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We study three-dimensional wave patterns on the surface of a film flowing down a uniformly heated wall.
Our starting point is a model of four evolution equations for the film thickness h, the interfacial temperature �,
and the streamwise and spanwise flow rates, q and p, respectively, obtained by combining a gradient expansion
with a weighted residual projection. This model is shown to be robust and accurate in describing the compe-
tition between hydrodynamic waves and thermocapillary Marangoni effects for a wide range of parameters. For
small Reynolds numbers, i.e., in the “drag-gravity regime,” we observe regularly spaced rivulets aligned with
the flow and preventing the development of hydrodynamic waves. The wavelength of the developed rivulet
structures is found to closely match the one of the most amplified mode predicted by linear theory. For larger
Reynolds numbers, i.e., in the “drag-inertia regime,” the situation is similar to the isothermal case and no
rivulets are observed. Between these two regimes we observe a complex behavior for the hydrodynamic and
thermocapillary modes with the presence of rivulets channeling quasi-two-dimensional waves of larger ampli-
tude and phase speed than those observed in isothermal conditions, leading possibly to solitarylike waves. Two
subregions are identified depending on the topology of the rivulet structures that can be either “ridgelike” or
“groovelike.” A regime map is further proposed that highlights the influence of the Reynolds and the Ma-
rangoni numbers on the rivulet structures. Interestingly, this map is found to be related to the variations of
amplitude and speed of the two-dimensional solitary-wave solutions of the model. Finally, the heat transfer
enhancement due to the increase of interfacial area in the presence of rivulet structures is shown to be
significant.
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I. INTRODUCTION

Interfacial flows are part of the general class of nonlinear
systems with dissipation and dispersion. A thin viscous film
flow driven by gravity �frequently referred to as “falling liq-
uid film”�, in particular, can be used as a prototype system
for the study of the route toward spatiotemporal chaos, i.e., a
well-organized cascade of bifurcations leading from the flat
film �or “laminar”� state to a state of disorder or turbulence
�see, e.g., �1��. In addition to the purely theoretical interest,
falling liquid films play a central role in the development of
efficient means for interfacial heat and mass transfer in a
wide variety of engineering and technological applications,
such as evaporators, heat exchangers, absorbers, scrubbers,
rectification columns, crystallizers, and falling film reactors.
This is mostly due to the large surface-to-volume ratio and to
the small heat and mass transfer resistance of a thin liquid
film at relatively small flow rates. This resistance is further
decreased by the presence of �wave� patterns at the interface
of the film which typically lead to a significant enhancement
of heat and mass transfer. Not surprisingly, therefore, falling
liquid films have been an active topic of fundamental and
applied research for several decades.

Three-dimensional �3D� hydrodynamic waves in isother-
mal falling films have been investigated experimentally by
various authors �see, e.g., �2��. Experiments by Liu,
Schneider, and Gollub �3� and more recently by Park and
Nosoko �4� have provided a clear picture of the phenomenol-
ogy and intricate dynamics of interacting 3D waves in iso-
thermal film flows, that includes synchronously deformed
fronts, subharmonic patterns, and horseshoelike waves. From
the theoretical point of view and with the exception of direct
3D numerical simulations, the modeling of falling films gen-
erally relies on the “boundary-layer approximation” in which
the pressure is eliminated by integrating across the film the
cross-stream component of the momentum equation where
the inertia effects are neglected. This in turn removes the
cross-stream direction thus reducing the dimensionality of
the problem by one. Hence in this approximation 3D �2D�
flows are represented by 2D �1D� equations.

Following the pioneering theoretical development of the
“integral-boundary-layer approximation” by the Russian
school for 2D flows �5,6� and 3D ones �7�, Ruyer-Quil and
Manneville �8,9� obtained a 1D integral-boundary-layer
model based on a high-order weighted residuals approach,
which unlike the previous models, accounts correctly for the
onset of the hydrodynamic instability. Recently, their model
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was extended to 2D and was shown to be capable of describ-
ing many of the complex 3D wave patterns observed in ex-
periments for the isothermal case �10�.

For heated walls, it is worth mentioning the pioneering
experiment by Ludviksson and Lightfoot �11� who set up a
film on a vertical solid plate of high heat capacity and ther-
mal conductivity and heated with a constant downward di-
rected temperature gradient leading to a cold top and warm
bottom. An excellent summary of their findings is given in
�12�:

“This situation leads to the creation of a series of parallel
roll cells �i.e., rivulets�, driven by lateral surface tension
gradients. …A simple perturbation analysis shows that per-
turbations of some widths grow faster than others, setting up
sinusoidal modulation in the transverse direction correspond-
ing to the fastest growing mode. Such regularity is, however,
seldom observed in practice. More commonly one sees oc-
casional thick rivulets surrounded by large thin regions.
These thin regions, taking up most of the available surface,
are both slowly moving and quickly saturated and are thus
ineffective for mass transfer. Only the rivulets are effective,
and their total surface area is very small.”

Hence the idea to increase the density of rivulets in order
to enhance the heat-mass transfer. By imposing localized
heating on an inclined water film, Kabov and co-workers
�13–16� managed to observe regularized rivulet structures for
a wide range of Reynolds numbers. The aim of the present
work is precisely to propose a theoretical framework for the
study of such a regularized rivulet structure that allows one
to investigate the possible enhancement of the heat transfer.

Worth mentioning is the work by �17�, who have studied
the Marangoni effect in a single heated-cooled rivulet of pre-
scribed volume preliminary formed and aligned with the
slope of an inclined substrate, and whose contact angle with
the substrate is also prescribed. They have explored the
modification of the internal flow and the shape of the rivulet
due to the Marangoni effect. Nevertheless, in contrast to their
work, the rivulet structure we study here occurs spontane-
ously due to transverse thermocapillary instability and nei-
ther the volume, nor the “apparent contact angle” near rup-
ture are prescribed but depend instead on the regime
considered. Furthermore, we will include inertia �not consid-
ered in �17�� that allows for hydrodynamic waves.

The linear stability analysis by Ludviksson and Lightfoot
�11� considered the free surface as adiabatic thus demonstrat-
ing the crucial role of the imposed streamwise temperature
gradient in the instability mechanism. On the contrary, Gous-
sis and Kelly �18� analyzed the case of an inclined plate
maintained at constant temperature and showed that only a
nonadiabatic free surface in this case can lead to the long-
wave thermocapillary instability and concomitant streamwise
roll cells, i.e., rivulets. A sketch of rivulet structures is given
in Fig. 1.

The mechanism in this case is the same as the one de-
scribed by Smith �19� to explain the dewetting of a thin film
on a heated horizontal substrate: a spontaneous modulation
of the free-surface elevation generates a temperature gradient
at the interface and once flow starts, it is again maintained by
the externally imposed temperature gradient �directed across
the film�. Goussis and Kelly �18� have therefore shown that a

gravity-driven flow due to the plate inclination breaks the
isotropy of the long-wave thermocapillary instability and
aligns the structure with the flow. The wavelength of the
instability, however, remains unchanged, at least in the linear
regime.

Joo et al. �20� have modeled rivulet structure as predicted
by �18� by using a nonlinear evolution equation for the film
thickness based on the long-wave approximation, typically
valid for small Reynolds numbers, up to Re=O�1�. However,
their computer simulations experienced finite-time blowup
which is known to be unphysical and intrinsic to the Benney-
type equation adopted by these authors �21�. Indeed, Ra-
maswamy et al. �22� have simulated the full Navier-Stokes
and Fourier equations and they were able to follow the whole
dynamics of rivulet formation, from onset up to rupture.
Nevertheless, their computations were restricted to a small
domain size and small Reynolds numbers. Ruyer-Quil et al.
�23� have recently derived a 1D model that accurately de-
scribes the 2D wave dynamics of uniformly heated falling
films up to moderate Reynolds numbers. In this study we
extend the model developed in �23� to 2D. Our aim is to
explore the 3D dynamics of a uniformly heated falling film
in large-scale domains. We investigate in detail the influence
of the Marangoni effect on the film dynamics up to moderate
Reynolds number flows and the competition between the
Marangoni effect and hydrodynamic waves, hence between
rivulets-dry-spot formation and downward running surface
waves. We also address the issue of heat transfer enhance-
ment due to the presence of rivulets.

II. MODEL

Consider the flow of a Newtonian liquid falling down a
uniformly heated vertical wall. A Cartesian coordinate sys-
tem �x ,y ,z� is chosen so that x is the streamwise coordinate,
y is the outward-pointing coordinate normal to the wall, and
z is the transverse coordinate. Our analysis is based on the
boundary-layer approximation of the equations of motion
and energy as well as associated wall and free-surface
boundary conditions, which as was pointed out in Sec. I
removes the dependence on y so that the final equations de-
pend on the in-plane coordinates x and z only.

The starting point of the boundary-layer approximation is
to assume long waves in both x and z directions, or equiva-

g
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FIG. 1. Rivulet structure driven by thermocapillary effect at the
surface of a falling liquid film heated from the wall.
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lently, slow time and space modulations of the basic flat film
solution �frequently referred to as the “Nusselt flat-film
thickness”�, �t ,�x ,�z=O����1 with � the “film parameter”
�unlike, however, the Benney long-wave approximation
which typically leads to a single evolution equation for the
film thickness for both isothermal and heated films, a direct
consequence of slaving all variables to the kinematics of the
interface, the boundary-layer approximation for heated films
leads to a set of four coupled evolution equations as we shall
demonstrate shortly�. Subsequently, the pressure is elimi-
nated from the momentum equation. As was pointed out in
Sec. I this step consists of integrating the y component of the
momentum equation across the film. By neglecting terms of
O��3� and higher, the pressure takes the form �see �24� for
details�

P = − ��xxh + �zzh� + ���yv + ��yv�h� , �1�

where the first term on the right-hand side corresponds to
surface tension and the second one to viscous stress. Substi-
tuting Eq. �1� into the x and z components of the Navier-
Stokes equations gives

� ��tu + �x�u2� + �y�uv� + �z�uw��

= 1 + �yyu + �xxxh + �xzzh

+ � �2�xxu + �zzu + �xzw − �x���yv�h�� , �2a�

� ��tw + �x�uw� + �y�vw� + �z�w2��

= �yyw + �xxzh + �zzzh

+ � �2�zzw + �xxw + �xzu − �z���yv�h�� , �2b�

which together with the continuity equation,

�xu + �yv + �zw = 0, �2c�

constitute the second-order boundary layer equations �10�,
where h is the film thickness and u, v, and w the streamwise,
cross-stream, and spanwise components of the velocity field,
respectively. These equations together with the energy equa-
tion,

Pr � ��t + u�x + v�y + w�z�T = ��yy + ��xx + ��zz�T , �2d�

where T is the liquid temperature, are the dimensionless
second-order boundary-layer equations in the presence of
heat effects �the scaling is given below�. Pr=� /� is the
Prandtl number with � the kinematic viscosity and � the
thermal diffusivity. The other dimensionless groups are the
rescaled Reynolds number and viscous dissipation number,
respectively,

� =
�3 Re�11/9

	1/3 and � =
�3 Re�4/9

	2/3 , �3�

which are based on the usual Reynolds and Kapitza numbers,
respectively,

Re =
gh̄N

3

3�2 and 	 =



��4/3g1/3 ,

with g the gravitational acceleration, h̄N the thickness of the
Nusselt flat-film solution, � the density, and 
 the surface

tension. It should be emphasized that only the main contri-
bution of the surface tension has been retained in the
boundary-layer equations �2a� and �2b� though it is formally
of order �3. Higher-order curvature terms are consequently
assumed to have negligible influence, something which has
also been confirmed numerically. Therefore, in the
asymptotic sense, 	=O��−1/3� while Re=O�1�.

The parameters �=O��� and �=O��2� result from the
Shkadov scaling for isothermal films �6� and account for the
separation of scales inherent to the boundary-layer theory.

The length scale in the x and z directions is thus taken as �h̄N

and h̄N is the length scale in the cross-stream y direction.

Accordingly, the time scale is taken as �� /gh̄N and the ve-

locity scale as gh̄N
2 /�. The “compression factor”

�=1 /��—inversely proportional to the film parameter �—is
obtained by balancing the streamwise pressure gradient in-
duced by surface tension �xxxh with the streamwise gravity

acceleration, equal to unity in Eq. �2a�: �−1= ��gh̄N
2 /
�1/3.

Notice that ��We1/3, with We=
 / ��gh̄N
2 � the Weber

number. Finally, the temperature is taken relative to the
temperature Ta of the far-field ambient gas and scales with
�T=Tw−Ta, with Tw the temperature of the wall
�hence T=0 corresponds to the ambient temperature Ta�.

The set of momentum, energy, and continuity equations
�2a�–�2d� is closed by the no-slip/no-penetration boundary
condition at the wall �y=0�, as well as the condition of con-
stant temperature,

u = v = w = 0 and T = 1. �4a�

At the free surface �y=h�, the system is closed by the kine-
matic boundary condition, the projections of the tangential
stress balance along the x and z directions, and the Newton’s
cooling law, respectively,

�th = − u�xh − w�zh + v , �4b�

�yu = − M�x� + � ��zh��zu + �xw� + 2�xh�2�xu + �zw� − �xv� ,

�4c�

�yw = − M�z� + � ��xh��zu + �xw� + 2�zh�2�zw + �xu� − �zv� ,

�4d�

�yT = − B�1 +
1

2
� ���xh�2 + ��zh�2�	T + ���xh�xT + �zh�zT� .

�4e�

The interfacial temperature ��=T�y=h has been introduced
using the relation

����i + �ih�y�T��h � �i� with i = x,z .

Note that Eqs. �4c� and �4d� have been truncated at O��2�
and written in the frame of the “one-sided approximation”
�25�, i.e., the dynamic viscosity, �=��, of the surrounding
gas is much smaller than that of the liquid so that the gas
viscous stress at the free surface is negligible �e.g.,
�air /�water=O�10−3��. The first terms of the right-hand side
of Eqs. �4c� and �4d� correspond to the thermocapillary ef-
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fect, i.e., tangential stress generated by surface tension gra-
dient due to temperature gradient along the free surface. The
dimensionless groups appearing in the free-surface boundary
conditions are

M =
Ma

	1/3�3 Re�4/9 and B = Bi�3 Re�1/3, �5�

which include the Marangoni and Biot numbers,

Ma =
��T

��4/3g1/3 and Bi =
�g�2/3

Kg1/3 ,

with �=−d
 /dT the variation of surface tension with tem-
perature, �g the heat transfer coefficient that measures the
rate of heat transport at the liquid-gas interface, and K the
thermal conductivity of the liquid.

The parameters 
� ,� ,M ,B� are the Shkadov scaling for
heated films. It is important to emphasize that besides reveal-
ing the intrinsic separation of scales in the boundary-layer
approximation, another advantage of the Shkadov scaling is
that all in-plane viscous dissipative and thermal diffusive
terms—i.e., the terms of O��2� in the momentum-energy
equations—are multiplied by the viscous dissipation number
�. Hence setting �=0 straightforwardly reduces Eqs.
�2a�–�2d� to the first-order boundary-layer equations in the
presence of heat effects. However, here, we shall proceed
with second-order terms in � as our aim is the development
of a model that accurately describes the 3D evolution of the
film; and we know that in the isothermal case, second-order
viscous dissipative effects have been shown to determine the
amplitude and frequency of the capillary ripples in front of
solitary humps �8,9� that are in turn decisive in the wave
pattern selection of 3D instabilities �10�. We thus expect that
in the heated falling film the second-order viscous-thermal
diffusive effects are also crucial for an accurate description
of the free-surface-temperature waves. Further, the Shkadov
scaling has the advantage that its parameters 
� ,� ,M ,B�
have values close to unity for common situations
�e.g., ��1 for water at 25 °C, i.e., 	�3000, and for
Re�10�, which not only is convenient from the numerical
point of view �in terms of convergence of the numerical
scheme being employed� but also it makes the balance be-
tween all forces in the system �inertia, surface tension, vis-
cosity, gravity, and thermocapillarity� apparent.

Following the weighted residuals method together with a
regularization procedure, as applied for the 2D heated case
�23� and the 3D isothermal case �10�, the three-dimensional
system of equations �2a�–�2d� and boundary conditions
�4a�–�4e� can be reduced to a two-dimensional model of four
evolution equations for the thickness h, the streamwise and
spanwise flow rates averaged across the film, q and p, re-
spectively, and the interfacial temperature �, all dependent
only on time t and on the in-plane coordinates �x ,z�. This
model, whose derivation details are given in the Appendix,
has the form

�th = − � · q , �6a�

��tq = �9

7
�q · �h

h2 −
q

h
· �	q −

8

7

� · q

h
q� + G��5

6
hi −

5

2

q

h2

− M�5

4
� � −

�

224
hq�xx�i	 +

5

6
h � �2h

+ �7

2
h � · ��qT

h
	 + h � · ��q

h
	 +

13

4

q · �h

h2 � h

+
3

4

�h · �h

h2 q −
73

16
�q

h
· �	 � h −

23

16

�2h

h
q

+
13

16
��h

h
· �q −

� · q

h
� h	�� , �6b�

� Pr �t� = 3
�1 − � − Bh��

h2 + � Pr 7

40
�1 − ��

� · q

h

−
27

20

q · ��

h
� + ��2� +

�h · ��

h
+ �1 − ��

�2h

h

+ �1 − � −
3

2
Bh�	�h · �h

h2 � , �6c�

where �= ��x ,�z�, q= �q , p�, G� = 
�Gq ,0� , �0,1��, and i is the
unit vector in the streamwise direction. The regularization
factor is Gq��1− �

70q�xh+M 5
56

�x�

h �−1. Equation �6a� is the
mass conservation equation, Eq. �6b� is the in-plane momen-
tum equation, and Eq. �6c� is the energy equation. By con-
struction, a gradient expansion of Eqs. �6a�–�6c� leads ex-
actly to the Benney equation written up to O��2�, whose
expression truncated at first-order for simplicity yields the
classical long-wave evolution equation �26�,

�th + h2�xh +
2

15
��x�h6�xh� + � · h3

3
� �2h

+
h2

2

MB

�1 + Bh�2 � h� = 0, �7�

used frequently in thin-film studies �27�. On the other hand,
in the absence of streamwise variation, i.e., �x=0, Eqs.
�6a�–�6c� truncated at first order ��=0� as well as Eq. �7�
both reduce to

�th + �zh3

3
�zzzh +

h2

2

MB

�1 + Bh�2�zh� = 0. �8�

The model �6a�–�6c� is also fully consistent with the long-
wave approximation of the Navier-Stokes and energy equa-
tions for ��1 and hence fully resolves the linear instability
threshold whose cutoff wave numbers in both directions read
�18�, respectively,

kc
�x� =�2

5
� +

3

2

MB

�1 + B�2 , kc
�z� =�3

2

MB

�1 + B�2 ; �9�

and in this asymptotic limit, the wave number corresponding
to the maximum growth rate is
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kmax =
kc

�2
. �10�

Finally, note from Eq. �9� that the streamwise cutoff wave
number is always larger than the spanwise one, due to the
basic flow and the hydrodynamic instability. This also im-
plies that the hydrodynamic mode always dominates the ther-
mocapillary one in terms of growth rate, as first demon-
strated in �18�.

To summarize, the model �6a�–�6c� is asymptotically cor-
rect up to O��2�. Moreover, it appears �a posteriori� to avoid
unphysical divergences �finite-time blowup� even outside the
range of its strict asymptotic validity �see the Appendix for
details�.

III. NUMERICAL RESULTS

A pseudospectral scheme with the spatial derivatives
evaluated in Fourier space and the nonlinearities in real
space has been employed to solve Eqs. �6a�–�6c�. The time
dependence is accounted for by a fifth-order Runge-Kutta
scheme which allows control of truncation errors by the dif-
ference with an embedded fourth-order scheme �28�. The
time step is dynamically adapted to limit the relative error on
each variable to �10−4. Aliasing has been treated by apply-
ing a low-pass filter whose cutoff frequency has been chosen
in order to ensure the spatial convergence of the solution. It
has been found that keeping only the first 2 /3 of the Fourier
modes in each direction and before each iteration was
enough. The spatial convergence has been checked by dou-
bling the mesh points in each direction with no qualitative
difference in the patterns obtained, and more precisely by
monitoring the energies of deformation Ex, Ez �see defini-
tions below�. Time-dependent simulations have been per-
formed for both small and large domains. Notice that despite
the apparent complexity of the system, all unknown variables
are either averaged �flow rates� or interfacial quantities �film
thickness and temperature� and hence the system in Eqs.
�6a�–�6c� is much more easily amenable to numerical analy-
sis than full Navier-Stokes and energy equations. The com-
putational domain of size Lx�Lz is discretized with M �N
regularly spaced grid points with coordinates xi= iLx /M and
zj = jLz /N. The computations are terminated when the film
thickness reaches a “minimal thickness” of about h�10−3

for which long-range intermolecular forces cannot be ne-
glected ��100 nm�. Consequently, we will refer to rupture
when the film reaches this minimal thickness, independently
of the subsequent dynamics that depends on the nature of
these intermolecular forces �see, e.g., �29,30��, even though
they could be easily incorporated in the model by a disjoin-
ing pressure term. Note, therefore, that the terms “dewetting/
rewetting” are used hereinafter to indicate the trend of the
film thickness evolution in thin regions, i.e., locally
decreasing/increasing, respectively.

We also define the energies of deformations in each direc-
tion as the quadratic sum of the Fourier coefficients obtained
from the Fourier transform of each streamwise and spanwise
profiles scanned over the whole computational domain �22�:

Ex�t� �
1

MN
�
j=1

N ��
m=1

M

�am�zj,t��2	1/2

, �11a�

Ez�t� �
1

MN
�
i=1

M ��
n=1

N

�bn�xi,t��2	1/2

, �11b�

where the spatial Fourier coefficients are defined by

am�z,t� = �
i=1

M

h�xi,z,t�ei2�mxi/Lx

bn�x,t� = �
j=1

N

h�x,zj,t�ei2�nzj/Lz,

and i=�−1 is the imaginary unit. The relative values of these
energies allow us to evaluate the three-dimensionality of the
developed wave patterns and to quantify the direction of the
deformation. As an example, Ex�Ez indicates that the defor-
mation occurs mainly in the transverse direction with practi-
cally no deformation in the streamwise direction �though we
can still have flow in the streamwise direction�.

As discussed in Sec. II, one of the advantages of the Sh-
kadov scaling is that its parameter values 
� ,� ,M ,B� are
close to unity. Nevertheless, several of the numerical results
will be reported in terms of the usual parameters

Re,	 ,Ma,Bi� which are more convenient for comparisons
with experiments: indeed in this parametrization each of the
physical quantities with which one might naturally control
the experiment—such as the flow rate and the temperature
difference �T=Tw−Ta or the heat transfer coefficient—
appears in a single dimensionless group when the liquid-gas
properties are fixed. On the other hand, for a given gas-liquid
system and wall heating conditions, 	, Ma, and Bi are fixed
and the only free parameter is the Reynolds number which is
a flow-control parameter.

We finally note that the 3D model proposed does suffer
from the same limitation with the 2D model developed by
Scheid et al. �31� who reported nonphysical negative tem-
peratures �i.e., lower than Ta� for 2D solitary waves at suffi-
ciently large Re. We have indeed observed negative tempera-
tures in our computations in the region of large-amplitude/
fast waves, e.g., for Re�10. Such negative temperatures
appear locally in space and in some occasions locally in time
too. As a matter of fact, they seem to appear and disappear
�again in the regime of high flow rates/large amplitude
waves� but they do not seem to affect the main qualitative
features of the dynamics. This deficiency of the 2D model
has been prevented in a recent study by Trevelyan et al. �32�
who showed that the previous 2D model gives qualitatively
the same dynamics with the cured 2D one. We anticipate by
analogy with the 2D case that the main results of the present
study should be qualitatively similar to the extension of the
study in �32� to the 3D case.

A. Small-size domain

We first validate our model by comparison with the small-
size computations presented in the literature for small Rey-
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nolds number flows �20,22�, i.e., when a one-field model,
such as that in Eq. �7� obtained by the Benney long-wave
expansion, can still be valid �Re�1� ��20� utilized Eq. �7�
and �22� full Navier-Stokes�. The studies in �20,22� provided
evidence of rivulet formation based solely on thermocapil-
lary instability phenomena. Figure 2 shows our simulation
results corresponding to the simulations done in ��22�, Fig. 9�
for Re=1 /3, 	=300, Ma=10, Bi=1, and Pr=7. The compu-
tations are similarly performed with periodic boundary con-
ditions �spectral method� and a simple harmonic disturbance
of the form h�x ,z ,0�=1+0.1 cos�kxx�+0.1 cos�kzz� as the
initial condition. The wave numbers kx and kz have been
chosen with values below those for the maximum linear
growth rate of instability modes in each direction, kxmax
=0.56 and kzmax=0.53—calculated from the long-wave limit
�10� using Eq. �9�, for the selected values of the dimension-
less parameters—thus allowing for interesting secondary
flow development �several modes may be unstable�. The ini-
tial perturbation corresponds to a trough in the center of the
domain �Fig. 2�a��. Then, thermocapillarity sets in displacing
the fluid from this hotter trough toward the surrounding
colder crests. However, the growth rate of the hydrodynamic
mode is dominant at the beginning and surface waves de-
velop �Fig. 2�b��. As the local phase speed is proportional to
the square of the local film thickness, the crests travel faster
than the troughs leading to steepening of the wave as it
grows �Fig. 2�c��. Due to the absence of mean flow in the
spanwise direction, the liquid is more easily displaced later-
ally due to thermocapillarity. Hence as time progresses the
thinning of the liquid layer persists in the trough and forms a
valley surrounded by rivulets aligned with the flow �Fig.
2�d��. This process is similar to the evolution of a heated thin
film on a horizontal substrate �33�. Likewise, the inclined

film exhibits the formation of a secondary rivulet between
the main ones �Fig. 2�e��. As found by Boos and Thess �34�,
for horizontal layers a “cascade of structures” takes place in
thinner zones �f� and �g�, prior to film rupture. The last stage
prior to rupture obtained by Ramaswamy et al. ��22�, Fig.
9m� with direct numerical simulations �DNS� of the full
Navier-Stokes and energy equations is at t=153, in excellent
agreement with Fig. 2�f�, provided the time is multiplied by
the scale factor �=6.694 33 due to the different scaling em-
ployed here. Remarkably, our computation can continue be-
yond this time �up to t=175� and reveals finer structures in
the thin region and just prior to rupture �Fig. 2�g��. It is likely
that the DNS performed in �22� was not capable of resolving
the evolution of the passed t=153 due to the choice of the
number of mesh points in the normal direction. The authors
would have most probably been able to compute the evolu-
tion for larger times with a refined grid resolution. However,
this would have been at the expense of computational time,
which demonstrates the significant advantage �especially for
large Reynolds numbers and large system size� of working
with a model of reduced dimensionality and in terms of in-
terfacial and averaged variables such as the one proposed
here.

Finally, Fig. 2�h� shows the energy of streamwise �span-
wise� deformations Ex �Ez� given by Eq. �11�. While Ez in-
creases until the film ruptures, Ex increases first and then
decreases continuously, showing that the presence of rivulets
damps the evolution of hydrodynamic waves as time
progresses and can eventually suppress them altogether: for
small Reynolds numbers the system is thus dominated by the
thermocapillary Marangoni effect.

Let us now increase only the flow rate, thus the Reynolds
number to Re=2, while keeping the other physical param-
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FIG. 2. �Color online� Inception and development of rivulet aligned with the flow at different times computed with Eqs. �6a�–�6c� for
�=0.15, �=0.022, M=1.5, B=1, and Pr=7. The Reynolds number is Re=1 /3. The domain is a square with sides 2� /kx with
kx=kz=0.335. The mesh consists of 32�32 points. The flow direction is indicated by the arrow. �h� Streamwise �Ex� and spanwise �Ez�
energies of deformations �11� versus time.
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eters �	 ,Ma,Bi,Pr� the same. The rescaled Reynolds num-
ber becomes �=1.33, which now lies outside the range of
validity of the single evolution equation for the film thick-
ness in Eq. �7�, i.e., for ��1 �the reader is referred to �21�
for details�. The streamwise and spanwise wave numbers
have been chosen to be kx�kxmax /2 and kz�kzmax, respec-
tively, where the maximum linear growth rates occur for
kxmax�0.62 and kzmax�0.34, as obtained from the long-
wave limit �10� using Eq. �9�. Figure 3 shows that the hy-
drodynamic mode quickly generates high amplitude waves
�Figs. 3�a� and 3�b�� that lead to solitarylike waves �c�—such
waves are typically characterized by large amplitude and
phase speed and their humps are preceded by capillary
ripples. However, the thermocapillary mode causes film rup-
ture before the surface wave fully develops. This is shown in
Fig. 3�d� where both components of the energy of the
streamwise and spanwise deformations Ex and Ez increase
continuously in time but Ex�Ez and the system is still domi-
nated by the Marangoni effect. A remarkable interaction be-
tween the two instability modes is observed: as the ther-
mocapillary flow feeds the core of the rivulet, the rivulet
grows and the mean film thickness at the crest thus increases,
along with the local flow rate. Hence the wave profile at the
crest of the rivulet does not saturate but rather follows the
change of the “local Reynolds number” by increasing its
amplitude and its phase speed. This process terminates at
t�620 when the film is sufficiently close to the wall for the
viscous shear to slow down the lateral thermocapillary flow.
The hydrodynamic wave and the longitudinal rivulet are
found to coexist over a long time before the film ruptures.

B. Large-size domain

We now present large-size computations for a water film
at 20 °C �	=3375, Pr=7� with a temperature difference be-
tween the vertical wall and the ambient air of about 5 °C
�Ma=50� and a large but realistic heat transfer coefficient of
1000 W /m2K at the liquid-gas interface, which yields Bi
=0.1. The time-dependent simulations are started with white
noise of maximum amplitude 1 /1000 of the flat film thick-

ness h̄N, which is itself varied between 32 and 146 �m �i.e.,
for 0.1�Re�10�. The spatial mesh is fixed to 128�128.

Figure 4 shows again the formation of rivulets due to the
Marangoni effect: the formation of circular patterns at early
stages �Fig. 4�a�� reminiscent of the onset of �thermal� dew-
etting patterns on horizontal substrates �29,30,33,35� �due to

the small flow rate� is followed by the development of a 2D
periodic wave train �Fig. 4�b��, a droplike accumulation that
breaks the 2D waves into 3D patterns �Figs. 4�c� and 4�d��
which then form meanders �Figs. 4�e� and 4�f�� prior to rivu-
let patterns aligned with the flow �Fig. 4�g��. As depicted
previously in Fig. 3, the liquid then accumulates into rivu-
lets, which increases the “local Reynolds number” and fos-
ters 2D solitarylike waves of larger amplitudes and phase
speeds than those occurring for the same mean film thickness
in isothermal conditions �Fig. 4�h��. This process continues
until rupture of the film, a snapshot of which is shown in Fig.
5�a�.

Figure 5 shows that rivulet patterns still occur for Rey-
nolds numbers up to Re=5 �snapshot near rupture� whereas
they do not appear for larger values. For Re=6, the wave
patterns on the interface are similar to those observed in
isothermal conditions �see, e.g., �2,4,10�� even though chan-
nels aligned with the flow can be observed in some places
and seem to be the precursor to rivulet formation. In fact,
rivulet structures never show up, for at least a long period of
time—10 000 time units, corresponding to several meters in
a real experiment—during which a “stationary” wave regime
takes place with a nearly constant energy of deformations in
both directions: Ex�Ez�const. The dynamics is character-
ized by a competition between the mean flow that continu-
ously rewets the substrate and the Marangoni effect that tries
to break the film. For Re=6 the mean flow is strong enough
so that the Marangoni effect cannot cause film rupture
�clearly this depends on the Marangoni number, e.g., for
Ma=100, we would also have rivulets for Re�6 as shown
later�. Notice, however, that solitarylike structures separated
by relatively flat zones are not observed for Re=6, instead
they are present for Re=10 as shown in Fig. 5�d�. Notice
also that in these conditions, waves are typically character-
ized by large amplitudes and high phase speeds with their
humps always preceded by capillary ripples.

IV. MAP OF REGIMES

As shown by Ooshida �36�, for isothermal films 2D soli-
tary waves �primary homoclinic orbits of the associated dy-
namical system� experience a “steep” increase of both phase
speed and amplitude as the Reynolds number increases, in-
dicating the existence of two different regimes: �i� the drag-
gravity regime, for small Re, where gravity is mainly bal-
anced by the viscous drag with inertia playing only a
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FIG. 3. �Color online� Same as Fig. 2 for �=1.33, �=0.05, M=0.674, B=1.82, and Pr=7. The Reynolds number is Re=2.
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“perturbative” role which is balanced in turn by the surface
tension; �ii� the drag-inertia regime, for larger Re, character-
ized by the dominant role played by inertia that interacts
with the viscous drag to form a long tail to the back of the
wave, which varies like � �36�. With the aim to classify the
different patterns observed depending on the Reynolds num-
ber, we have identified an interesting correlation between the

behavior of the developed 3D wave patterns and such 2D
solitary waves for nonisothermal conditions �such waves
were constructed in �31��. This is illustrated in Fig. 6: for
small Reynolds number flows where 2D solitary waves have
small amplitudes and speed �region I�, rivulet structures al-
ways occur and grow until spontaneous rupture. Here, the
waves only slightly perturb the dry patch formation mecha-
nism already known for horizontal films �35�. On the con-
trary, for large Reynolds number flows where 2D solitary
waves have large amplitude and velocity �region III�, no
rivulet structures appear and the film behaves like in isother-
mal conditions. In terms of wave regimes, region I that cor-
responds to the drag-gravity regime in isothermal conditions
under heating is rapidly dominated by thermocapillary ef-
fects, whereas region III that corresponds to the drag-inertia
regime in isothermal conditions is still dominated by inertia

(a) t = 100 {0.998,1.002} (b) t = 300 {0.960,1.042} (c) t = 500 {0.825,1.210} (d) t = 700 {0.815,1.211}

(e) t = 900 {0.785,1.319} (f) t = 1100 {0.669,1.370} (g) t = 1300 {0.410,1.633} (h) t = 1500 {0.163,2.514}

FIG. 4. Water film free surface at different times calculated with Eqs. �6a�–�6c� for �=0.6, �=0.01, M=1.5, B=0.18, and Pr=7. The
periodic domain is a square of side 2� /kx where kx=kz=0.05. Bright �dark� zones correspond to elevations �depressions� of the film whose
extrema are given in brackets.

(a) δ = 0.6, t = 1800
{0.018,3.010}

(b) δ = 1.83, t = 3520
{0.004,3.410}

(c) δ = 2.28, t = 5720
{0.675,1.961}

(d) δ = 4.26, t = 860
{0.236,2.992}

FIG. 5. Wave patterns for various Reynolds numbers: �a�
Re=2, �b� Re=5, �c� Re=6, and �d� Re=10 and with fixed 	
=3375, Ma=50, Bi=0.1, and Pr=7. Values for �, M, and B used
for computations can be recovered with the help of Eqs. �3� and �5�.
The times for �a� and �b� are the times near rupture. Extrema of the
film thickness are given in brackets.
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FIG. 6. Phase speed c and maximum film thickness hmax of 2D
solitary-wave solutions �solitons� versus Re for Ma=50 �solid line�
and Ma=0 �dotted line�, for Bi=0.1, Pr=7, and 	=3375. The dot-
dashed lines show the boundaries between the different regions.
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effects, which implies little or no influence of thermocapil-
larity. The transition between these two regions is located
between the dot-dashed lines in Fig. 6 determined with an
accuracy of �0.25 on the Reynolds number �region II�. This
region corresponds to the most interesting case of interaction
between rivulet structures driven by the Marangoni effect
and hydrodynamic waves. The boundaries between the dif-
ferent regions can also be characterized by the evolution in
time of the energies of deformations near rupture, as follows:
region I: Ex↘ and Ez↗; region II: Ex↗ and Ez↗; and re-
gion III: Ex�Ez→const �no film rupture�. Note that rivulet
structures �regions I and II� are always characterized by
Ez�Ex. As far as the hydrodynamic waves are concerned,
we can additionally make the following classification, refer-
ring to Fig. 6.

I: the hydrodynamic waves are damped in time and the
dynamics is dominated by rivulets until rupture �case of Fig.
2�.

IIw: regular quasi-2D wave trains are present at the crest
of rivulets �case of Figs. 3 and 5�a��.

IIm: transversely modulated quasi-2D waves occur at the
crest of rivulets �case of Fig. 5�b��.

III: patterns of fully developed 3D waves without film
rupture �case of Figs. 5�c� and 5�d��.

V. MECHANISMS FOR REGIME TRANSITIONS

Mechanism for the transition I-II. In the 2D case, the
Marangoni effect reinforces the hydrodynamic instability.
This is illustrated by the speed and amplitude of the single-
hump �2D� solitary waves that are larger at Ma=50 than at
Ma=0 in Fig. 6 �this effect is discussed in detail in �31��. The
same effect is also present in the 3D case: as already pointed
out in Sec. III, the rivulets accumulate fluid and thus help
increasing the local substrate thickness, which again is in
favor of the hydrodynamic instability �increasing local Rey-
nolds number�. Yet, the formation of rivulets has also a rather
subtle stabilizing effect on the waves. As the width of the
rivulets remains fixed independently of any changes in their
amplitude due to the quasi-2D waves riding on them �this is
evident from Fig. 8�a� to be discussed later�, the spanwise
curvature �zzh increases with the thickness h, and therefore
the induced capillary pressure is larger in the humps than in
the flat zones between the humps which then creates a pres-
sure gradient that drags some liquid out of the humps and
thus reduces their amplitudes �indeed Fig. 8�b� reveals that
the wave amplitudes are not as large as they would have
been based on the local Reynolds number, precisely due to
the stabilization effect of the spanwise curvature�. The com-
petition between these two mechanisms is responsible for the
transition I-II, i.e., when the increase of wave amplitudes due
to the increase of the local Reynolds number wins over the
stabilizing effect of the spanwise curvature following the
shape of rivulets. It is important to emphasize here that the
role of the spanwise curvature is different from that in other
problems such as film flows down fibers �37,38� where the
spanwise curvature always has a destabilizing effect since it
is smaller in the drops than on flat zones between the drops,
thus promoting flow from the flat zones to the drops, leading

to larger amplitudes �the mechanism for the drop formation
process is nothing else but the classical Rayleigh instability
of a liquid cylinder�.

Mechanism for the transition IIw-IIm. Figure 5�b� shows
that the quasi-2D solitary waves riding the rivulets experi-
ence a transverse instability, which, however, does not lead
to the complete disintegration of the solitary waves. It is
precisely for this reason that we have referred to the waves in
Fig. 5�b� as “quasi-2D solitary waves” much like those in
Fig. 5�a�. To explain this transition, an analogy can be made
with 2D solitary waves on a vertical planar substrate. In this
case isolated 2D solitary waves experience an instability in
the transverse direction. This instability has a 3D origin un-
like the case of small inclination angles where 3D instabili-
ties have a 2D origin and are only observed for periodic 2D
waves while isolated 2D solitary waves are stable �3�. The
instability of 2D periodic waves was recently analyzed in
detail in �10�. On the other hand, the studies in �39,40� on the
transition of 2D pulses to 3D ones revealed that the instabil-
ity is strongly connected with the hump of a 2D pulse and in
fact the main instability mechanism for the transition to 3D
pulses is a Rayleigh-type instability of the solitary hump �see
also Sec. VII�.

Mechanism for the transition II-III. This transition occurs
at the Reynolds number above which the film does not rup-
ture. This boundary is difficult to determine with sufficient
accuracy and rather corresponds to a limit of infinite time
required for the thermocapillary effect to cause film rupture.
This is illustrated by the rapid increase of the rupture time
with the Reynolds number in Fig. 7. In any case, one expects
physically that there should exist a Reynolds number above
which the flow is sufficiently strong to continuously rewet
the thin parts of the film thus preventing rupture for all times.

VI. TOPOLOGY OF RIVULET STRUCTURES

Figure 8 depicts typical cross sections for the type IIw.
The spanwise cross section �a� shows �in dark� the locus of
the interface, thus revealing a ridgelike structure. The
streamwise cross section �b� shows eight profiles along the
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FIG. 7. Rupture time trupt estimated when h=O�10−3� versus Re
for Ma=25, Bi=0.1, Pr=7, and 	=3375. Points from simulations
are interpolated-extrapolated by the solid line.
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left side of rivulet 3 taken between the trough and the crest.
Figure 8�a� shows that the maxima of rivulets vary by a
factor of �2 due to the presence of hydrodynamic waves
riding them. However, the rather symmetric shape of their
envelope indicates that their positions are stable and well
aligned with the main flow. It also implies that rupture of the
film occurs at two single spots �in fact between rivulets 2 and
3 and 6 and 7�. Interestingly, rivulets 4 and 6 in Fig. 8�a� are
wider than the others and the minimum of their crest is
slightly upside down, implying that their crest can have a
local trough �this feature is, however, more pronounced in
regime IIm as shown below�. Figure 8�b� reveals that the
rivulet crest �thick line� has waves of much larger amplitudes
and phase speeds than predicted in the absence of rivulets
�see Fig. 6�. Taking arbitrarily the dotted line in Fig. 8�b� as
the film substrate of the wave train at the crest, we can esti-
mate the “local Reynolds number” as 1.83�5.8�Re. Con-
sequently, the wave amplitude is much larger than it would
have been without heating for Re=2 but not as high as that
corresponding precisely to the local Reynolds number �11.6

due to the stabilizing effect of the spanwise curvature as was
pointed out in Sec. V. Note also the wave front is curved
backwards on the sides as also depicted by the oblique dot-
dashed line in Fig. 8�b�, reminiscent of tails in 3D solitons
�41�.

Figure 9�a� shows cross sections for the type IIm at three
different streamwise positions. The rivulets here have sharp
sides and wide tops displaying a trough in the middle. They
are strongly asymmetric, a signature of transverse instabili-
ties. The valleys between neighboring rivulets are much
more narrow than the rivulets themselves. Therefore the lo-
cal Reynolds number at the top of the rivulets is closer to the
inlet Reynolds number. Moreover, the presence of the rivu-
lets promotes 2D waves instead of 3D ones. As a conse-
quence, the wave amplitude gets closer to that one of the
corresponding 2D solitary waves �see Fig. 6�. The existence
of such 2D solitary wave solutions is responsible for the
presence of isolated solitarylike pulses as shown in Fig. 9�b�.
We believe this regime to be quite interesting for experimen-
tal investigations of quasi-2D solitary waves in the region of
moderate Reynolds numbers since, although spanwise insta-
bilities are not prevented all-together, the interface does not
disintegrate into a fully developed 3D wave regime as it is
the case with falling films on isothermal planar substrates, or
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FIG. 8. Cross sections of Fig. 5�a� for Re=2: �a� 128 profiles are
drawn, hence the dark area. �b� The dashed line shows the approxi-
mative local substrate thickness of the profile at the crest �thick
solid line�. The dot-dashed line is the locus of a local maximum,
which shows the curvature of the wave front.
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in the present problem for, e.g., Re=6 where the surface of
the film is covered by 3D waves with smaller amplitudes,
without being separated by flat zones �see Fig. 5�c�� �recall
that increasing the Reynolds number to, e.g., Re=10 causes
the formation of isolated 3D solitary pulses �pulses separated
by flat regions��. To our knowledge, the only other system
where purely 2D solitary waves can be stabilized has been
proposed in the experiments by Alekseenko et al. �42�, which
consist of a rivulet flowing beneath the outer surface of an
inclined cylinder.

Further, we note that the last two rivulets in Fig. 5�b�
�rivulets 4 and 5 in Fig. 9�a�� are separated by a relatively
thick film region instead of the thin films separating the rest
of the rivulets. The situation here looks more like “grooves”
that split the film into channels wide enough for the 3D
hydrodynamic waves to survive. The transition then between
types IIw and IIm corresponds to the transition between the
ridgelike structure and groovelike structure.

VII. WAVELENGTHS OF SPANWISE STRUCTURES

Figure 10 depicts the wavelength of the spanwise rivulet
structures �ridgelike or groovelike� as obtained from time-
dependent simulations �circles�. The wavelength is obtained
by dividing the width of the domain in the transverse dimen-
sion, Lz, by the number of rivulets. The results are similar to
those obtained from the spanwise power spectrum. The error
bars are due to a small variation of the number of rivulets for
the same conditions due to the white noise initial condition
changing each time the noise generator is ran �still, the maxi-
mum amplitude of the noise is always fixed at 1 /1000�. The
solid line gives the wavelength of the most amplified mode
found from the linear stability analysis of the full Navier-
Stokes and energy equations obtained by suppressing the
variation in the streamwise direction �the pure thermocapil-
lary problem�, which in dimensionless form yields

�riv �
2�

kzmax

=
4��1 + B�
�3MB

, �12�

where Eqs. �9� and �10� have been used. Utilizing now the
definitions of dimensionless parameters given in Sec. II and

the length scale �h̄N= �	�2 /g�1/3�3 Re�1/9, the dimensional
wavelength of the most amplified linear mode is Re1/6

�solid line�. It matches particularly well with our computa-
tions with Ma=50 for small Reynolds numbers, i.e., in re-
gion I, but diverges for larger Reynolds numbers, i.e., in
region II. This reveals the net influence of hydrodynamic
waves and thus inertia effects on the wavelength of the rivu-
let structures. Nevertheless, the linear result seems a good
estimate of the observed wavelength of the developed non-
linear rivulet structures and can therefore be used to examine
the influence of a “large” temperature difference across the
layer, �T�10 °C, i.e., for Ma=100. In this case we find a
surprisingly good agreement between the linear theory which
gives precisely �riv�mm�=7.52�1+0.144 Re1/3�Re1/6 and the
experimental fit given by Kabov et al. �13,14�, �riv�mm�
�8.9 Re1/6. However, our numerical procedure has several
differences with these experiments. �i� The wall temperature
is not controlled in the experiment but rather the heat flux,
hence the wall temperature varies along the flow direction
and a precise value of the temperature difference �T needed
for comparison is not available. �ii� Our simulations do not
include the lateral boundaries, nor the fact that the heater is
finite, i.e., embedded only in a portion of the wall and at a
certain distance from the inlet. A bump at the upper edge of
the heater therefore appears �43�, which is known to signifi-
cantly modify the wavelength of the rivulet structures
�44,45�. Moreover, periodic boundary conditions used here
to minimize the computational domain and take advantage of
the good convergence properties of the spectral method are
basically unrealistic. Indeed, closed flow configurations can-
not be obtained experimentally; it therefore introduces an
artifact: the fluid coming out from the outlet is reintroduced
to the inlet. Besides some artificial finite size effects gener-
ated by the limited streamwise extension of the numerical
domain—which have been essentially reduced by consider-
ing extended domains—periodic boundary conditions in our
simulations rather correspond to an experiment where the
entire wall is heated, i.e., from the inlet to far downstream
�about 1 m�. Indeed, as the hydrodynamic instability has a
convective nature, the position of the heater in existing ex-
periments �13,14� has a strong influence on the interaction of
waves with the development of rivulet structures. As far as
we are aware, such extended uniform heating has not been
investigated experimentally as of yet and comparisons of our
results with experiments on finite-size heaters should be
done with caution.

VIII. INFLUENCE OF THE MARANGONI EFFECT

Figure 11 shows the influence of the Marangoni effect on
the wavelength of rivulet structures: this is the full regime
map in the Re−� space versus Ma.

As before, the transition I-II is obtained when Ex changes
from decreasing to increasing and the transition II-III is ob-
tained when the dynamics of the film changes from one that
eventually leads to rupture to one where rupture does not
occur �right dotted line�. Now, Fig. 11 offers the possibility
to quantify also the transition IIw-IIm. Indeed, it appears to
correspond to the departure of the wavelength from its linear
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FIG. 10. Wavelength of the rivulet structures, �riv�mm�, versus
Reynolds number for the case of Fig. 5, obtained from large-size
computations �circles�. The solid line corresponds to the linear re-
sult �12�.
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prediction. Moreover, we have performed streamwise-
independent simulations �not shown� and found that the re-
sulting rivulets’ wavelengths match well the linear curves for
all Re: this indicates that second-order viscous dissipation
does not play a significant role in the evolution of a nonlinear
rivulet wavelength and thus strongly suggests that the depar-
ture of the wavelengths from the linear predictions is a true
signature of wave dynamics along rivulets when transverse
modulations are present.

We have already suggested that the transverse modula-
tions of the waves are triggered by a Rayleigh-type instabil-
ity mechanism much like with 2D pulses on planar sub-
strates. We may check this possibility in view of the
dependence of the transition IIw-IIm in a parameter space
limited to Ma and Re, that is for given liquid properties and
a set of control parameters reduced to the temperature differ-
ence Tw−Ta and the flow rate. If a Rayleigh-type instability
occurs, the instability should start at the point of greatest
slope �xh. In the “drag-inertia” regime, the maximum gradi-
ent of the free surface is observed at the front of the main
hump and corresponds to the balance of inertia �q /h���xh
and the pressure gradient induced by surface tension �xxxh.
Since q and h are O�1�, ��xh��xxxh gives a typical dimen-
sionless length scale for the x coordinate �−1/2 which im-
plies a typical slope �xh�1/2. Making the analogy with the
Rayleigh instability of a plane liquid-gas interface upside
down �i.e., the gas is below the liquid�, inclined from the
horizontal with a slope �xh, surface tension �zzh�Ray

−1/2

should balance the destabilizing gravity component normal
to free surface �xh�1/2 as discussed above. This defines a
critical wavelength �Ray�−1/4. As a consequence, the rivu-
lets may develop a transverse instability when their spatial
extension �riv approaches �Ray. Since from Eq. �12�,
�rivRe1/18 Ma−1/2 and �RayRe−11/36, �riv��Ray gives
Re�Ma18/13 at the transition IIw-IIm. This result should be
taken with care since it relies on very simple geometrical
arguments and on the asymptotic behavior of 2D solitary
waves in the drag-inertia regime, i.e., �→�—while the tran-

sition IIw-IIm rather occurs in the intermediate regime be-
tween drag-gravity and drag-inertia �see Fig. 6�. In particular,
the variation of the local Reynolds number due to the chan-
neling effects in the regime IIw is not taken into effect. How-
ever, the above analysis does recover the right tendency of a
transition IIw-IIm that occurs for smaller wavelengths as both
the Marangoni and/or the Reynolds numbers are increased.

Figure 12�a� depicts a snapshot of the evolution at t
=1480 for the isothermal case with Re=8. Note that for this
case Ex�Ez�const from t=500 up to t=10 000 and hence
the snapshot in the figure corresponds to a fully developed
3D wave regime. Figure 12�b� shows a snapshot of the evo-
lution at the same moment in time with the same Reynolds
number but with a large value of the Marangoni number,
Ma=100. The figure reveals the continuous competition be-
tween rewetting, point A, and dewetting, point B, in the re-
gime of groovelike structures. Eventually point B wins the
competition and a dewetting line appears across the domain.
Hence unlike the regime of ridgelike structures where rup-
ture is a “homogeneous” process appearing to occur between
each pair of rivulets �see, e.g., Fig. 8�a��, the rupture ob-
served here in the groovelike regime for Re=8 is rather lo-
calized in space. The reason is that we are very close to the
transition II-III �see Fig. 11�; this also explains the coexist-
ence of a groove leading to rupture on the left of Fig. 12�b�
�typical of region II as for Fig. 12�c� for Re=7� with a region
without rivulet on the right �as for isothermal conditions in
Fig. 12�a��.

IX. HEAT TRANSFER ENHANCEMENT

Of particular practical interest for flows in the presence of
rivulet structures is the evaluation of a possible enhancement
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FIG. 11. Wavelength of the rivulet structures, �riv, versus Rey-
nolds number for Ma=25 �square�, Ma=50 �circles�, and Ma=100
�triangle�. The solid lines correspond to the linear prediction. The
dotted lines indicate the approximate boundaries between the dif-
ferent regimes as referred to in Fig. 6.
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FIG. 12. Wave patterns: �a� Re=8, Ma=0; �b� Re=8, Ma=100;
and �c� Re=7, Ma=100; with 	=3375, Bi=0.1, and Pr=7. Extrema
are given in brackets. “A” denotes a dewetting front and “B” a
rewetting one.
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of heat transfer. For this purpose we define an overall heat
transfer coefficient, noted U, and based on the difference
between the two extreme temperatures, Tw and Ta, in the
system. The corresponding overall heat transferred then sim-
ply reads

Q = AwU�Tw − Ta� , �13�

where Aw is the heated wall area. To estimate U in Eq. �13�,
we calculate the instantaneous amount of heat Q transferred
from the free surface to the atmosphere, on the basis of

Q = As�g��Ts� − Ta� , �14�

where As is the interfacial area and �Ts� is the averaged in-
terfacial temperature over the computational domain. Elimi-
nating Q from Eqs. �13� and �14� yields

U = �g
As

Aw

�Ts� − Ta

Tw − Ta
. �15�

Since �g, Aw, Tw, and Ta are constant, U can only be influ-
enced by As and �Ts�. Note that for the Nusselt flat film
solution, UN=�g�N=�g / �1+B�. Therefore the heat transfer
enhancement �HTE� for a wavy interface as compared to a
flat interface can be defined as

EHT �
U

UN
= As

*����1 + B� , �16�

where A
s
* is the ratio between the actual �instantaneous� free

surface area and its value in the Nusselt state. The values of
HTE calculated for the structures in Fig. 5 are 1.06 �a�, 1.04
�b�, 1.007 �c�, and 1.035 �d�. While 3D solitary waves are
indeed known to enhance heat transfer compared to regular
waves �2�—i.e., 3.5% for Fig. 5�d� instead of 0.7% for Fig.
5�c�—rivulet structures enable one to reach the same en-
hancement or even better for much smaller flow rates, even
though only in the vicinity of rupture. Indeed, HTE grows
until rupture as shown in Fig. 13 �solid lines� and the time at
which heat transfer starts to be significantly enhanced by
rivulets is quite short. This demonstrates that heat transfer
can be enhanced at much smaller flow rates than in the fully
developed 3D wave regime �region III in the regime map in

Fig. 11�. What is therefore needed is to enlarge the time
duration at which this happens, which is actually feasible
provided the following.

�i� Rivulet structures should be triggered at the inlet
through external perturbations with a wavelength given by
Eq. �12� �due to the fact that the linear prediction in Eq. �12�
fits well the nonlinear regime�. Otherwise one would have to
wait for a long distance down the channel for the heat trans-
fer coefficient to increase �e.g., for Re=5, the heat transfer
coefficient starts to increase after �2000 time units, i.e., ap-
proximatively 2 m from the inlet�.

�ii� The wall should be perfectly wetted by the liquid such
that the thin regions between rivulets are stabilized by inter-
molecular forces and no rupture occurs.

Provided now that the computational domain in the
streamwise direction, Lx, is sufficiently long, the evolution
obtained from our simulations should then be qualitatively
similar to the spatial evolution in experiments with long test
sections. The result should thus be a large heat transfer
throughout the whole domain at relatively small flow rate.

Finally, it is worth mentioning that it is the increase of the
interfacial area A

s
* that mainly contributes to HTE while the

surface temperature only plays a secondary role. This espe-
cially holds for rivulet regimes.

X. CONCLUSIONS

We have studied the 3D dynamics of a heated film flow-
ing down a vertical wall. This has been achieved by first
developing a system of four coupled equations for the evo-
lution in space and time of the film thickness h, the interfa-
cial temperature �, and the streamwise and spanwise flow
rates, q and p, respectively, given by Eq. �6a�–�6c�, that al-
lows a full description of the competition between hydrody-
namic waves and thermocapillary Marangoni effect. The
presence of rivulets aligned with the flow and large ampli-
tude waves at their crests has been found in a region corre-
sponding to the transition between drag-gravity and drag-
inertia regimes. The boundaries of this �intermediate� region
have been accurately determined and found to be shifted to-
ward larger Reynolds numbers for increasing Marangoni
number �as shown in the regime map of Fig. 11�.

The competition between two distinct mechanisms is re-
sponsible for the change of behavior observed between the
drag-gravity and drag-inertia regime, i.e., in region II, corre-
sponding precisely to the occurrence of waves riding the
rivulets. The first mechanism is stabilizing due to surface
tension: it tends to decrease the amplitude of hydrodynamic
waves due to the presence of a streamwise pressure gradient
between humps �where the spanwise curvature is larger� and
flat zones �where the spanwise curvature is smaller�. The
second mechanism is destabilizing due to inertia: it tends to
increase the amplitude of hydrodynamic waves due to the
local increase of the flow rate �i.e., the local Reynolds num-
ber� in the rivulets.

The fact that region II is characterized by stable quasi-2D
solitarylike waves makes it attractive for the study of such
waves experimentally. Further, both rivulets and solitarylike
waves are known to improve heat and mass transfer in in-
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FIG. 13. Heat transfer enhancement �solid lines� for different
Reynolds numbers and with Ma=50; dashed lines show the contri-
bution to HTE only due to surface deformations A
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dustrial processes, while film rupture is nondesirable as it
may lead to dry patch formation followed by overheating and
damage of the solid substrate. However, only stabilizing
long-range van der Waals intermolecular interactions can
prevent film rupture and stabilize the thinning of the residual
film. Moreover, the subcritical nature of the primary bifurca-
tion for the thermocapillary instability �35� does not allow
the construction of stationary transverse solutions corre-
sponding to rivulets unless of course van der Waals forces
are included in the model. This and related issues will be
addressed in a future study.
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APPENDIX: WEIGHTED RESIDUAL METHOD
AND REGULARIZATION

We give in this appendix the details of the procedure that
allow us to reduce the basic system of equations �2a�–�2d�
and boundary conditions �4a�–�4e� to the model �6a�–�6c�
used in the rest of the paper. As mentioned in the text, it is
based on the weighted residuals procedures applied for the
2D heated case �23� and the 3D isothermal case �10�, and in
which the velocity components in the x and z directions and
the temperature field were expanded on polynomials �poly-
nomials were chosen because they form a complete basis and
a closed set with respect to the differentiations and products
involved in the governing equations�. Truncation of the sys-
tem of equations to be solved at O��� shows that the velocity
and temperature fields can be represented at that order by a
limited set of polynomials of the natural similarity variable
ȳ=y /h �the boundary conditions in terms of ȳ are applied at
ȳ=0 and 1�. Velocity and temperature field were thus ex-
panded as

u =
3

h
�q − s1 − s2 − s3�F0�ȳ� + 45

s1

h
F1�ȳ� + 210

s2

h
F2�ȳ�

+ 434
s3

h
F3�ȳ� , �A1a�

w =
3

h
�p − r1 − r2 − r3�F0�ȳ� + 45

r1

h
F1�ȳ� + 210

r2

h
F2�ȳ�

+ 434
r3

h
F3�ȳ� , �A1b�

T = 1 + �� − 1 − t1 − t2 − t3�G0�ȳ� −
3

2
t1G1�ȳ� +

5

2
t2G2�ȳ�

−
15

4
t3G3�ȳ� , �A1c�

where the polynomials Fi and Gi are defined below:

F0 = ȳ −
1

2
ȳ2,

F1 = ȳ −
17

6
ȳ2 +

7

3
ȳ3 −

7

12
ȳ4,

F2 = ȳ −
13

2
ȳ2 +

57

4
ȳ3 −

111

8
ȳ4 +

99

16
ȳ5 −

33

32
ȳ6,

F3 = ȳ −
531

62
ȳ2 +

2871

124
ȳ3 −

6369

248
ȳ4 +

29601

2480
ȳ5 −

9867

4960
ȳ6,

G0 = ȳ ,

G1 = ȳ −
5

3
ȳ3,

G2 = ȳ − 7ȳ3 +
32

5
ȳ4,

G3 = ȳ −
56

3
ȳ3 +

192

5
ȳ4 − 21ȳ5.

This set of polynomial test functions has been constructed to
satisfy the orthogonality conditions �0

1FiFjdȳ�ij and
�0

1GiGjdȳ�ij with the help of a Gram-Schmidt orthogonal-
ization procedure as well as to satisfy the Dirichlet boundary
conditions at the solid wall. Representation �A1� contains a
sufficient number of variables �q, p, si, and ri� to approxi-
mate u and T at order � �the error being O��2��. Details and
justifications can be found in �23�. Note that the functions F1
and F2 have been chosen so that they correspond exactly to
the polynomials introduced in the isothermal case �8�. The
introduction of the polynomial F3 is made necessary by the
Marangoni effect which modifies the stress conditions at the
interface �4c� and �4d�.

In projections �A1�, 12 independent 2D fields are intro-
duced to describe the 3D dynamics of heated falling films:
the streamwise and spanwise flow rates q=�0

hudy and p
=�0

hwdy, respectively, the interfacial temperature �, the six
correction fields si and ri �i=1,2 ,3� corresponding to the
polynomial test functions Fi and accounting for the devia-
tions of the velocity profiles away from the zeroth-order
parabolic profile F0, and the three correction fields ti corre-
sponding to the polynomial test functions Gi and accounting
for the deviations of the temperature profile from the zeroth-
order linear profile G0. These polynomial expansions are
then substituted into the governing equations which are then
projected on the test functions according to the Galerkin
method, yielding the residuals Ri,q= �Eq ,Fi�, Ri,p= �Ep ,Fi�,
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and Ri,�= �E� ,Gi�, where the inner product for any two func-
tions f and g is defined as �f ,g�=�0

hfgdy, and Eq, Ep, and E�

represent the boundary-layer equations �2a� and �2b� and the
energy equation �2d�, respectively. Since the boundary con-
ditions at the interface �4c�–�4e� are nonhomogeneous, they
cannot be satisfied from the start by the test functions Fi ,Gi.
Instead these boundary conditions must be satisfied by the
approximate solution itself and become therefore a new con-
straint on the amplitudes si ,ri , ti, like in a tau method �see
�46� for details�.

The evaluation of the residuals R yields a system of 12
evolution equations for the 13 unknowns, h, q, p, �, si ri, and
ti, with i=1,2 ,3, to be completed by the mass balance equa-
tion obtained through integration of the kinematic boundary
condition �2c� across the layer depth using the wall boundary
conditions �4a� and the kinematic boundary condition �4b�:

�th + �xq + �zp = 0.

This system forms the full second-order model whose treat-
ment is feasible but cumbersome and laborious.

Here, we shall instead simplify the full second-order
model following the procedure applied in �10� for isothermal
films. These authors attempted to simplify the full second-
order isothermal model via slaving the correction fields si
and ri to h and q �and their derivatives�, effectively, by per-
forming gradient expansions for these corrections. However,
the elimination of these corrections resulted in second-order
inertia terms which are highly nonlinear and as a conse-
quence led to unrealistic behavior of the bifurcation dia-
grams for single-hump �2D� solitary waves �“primary ho-
moclinic orbits” of the associated dynamical system� for the
speed of the waves as a function of Reynolds number con-
sisting of turning points and branch multiplicity �unlike the
full second-order model which predicts the continuing exis-
tence of solitary wave solutions and is in agreement with full
Navier-Stokes�. A similar behavior is also observed with the
Benney-like long-wave evolution equation, it is responsible
for finite-time blowup �as first observed by Pumir et al. �47��
and it is ultimately connected with the high-order inertia
nonlinearities. So even for isothermal conditions, the reduced
second-order model obtained from the full second-order one
by eliminating si and ri suffers from the same limitations
�instead, the full second-order model is robust and without
any blowup behavior�.

Scheid et al. �10� then cured the deficiencies of the re-
duced model by employing a Padé-like systematic regular-
ization procedure to obtain a model consistent up to O��2�
�an early version of this procedure is given in �23� for 2D
heated films� which avoids finite-time blow-up due to high-
order nonlinearities when increasing the Reynolds number.
However, this regularization procedure here is only applied
to the residuals corresponding to the boundary-layer equa-
tions, and not to the energy equation �for details the reader is
referred to �23��. This assumption remains consistent with
the gradient expansion at second order �48� since the inter-
facial temperature � is coupled to the local flow rates q and p
through its gradient, already of O���. Therefore the evolution
equation for � is directly obtained from the first residual
�E� ,G0� with t1= t2= t3=0. Now, the first-order expressions

of the fields s1, s2, s3, r1, r2, and r3 are obtained from the
truncation at O��� of the residuals corresponding to the test
functions F1, F2, and F3:

s1 = � 1

210
h2�tq +

19

1925
�hp�zq − pq�zh − q2�xh�

+
74

5775
hq�xq +

17

5775
hq�zp� +

1

40
Mh2�x� ,

s2 = �−
2

5775
�hp�zq − pq�zh − q2�xh� −

2

17 325
hq�xq

+
4

17 325
q�zp� −

299

53 760
Mh2�x� ,

s3 =
5

3584
Mh2�x� ,

r1 = � 1

210
h2�tp +

19

1925
�hq�xp − qp�xh − p2�zh�

+
74

5775
hp�zp +

17

5775
hp�xq� +

1

40
Mh2�z� ,

r2 = �−
2

5775
�hq�xp − qp�xh − p2�zh� −

2

17 325
hp�zp

+
4

17 325
p�xq� −

299

53 760
Mh2�z� ,

r3 =
5

3584
Mh2�z� .

Substituting these expressions in the first residuals R0,q
= �Eq ,g0� and R0,p= �Ep ,g0� produces second-order inertia
terms ��2�, formally written as R0,q

�2�,� and R0,p
�2�,�. These

terms contain high-order nonlinearities that we next elimi-
nate by appropriately adjusting algebraic prefactors or “pre-
conditioners.” Hence we look for residuals R0,q and R0,p in
the form Gq

−1Fq and Gp
−1Fp, where Fq and Fp correspond to

the expressions of the residuals R0,q and R0,p when a para-
bolic velocity profile is assumed, i.e., when corrections si and
ri are neglected. Isolating inertia terms, we thus set
Gq�R0,q

�1�,�+R0,q
�2�,��=R0,q

�1�,� and Gp�R0,p
�1�,�+R0,p

�2�,��=R0,p
�1�,�,

where superscripts 1 and 2 refer to first- and second-order
inertia terms. The zeroth-order expressions of the flow rates
q=h3 /3+O��� and p=O��� are next invoked to reduce the
degree of nonlinearities of the regularization factors Gq and
Gp. Consequently, the inertia terms R0,q

�2�,� and R0,p
�2�,� induced

by deviations of the streamwise and spanwise velocity com-
ponents from the parabolic profile appear asymptotically at
O��2� and O��3�, respectively. We therefore obtain
Gq��1− � / 70q�xh+M�5 / 56 �x� / h + 1 / 224 �xx� / �xh ��−1

and Gp=1. Though h cannot be exactly zero �h=0 at rupture,
but here we only consider the dynamics prior to rupture�, �xh
does vanish at certain points in the domain. The last term in
Gq will thus lead to a singularity if kept in its present form
and should be taken out from the inertia terms R0,q

�2�,� �the
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singularity arises because of the different order of differen-
tiation for h and � in the quotient �xx� /�xh�. As much as ad
hoc this step might appear, it is necessary if we want a rela-
tively simple model without mixed time-space derivatives;

indeed, one can formally cure the singularity by changing the
algebraic preconditioner to a differential operator, following
the example of Ooshida �36�. The regularized model is fi-
nally obtained and given in Eqs. �6a�–�6c�.
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