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Abstract. We investigate the changes of shape of a stretching viscous sheet by controlling the forcing at
the lateral edges, which we refer to as lateral shaping. We propose a one-dimensional model to study the
dynamics of the viscous sheet and systematically address stability with respect to draw resonance. Two
class of lateral forcing are considered: (i) for the case that the stress at the edges is specified, we show that
a pure outward normal stress Sn is usually unfavorable to the draw resonance instability as compared to
the case of stress-free lateral boundaries. Alternatively, a pure streamwise tangential stress St is stabilizing;
(ii) for the case that the lateral velocity at the edges is specified, we show that the stability properties are
problem specific but can be rationalized based on the induced stress components (Sn, St).

PACS. 47.15.gm Thin film flows – 47.20.Gv Viscous and viscoelastic instabilities – 47.85.M- Material
processing flows; industrial applications

1 Introduction

Stretching viscous sheets are frequently encountered in the
polymer and glass manufacturing industries. During the
pure longitudinal stretching of a thin sheet, the width usu-
ally shrinks from the inlet to the take-up due to the strong
extensional deformation effected by the pulling. This neck-
ing phenomenon makes the sheet thickness thicker than
expected from a pure parallel stretching. To prevent this
response, it is common in processes such as polymer film
casting to keep the distance between the inlet and the
take-up roll as short as possible, so that the aspect ra-
tio between the width and the length is usually of order
of unity in such processes. In other processes such as the
float-glass process, the aspect ratio of the viscous sheet
can be much smaller than unity and mechanical stretch-
ing transverse to the main flow can be used to work against
the neck-in effect, and thus obtain thinner sheets.

A mechanical system of lateral stretching was proposed
by Pilkington [1] for the float-glass process and consists in
edge rollers that grip the edges of a glass sheet and define
its speed. In practice, the rollers are placed closer to the
inlet than to the take-up. Therefore the glass sheet still
shrinks in width between the last edge roll and the take-
up. Narayanaswamy [2] proposed a one-dimensional model
that describes this shrinking portion of a viscous sheet in
the simplest possible terms, i.e. neglecting surface tension,
inertia and hydrostatic pressure. In this region, it was as-
sumed that there was no stress in the transverse direction,
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which is valid only for small aspect ratios1. The width and
thickness of the glass sheet were then found to be atten-
uated in the same proportion, and satisfactory agreement
with measured widths were obtained in the region past
the last edge roller.

Silagy et al. [4] extended the one-dimensional model
in [2] to sheets of larger aspect ratios by considering
the edges of the sheet to be free surfaces. Consequently,
the stress in the transverse direction depends instead
on the edge curvature. Silagy et al. [5] further determined
the threshold for the draw resonance instability of such
stretching sheets with stress-free boundary conditions at
the edges. The draw resonance instability is characterized
by a periodic variation in the sheet’s thickness around
the centerline (see e.g. [3]), whose physical mechanism
has been recently proposed in the case of heat trans-
fer [6]. These thickness variations take place across the
entire width, which also oscillates synchronously around
the symmetry axis. It was found in [5] that the neck-in
effect always has a stabilizing effect with respect to draw
resonance, at least for aspect ratios of order unity. In this
paper, we extend the one-dimensional model in [5] to lat-
eral shaping, by which we refer to stress distributions (or
speed) imposed along the edges.

In Section 2, we present the mathematical formula-
tion of the 2D model, which is the basis from which we

1 A way to appreciate this assumption is to consider the limit
where the width is as small as the thickness (aspect ratio �
1), which corresponds to the slender (or fiber) limit for which
the stress in the transverse (or radial) direction is negligible
compared to the axial stress (see e.g. [3]).
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construct a 1D model. In Section 3 we discuss the case
of a stress specified at the edges and explore the different
limiting cases. In Section 4 we alternatively consider the
case of a transverse speed specified at the edges. In each
case, the stability of solutions is investigated systemati-
cally. Concluding remarks are given in Section 5.

2 Mathematical formulation

2.1 Two-dimensional equations

We consider a three-dimensional viscous liquid sheet with
thickness h0, velocity u0 and width 2�0 at the inlet be-
ing stretched over a length L to the take-up speed uL, as
sketched in Figure 1. The draw ratio is denoted Dr =
uL/u0. The sheet is also shaped in the lateral direction
by a symmetrically applied stress S = Snn + Stt (only
represented on one edge in Fig. 1). The coordinate sys-
tem is chosen with x axial and z transverse in the width
direction. The position of the lateral boundary is defined
as z = �(x, t). Variables are made dimensionless through
the transformations: h → h0h, x → Lx, � → �0�, z → �0z,
u → u0u, w → u0w and t → (L/u0) t. The stress is scaled
by μu0/L with μ the dynamic viscosity of the fluid.

We define the film parameter ε = h0/L and the aspect
ratio a = �0/L. Neglecting inertia, gravity and surface ten-
sion, and using the standard thin-film assumption ε � 1,
the continuity and Stokes equations, as shown by Yeow [7],
reduce to a two-dimensional system of evolution equations
for the sheet thickness h = h(x, z, t) and in-plane veloci-
ties u = u(x, z, t) and w = w(x, z, t),

∂th + ∂x(uh) +
1
a
∂z(wh) = 0, (1a)

∂x(hσxx) +
1
a
∂z(hσxz) = 0, (1b)

∂x(hσxz) +
1
a
∂z(hσzz) = 0, (1c)

with the components of the in-plane stress tensor,

σxx = 4∂xu +
2
a
∂zw, (2a)

σzz =
4
a
∂zw + 2∂xu, (2b)

σxz =
1
a
∂zu + ∂xw. (2c)

The boundary conditions in the axial direction are

�(0, t) = h(0, z, t) = u(0, z, t) = 1, (3a)

u(1, z, t) = Dr, (3b)

and the the boundary conditions in the transverse direc-
tion are, at z = 0, the symmetry conditions,

w
∣
∣
0

= σxz

∣
∣
0

= 0, (4)

and at the edge z = �(x, t) the kinematic condition and
the stress balance, respectively,

a
(

∂t� + u
∣
∣
�
∂x�

)

= w
∣
∣
�
, (5a)

n · σ∣
∣
�

= S. (5b)

Fig. 1. Stretching viscous sheet with stress S and transverse
speed w� at the boundary z = �(x, t).

The normal and tangential unit vectors are, respectively,
n = (−a∂x�, 1)/n and t = (1, a∂x�)/n, with n = (1 +
(a∂x�)2)1/2. The normal and tangential projections of the
stress balance (5b) are thus

σzz

∣
∣
�
− 2a∂x� σxz

∣
∣
�
+ (a∂x�)2σxx

∣
∣
�

= n2Sn , (6a)

a∂x�
(

σzz

∣
∣
�
− σxx

∣
∣
�

)

+
(

1 − (a∂x�)2
)

σxz

∣
∣
�

= n2St . (6b)

The two-dimensional model (1–5b) has been solved nu-
merically by several authors with the stress-free boundary
condition S = 0 (see e.g. [8] and references therein). We
have performed 2D numerical computations with S �= 0
in order to validate some of the results obtained with
the one-dimensional model developed in the next section.
For the 2D numerical simulations, we have used Comsol
software. Due to the large deformations which the fluid
undergoes in the present lateral stretching problem, a
purely Lagrangian reference frame where the mesh fol-
lows the fluid particles is not practical. Instead the soft-
ware Comsol allows to use an intermediate between the
traditional Eulerian reference frame and the Lagrangian
reference frame. This hybrid is commonly known as the
Arbitrary Lagrangian-Eulerian (ALE) reference frame [9].
The basic idea is to allow the mesh to deform arbitrarily
(but preferably smoothly) in the bulk but still keep track
of the interface of the liquid.

2.2 Constructing the 1D model

With the goal of obtaining a one-dimensional model, we
integrate the continuity equation (1a) and the streamwise
momentum equation (1b) along half the width and use the
boundary conditions (4) and (5a) to obtain

∂t

∫ �

0

h dz + ∂x

∫ �

0

uh dz = 0, (7)

∂x

∫ �

0

hσxx dz − h
∣
∣
�
σxx

∣
∣
�
∂x� +

1
a
h
∣
∣
�
σxz

∣
∣
�

= 0. (8)

We next assume |a∂x�| � 1 and truncate (6b) after
O(a∂x�)2 to obtain

σxz

∣
∣
�
= a∂x�

(

σxx

∣
∣
�
− σzz

∣
∣
�

)

+
(

1 + 2(a∂x�)2
)

St, (9)
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Table 1. Typical shapes of two-dimensional stretching sheets versus various boundary conditions (see text for details). S�
n(x, t)

is the normal stress that keeps the width constant.

Edge boundary conditions Section

Stress-free: Sn = 0, St = 0 a → ε finite a a → ∞ not possible 3.1

1D fiber [10] 2D sheet [4] 1D sheet [7]

Pure normal stress: Sn = Sn(x, t) Sn < S�
n Sn = S�

n Sn > S�
n 3.2

Pure tangential stress: St = cste St < 0 or St > 0 not possible 3.3

Specified velocity: w� = w�(x) w� < 0 w� = 0 w� > 0 4

which substituted in (6a), and also truncated after
O(a∂x�)2, leads to

σzz

∣
∣
�
= (a∂x�)2σxx

∣
∣
�
+

(

1 − (a∂x�)2
)

Sn+2(a∂x�)St. (10)

Based on previous studies of 2D sheets [2,4], we pose the
ansatz

u = u(x, t) , h = h(x, t) and w =
w�(x, t)
�(x, t)

z, (11)

which assumes the axial velocity u and the thickness h to
be one-dimensional, and the transverse velocity w to vary
linearly with the z-coordinate, with w�(x, t) = w

∣
∣
�

denot-
ing the transverse velocity at the edge boundary. With
this ansatz, the continuity equation (7) and the kinematic
condition (5a) become

∂t(�h) + ∂x(�hu) = 0, (12a)

∂t� + u∂x� − w�

a
= 0, (12b)

and the stress components (2) take the forms

σxx = 4∂xu +
2w�

a�
, (13a)

σzz = 2∂xu +
4w�

a�
, (13b)

σxz = z ∂x

(w�

�

)

. (13c)

We notice that σxx and σzz are now z-independent, which
makes the normal stress boundary condition (10) true ev-
erywhere in the domain and not only at the boundary
(z = �). The form of the stress balance (8) will depend
on whether we specify the stress components (Sn, St) or
the transverse velocity (w�) at the edge, as investigated in
Sections 3 and 4, respectively. To specify Sn and St, we
will use (9, 10) and truncate (8) after O(a∂x�)2 to write

a∂x(h�σxx) = h (Sn a∂x� − St) , (14)

while to specify w�, we will use (13c) in (8) and write

a∂x(hσxx) = −h∂x

(w�

�

)

. (15)

The different situations investigated in this paper are clas-
sified in Table 1 relative to the boundary conditions and
the expected shapes of a two-dimensional stretching sheet.
The last column refers to the corresponding sections of the
paper.

2.3 Linear stability analysis

Depending on the lateral boundary condition to be con-
sidered (as classified in Tab. 1), the system of PDEs to
be solved will differ as described in the subsequent sec-
tions. Nevertheless, the way the linear stability analysis is
performed remains generic and is outlined in this section.
The analysis consists in solving for the unknowns h, �, u
and σxx, which can be rewritten in a perturbative form as

h(x, t) = hs(x)
(

1 + H(x) eλt
)

, (16a)

�(x, t) = �s(x)
(

1 + L(x) eλt
)

, (16b)

u(x, t) = us(x)
(

1 + U(x) eλt
)

, (16c)

σxx(x, t) = σxxs(x)
(

1 + Σ(x) eλt
)

, (16d)

where hs, us, �s and σxxs are the real steady-state solutions,
H, L, U and Σ are the complex perturbations, and λ =
λR + iλI is the complex eigenvalue with λR the growth
rate and λI the frequency. The steady-state solutions and
the linearized perturbations will be sought together using
the following axial boundary conditions

hs(0) = �s(0) = us(0) = 1, σxxs(0) = fs0 , (17a)

H(0) = L(0) = U(0) = U(1) = 0, Σ(0) = F0 , (17b)

where fs0 is the axial tension at the inlet (x = 0) and F0 is
the corresponding perturbation. Both fs0 and F0 are real
parameters that are prescribed a priori. Therefore at any
given value of fs0 corresponds a steady state from which
the draw ratio can be deduced, namely Dr = us(1). Fur-
thermore, the magnitude of F0 sets the relative amplitudes
of the linearized perturbations for the stability analysis;
its value has been fixed for all calculations to F0 = 0.1.

Solutions to the problem corresponding to a specific
lateral condition (see Tab. 1) will next be computed by
continuation using the ODE solver Auto-07p [11]. Hav-
ing four real unknowns (hs, us, �s, σxxs) with four real
boundary conditions (17a) and four complex unknowns
(H, U, L, Σ) with five complex boundary conditions (17b),
the continuation requires three free parameters (see [12]
for details), namely fs0 , λR and λI. The basic idea behind
the continuation method is to suppose that one knows a
solution of the problem at hand and that this solution is
not isolated in the parameter space but lies on a contin-
uous branch of solutions. Then, the software Auto-07p
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proceeds to construct the whole branch of solutions in
small steps, using the Newton iteration method, starting
from the known solution. Here however for a particular
fs0 (or equivalently Dr), the number of eigenvalues λ for
which the eigenvalue problem has non-trivial solutions is
denumerably infinite – see e.g. the work by Yeow [7] who
has computed the first three eigenvalues. Having thus an
infinite number of modes, we will choose the branch of
solutions for the first mode (or eigenvalue) correspond-
ing to the most dangerous one and additionally restrict
the analysis to the neutral stability curve obtained for a
zero growth rate λR = 0. The corresponding solutions in
the 1D case (e.g. either for a → 0 or a → ∞ as shown
below) have analytical expressions – for the steady-state
solutions and the linearized perturbations – that can be
found in the work by Renardy [13] and have thus been
used here as starting solutions.

Finally, having fixed λR, and provided the number of
boundary conditions (17), one needs an additional free
parameter in order to construct the neutral curve, i.e.
the branch of solutions at the instability threshold. This
free parameter can either be the aspect ratio a (start-
ing from the known solution at a = 0) for the stress-free
lateral boundary condition (see Sect. 3.1), or, for a fixed
value of a, another parameter that probes a specific lateral
boundary condition like the normal stress parameter b (see
Sect. 3.2), the tangential stress parameter St (Sect. 3.3)
and the amplitude B of the transverse velocity function
(Sect. 4). These different cases are treated individually in
the remaining sections of the paper.

2.4 Axial tension

In order to have more insights into the physical mecha-
nisms involved in 2D stretching and possible instabilities,
we want to evaluate the axial force or tension, denoted
f(x, t), in the sheet. As in the previous section, we present
here what is generic and will examine in the following sec-
tion what is specific for each lateral boundary condition.

For steady-state conditions, the continuity and kine-
matic equations (12) become

(�shsus)′ = 0, (18a)

�′s =
w�s

aus
, (18b)

where a prime denotes the x-derivative. Using the bound-
ary conditions (17a) and (18a) yields

hs�sus = 1. (18c)

Now combining the steady-state results (18) with (13a)
yields

h′
s

hs
+

�′s
2�s

= −hs�sσxxs

4
≡ −fs(x)

4
, (19)

where fs is the steady-state tension. Equation (19) thus
relates the shape variation of the sheet to the axial tension,
whose distribution along x direction will depend on the
lateral boundary conditions.

3 Specified lateral stress

In the case we want to prescribe the stress applied at the
edges of the sheet, we can recast the stress relations (13a)
and (13b) as

σxx = 2σzz − 6
w�

a�
, (20a)

σzz = 2σxx − 6∂xu, (20b)

and then rewrite them using (10) in order to eliminate σzz ,

(

1 − 2(a∂x�)2
)

σxx + 6
w�

a�
= 2

(

1 − (a∂x�)2
)

Sn

+ 4a∂x�St, (21a)
(

2 − (a∂x�)2
)

σxx − 6∂xu =
(

1 − (a∂x�)2
)

Sn

+ 2a∂x�St. (21b)

Let us now consider the different cases and limits as clas-
sified in Table 1. Note the model proposed here extends
to non-zero lateral stresses (i.e. Sn �= 0 and/or St �= 0) the
model proposed by Silagy et al. [4] for stress-free condition
(Sn = St = 0).

3.1 Stress free (short review): Sn = St = 0

For stress-free conditions, we can integrate (14) once to
obtain

h�σxx = f(t), (22)

where f(t) is the axial tension, which is now independent
of x. For steady-state conditions, and using (18), (22) then
becomes

hs�sσxxs = fs = constant (23)

with fs = fs0 based on (17a). Consequently, replacing (23)
in (19) shows that a decrease of the width due to the
necking phenomenon is automatically accompanied by an
increase of the thickness, as was mentioned in the Intro-
duction.

The system of equations used for the linear stability
analysis, setting Sn = St = 0 as done in [4], is obtained
by eliminating first w� in (12b) from (21a), and by sub-
stituting then (16) into (12a), (12b), (21b) and (22). We
then followed the steps for the instability analysis given in
Section 2.3. Results are shown in Figure 2 for the stabil-
ity threshold of the draw resonance, as measured by the
critical draw ratio Drc for the entire range of aspect ra-
tios a. We notice that Silagy et al. [4,5] have only plotted
the right part of the neutral curve for 0.5 < a < ∞ and
have not extended the curve for a → 0. They have also
compared the neutral curve obtained with the 1D model
to the one computed from 2D time-dependent simulations
and have found a good qualitative agreement, although
the peak in the neutral curve is shifted to a ≈ 1 and
Drc ≈ 40. Nevertheless, away from the peak, the error is
smaller and should even vanish when approaching the 1D
limits.
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Fig. 2. Stability map for the draw resonance of a stretching
2D sheet with stress-free conditions Sn = St = 0 (solid line).
The 1D limit corresponds to Drc = 20.218 (dotted line).

Figure 2 shows essentially that the 2D neck-in effect
is always stabilizing as compared to a pure 1D stretching,
i.e. Dr

(2D)
c > Dr

(1D)
c = 20.218 (see also [5]). This stabi-

lization is maximum for a = O(1) and disappears on both
sides corresponding to the following limits:
– Fiber limit (a → ε): pure 1D stretching can be recov-

ered in the limit of small aspect ratios, namely a → ε,
which means the width and the thickness are of the
same order of magnitude. Neglecting the O(a2)-terms
in (21b), with Sn = St = 0, gives

σxx = 3∂xu, (24)

which is the stress relation for fiber spinning [10],
where 3 is the Trouton ratio. The system of equa-
tions is then solved for both the extensional velocity u
and the fiber cross-sectional area ∝ �h, after substitut-
ing (24) in (12a) and (22). In this limit, note from (13b)
that the transverse stress is σzz = 0, as was mentioned
in the Introduction.

– Constant-width 1D sheet limit (a → ∞): the
other limit that leads to a pure 1D stretching is the
case of an infinitely wide sheet, i.e. a → ∞. Therefore
from (12b), the width remains constant, � = 1, such
that the edges have no lateral motion, i.e. w� = 0.
Consequently, the stress relation (13a) is

σxx = 4∂xu, (25)

as first shown by Taylor [14]. Yeow [7] demonstrated
in turn that the model for fiber spinning and constant-
width film casting are mathematically identical. Con-
sequently, the critical draw ratio for draw resonance
is identical for both, i.e. Dr

(1D)
c = 20.218. Indeed the

Trouton ratio can be scaled out together with the vis-
cosity. It is common to speak about “effective” or “ex-
tensional” viscosity that is therefore 3μ for fibers and
4μ for sheets.

In contrast to the fiber limit, a sheet of constant
width has a non-zero transverse stress equal to the
half of the axial stress,

σzz |�=1 = 2∂xu, (26)

as found from (13b) with w� = 0.

3.2 Pure normal stress: Sn �= 0 and St = 0

As indicated above, a sheet of finite aspect ratio experi-
ences the neck-in effect but can be forced to have a con-
stant width by applying a stress S�

n(x, t) = 2∂xu at the
edge (see (26)). This lateral stress must be specified in
order to produce a parallel flow and counterbalance lat-
eral stresses concomitant to the neck-in effect of a two-
dimensional stretching sheet. Assuming it is feasible in
practice to control the normal stress both in space and in
time all along the edges of the sheet, we can investigate
the departure from the different reference cases outlined
in Section 3.1. Let us thus specify

Sn(x, t) = b S�
n = 2b ∂xu and St = 0, (27)

where b is a normal stress parameter. The constant-width
case corresponds to b = 1 and the stress-free case is in turn
recovered for b = 0. Incorporating (27) into (14) gives

∂xσxx = −σxx
∂x(h�)

h�
+ 2b∂xu

∂x�

�
, (28)

and upon substituting into (21b), while neglecting terms
of O(a∂x�)4, we find

∂xu =
σxx

(3 + b)

(

1 − (a∂x�)2
(3 − b)
2(3 + b)

)

. (29)

Eliminating w� in (12b), using (13a), we also obtain

∂t� + u∂x� =
�

2
(σxx − 4∂xu) . (30)

The system of equations (28–30) and (12a), for the un-
knowns h, �, u and σxx, is used to perform the linear
stability analysis as described in Section 2.3. Notice the
normal stress Sn at the boundary is also perturbed here,
since S�

n = 2∂xu. This point is discussed at the end of the
section. Also, explicit ODE for us and �s are obtained by
solving equations (29–30) for u′

s and �′s, and taking the
roots corresponding to u′

s > 0 since Dr > 1.
We are now able to address the stability of laterally

stretched sheets (b �= 0). In Figure 3, results for b < 1,
i.e. the width is everywhere narrower than the inlet width
(�s ≤ 1), show that the system in this case is always more
stable than with constant width (b = 1). Moreover, a sheet
is also more stable than with stress-free edges (b = 0) for
small aspect ratios but less stable for larger aspect ratios
(e.g. the transition is at a ≈ 0.3 for b = 0.5). Unfortu-
nately, we were unable to find a physical mechanism for
this non-monotonic behavior. Now results for b > 1, i.e.
the width is everywhere wider than the inlet width, show
that the system in this case is always less stable than with
both constant-width and stress-free edges2. Computations
terminate where the basic assumption a|∂x�| � 1 is vio-
lated; we fixed the limit of applicability at a|∂x�| ≈ 0.5 for
the results plotted in Figure 3 and Figure 4a below.

It is also informative to show in Figure 4a a cross-plot
of Figure 3 in which the stability limits are function of

2 As pointed out by a referee, for b > 1, Drc ≈ Dr
(1D)
c /b.
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Fig. 3. Neutral stability curves as in Figure 2 for various
values of the normal stress parameter b.

the normal stress parameter b for various aspect ratios.
Figure 4b shows corresponding steady-state solutions for
a = 1/10 (solid line in Fig. 4a) and various values of the
parameter b. For small enough aspect ratios, a ≤ 1/4, Fig-
ure 4a shows that pulling apart the edges of the sheet by
increasing b from zero is first stabilizing and then destabi-
lizing as b approaches unity. In contrast, for a = 1/2, the
stabilization is maximum for b = 0 and increasing b has
only a destabilizing effect. In either case, the critical draw
ratio is always larger than 20.218 for b < 1, as was shown
in Figure 3.

The steady-state axial tension in the sheet can be com-
puted from (29). By neglecting the terms of O(a�′s)

2 for
the sake of simplicity, and using (18a), we obtain

fs = hs�sσxxs = −(3 + b)
(hs�s)′

hs�s
. (31)

The tension is thus related to the normalized axial vari-
ation of the cross-sectional area hs�s. Combining (31)
and (19), yields

�′s
�s

=
(

1 − b

1 + b

)
h′

s

hs
. (32)

This result shows that in the limit of a�′s � 1, the width
and thickness of the sheet vary in the same proportion.
The physical interpretation of the results shown in Fig-
ures 3 and 4 is thus that the residual neck-in effect when
b < 1 causes the thickness at take-up to be larger than
its value 1/20.218 for a sheet of constant width, which
is a response in favor of stability, as it was the case for
the stress-free condition demonstrated in Section 3.1. The
opposite is true for b > 1. These results indicate that
conditions that lead to more unstable flow states can be
generated when outward stress is applied perpendicular to
the edge of the sheet.

Additionally, motivated by applications such as float
glass that distribute rollers along the sheet, we look at a
specified normal stress that is dependent on position but
independent of time. Thus we take

Sn(x) = 2bu′
s and St = 0, (33)
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Fig. 4. (a) Neutral stability curves in function of the normal
stress parameter b for various aspect ratios a and St = 0. (b)
steady-state solutions for a = 1/10 (solid lines) and with 2D
Comsol solutions (dashed lines).

such that the specified normal stress depends only on the
coordinate x through the steady-state velocity us. In con-
trast to (27), (33) is not perturbed in the stability anal-
ysis. The neutral stability curve is plotted for a = 1/10
in Figure 4a. Again, we find the lateral forcing to be sta-
bilizing for b < 1 and destabilizing for b > 1 but with
less intensity that when Sn was time-dependent, which
suggests that control of the stability is possible by apply-
ing time-dependent lateral forcing. This result of lateral
forcing should be of particular interest since no control
appears to be efficient by applying purely axial forcing as
was demonstrated by Renardy [13] in the 1D case.

3.3 Pure tangential stress: Sn = 0 and St �= 0

We address here the effect of a pure tangential stress spec-
ified at the lateral edges and study how it affects the shape
of the sheet and its stability, in the same manner we have
investigated the effects of a pure normal stress in the pre-
vious section. For the sake of simplicity, we chose the tan-
gential stress St to be constant. The set of equations to be
solved for the linear stability analysis in this case, setting
Sn = 0, are (14) rewritten as

∂xσxx = −σxx

(
∂xh

h
+

∂x�

�

)

− St

a�
, (34)

and (21b), neglecting terms of O(a∂x�)4,

∂xu =
σxx

6

(

2 − (a∂x�)2
)

− a

3
St∂x�. (35)

The above equations are completed with (12a) and (30).
Figure 5 shows the neutral stability curve as the tan-

gential stress St is varied as well as corresponding steady-
state solutions. We observe in Figure 5a that specifying
St > 0 is stabilizing as compared to the stress-free bound-
ary conditions (St = 0). This response can be put in par-
allel to the pure 1D sheet where it is known that fixing the
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Fig. 5. (a) Neutral stability curve for a=1/10 and Sn=0, with
values of the sheet’s tension at the inlet fs0 . (b) Steady-state
solutions (solid lines) and 2D Comsol solutions (dashed lines).

axial tension instead of the take-up speed makes the sheet
unconditionally stable [7,13]. But as a consequence of the
lateral forcing, the tension in the sheet here depends on
the coordinates (in contrast to the stress-free or the pure
1D cases).

We have also indicated in Figure 5a the value of the
sheet’s tension fs0 at the inlet (x = 0) and observe that it
increases when St is increased. Consequently, the necking
phenomenon is reinforced and the final width (at take-up)
is further decreased as shown in Figure 5b for St = 3. On
the contrary, St < 0 acts opposite to the tension induced
by the pulling, which has a destabilizing effect and the
critical draw ratio is reduced below 20.218. Nevertheless,
at St = −1.4, the tension fs0 at the inlet vanishes, and the
neutral stability curve ends as observed in Figure 5a. The
corresponding shape of the sheet is therefore the widest
that can be obtained with a pure tangential stress specified
at the edge boundary, at least if St is kept constant. As a
consequence, a constant-width sheet is not obtainable by
acting exclusively on St.

4 Specified transverse velocity

In this section, we model the situation where a time-
independent edge velocity is specified, namely w� = w�(x).
This type of forcing is motivated by the float glass appli-
cation as detailed at the end of the section. As a conse-
quence, both Sn and St can be different from zero and the
shape of the sheet as well as its stability will depend on
the distribution of w�. Rewriting the appropriate form of
the momentum equation (15) yields

∂xσxx = −σxx
∂xh

h
− 1

a
∂x

(w�

�

)

. (36)

The stress relation (13a) is also rewritten as

∂xu =
σxx

4
− w�

2a�
, (37)

Fig. 6. (a) Neutral stability curve for a = 1/10 and a specified
edge speed w̄� with x′ = 1/4 and s = 1/8. (b) Steady-state
solutions (solid lines) and 2D Comsol solutions (dashed lines).

and the system is closed with (12a) and (12b), provided
an explicit form of w�(x) is given. Let us assume here a
Gaussian function

w� = B e
−4(x−x′)2

s2 , (38)

where B is the amplitude and x′ and s are fitting
parameters.

Figure 6 shows the corresponding stability map as well
as typical shapes of the sheet. For positive speeds (B > 0)
the system is stabilized while it is destabilized for negative
speeds (B < 0), as depicted in Figure 6a. In contrast to
the case of a pure normal stress (see Sect. 3.2), increasing
the width of the sheet by specifying a positive edge ve-
locity (see Fig. 6b for B = 0.4) is stabilizing as compared
to the constant-width case (B = 0). The reason for this
response is that here the induced tangential stress compo-
nent St is non-zero and therefore influences the stability
of the system. In fact, using (6b) and (13), we can write
St = ∂xw� + w�(∂x�/�) + O(a∂x�), which averaged along
the x direction, using (38), gives

∫ 1

0
Stdx ≈ 0.05. Since

this average is positive, we expect a stabilizing effect ac-
cording to results in Section 3.3 for a constant tangential
stress specified at the edge. This stabilization due to the
tangential component St of the induced stress wins, for
this specific case, against the destabilization of its normal
component Sn.

Note the Gaussian form of the edge speed aims to
mimic the effect of a ‘edge roll’ in the float glass pro-
cess, i.e. a cogwheel that grips outward the edge of the
melted glass sheet (see Introduction). Even though the
action of such an ‘edge roll’ is localized in space, the high
viscosity of the melted glass ensures the coherence of the
flow such that a Gaussian shape is a fairly good continu-
ous approximation. We note that we have also tried other
velocity functions that characterize more precisely prac-
tical conditions (not presented here). However, no differ-
ence has been found in the general conclusions, which are
that, though the stability properties of the system depend



494 The European Physical Journal B

Table 2. Different situations investigated in this work and stability behavior as compared to two reference cases.

Edge boundary As compared to the 1D case As compared to the stress-free case

conditions Stabilizing Destabilizing Stabilizing Destabilizing

Stress-free always never identity

Pure normal stress Sn < S�
n Sn > S�

n for ε < a � 1, Sn � S�
n for a � 1, ∀Sn > 0

Pure tangential stress not possible St > 0 St < 0

Specified velocity w� > 0 w� < 0 not investigated

on the prescribed velocity function, they can be rational-
ized by computing separately the induced stress compo-
nents Sn and St.

5 Concluding remarks

In this paper, we have proposed a framework to investi-
gate the dynamics of a two-dimensional stretching sheet
by using a one-dimensional model and considering various
lateral boundary conditions. With the model, we have ad-
dressed the most generic situations such as the departure
from the 1D parallel flow and from the stress-free condi-
tions by applying appropriate boundary conditions.

More specifically, we have derived a one-dimensional
model for the thickness h, the width �, the axial veloc-
ity u and the axial stress σxx to describe the behavior of
a two-dimensional viscous sheet. We have systematically
analyzed the shape and the stability of the sheet with var-
ious boundary conditions applied at the edges and thus
have explored the role of lateral shaping. The results are
summarized in Table 2. We have shown for instance that
widening a viscous sheet is destabilizing as compared to a
constant-width sheet when a pure normal stress is applied
at the edges while it is stabilizing when the edge velocity
is specified due to a resulting non-zero tangential com-
ponent that arises in the latter case. The reality is more
complex, since the edge velocity is only specified where
the edge rollers are located and stress-free boundary con-
ditions should apply in between each edge roller and after
the last edge roller. So more realistic forcing would mean
mixed boundary conditions among those proposed in the
paper. However, based on our knowledge of such a pro-
cess, the one-dimensional model presented here allows to
satisfactorily assess the shape of the glass sheet.

As for possible extension, it might be of practical in-
terest to compute the speed distribution w� in the case
of the stress-free conditions at the edge corresponding
to the axial stress balance ∂x(h�σxx) = 0. With the use
of (36), the time-dependent edge speed w� = w�

� corre-
sponding to stress-free conditions would then be solution
of ∂xw� = (w�/� + aσxx) ∂x�. Next, as done for the pure
normal stress condition (see Sect. 3.2), one could consider
w� = c w�

� and probe the parameter c to study the depar-
ture from the stress-free conditions when specifying the
edge velocity.

The 1D model, at least for small aspect ratios, is found
to satisfactorily describe the two-dimensional features of

a stretching sheet (as compared with 2D Comsol com-
putations). Therefore, due to its simplicity, the 1D model
should allow investigation of the shape and the stability
of a sheet with a large variety of boundary conditions cor-
responding to practical applications. Such lateral shaping
can indeed be a design tool. We have furthermore shown
the possibility of controlling the draw resonance with time-
dependent lateral stress (Sect. 3.2), which could be of sig-
nificant practical interest, mostly because the longitudinal
control in the pure 1D case is not feasible and produces
instead new instabilities at low draw ratios [13].

We thank Saint-Gobain Recherche for support of this investi-
gation and R. Gy for useful discussions.
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