
merical results in Fig. 3 are to be used with Eq. �9�. For
instance, for D=10, it is necessary to increase � by 60% to
keep the same film thickness as that obtained for D�1; in
the case of a 150 �m thick iron foil, this approach requires
a temperature difference of 80 K over a distance of about
6 mm.

We now determine the conditions that allow neglect of
gravity and inertia; both of them remain small as compared
to capillary effects, so long as G=�g�c

2 /�s	1 and We
=��cu0

2 /�s	1, respectively. Note the largest length scale of
the system, �c, has been taken to ensure a conservative
evaluation of G and We. For typical molten materials, the
first condition is always true since G�10−1 for all of the
elements in Table I. The second condition indicates that in-
ertial effects can be neglected for speeds u0	�g�c. In the
case of a 150 �m iron foil, we require u0	22 cm /s. For
larger speeds, inertia will tend to thin the film as compared to
the present theory. Detailed analysis including inertia is to be
reported elsewhere.

As mentioned earlier, the present results are applicable
in the “shear” distinguished limit where thermocapillary
stresses are large and extensional viscous stresses are negli-

gible. Using Eq. �1� together with Eq. �6� and Eq. �10� gives
a condition on the pulling speed, u0� ��s /���3/2, or in the
case of iron with ��10−3 Pa s, u0�1 m /s.

In this letter, we show that a liquid film can be pulled out
of a bath by using thermocapillary stresses prescribed at the
free surfaces. The resulting film thickness is proportional to
the capillary length of the liquid �c and to a parameter � that
measures the amplitude of the surface tension change at the
interface. If this change is imposed over a distance d that is
larger than the characteristic length �=�c

�2� of the system,
the film thickness decreases with increasing d, otherwise it is
independent of d. A significant feature of the present theory
is that the film thickness is also independent of the pulling
speed of the film, at least when inertia is neglected, which
means that the flow rate can be changed without modifying
the film thickness.
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TABLE I. Properties given at the solidification temperature Ts for various elements �Ref. 13�; �c=��s / ��g� and
�T=100 K.

Ag Al Au Co Cu Fe Ni Si

Ts �K� 1235 933 1337 1773 1357 1811 1727 1683
� �kg /m3� 9150 2350 17400 7810 7900 7040 7920 2520
�s �N/m� 0.91 0.88 1.12 1.89 1.29 1.92 1.77 0.78
�T �mN/m/K� 0.18 0.20 0.09 0.33 0.23 0.40 0.33 0.65
�c �mm� 3.2 6.2 2.6 5.0 4.1 5.3 4.8 5.6
� ��T�T /�s� 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.08
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