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A horizontal ferrofluid layer is submitted to a lateral heating and to a strong oblique magnetic field.
The problem, combining the momentum and heat balance equations with the Maxwell equations,
introduces two Rayleigh numbers, Ra the gravitational one and Ra,, the magnetic one, to represent
the buoyancy and the Kelvin forces, which induce motion, versus the momentum viscous diffusion
and heat diffusion. Whatever the inclination of the magnetic field, the steady solution of the problem
is presented as a power series of a small parameter €5 measuring the ratio of variation of the
magnetization across the layer divided by the magnitude of the external imposed field. For cases of
physical relevance, comparisons between analytical and numerical studies have lead to a major
statement: in the strong field region (ey< 1) the zero order solution is the product of the Birikh
solution that corresponds to the usual Newtonian fluid submitted to a lateral gradient, multiplied by
a modulating factor accounting for inclination and both Rayleigh numbers. Physically, this
simplified solution is valid for microgravity conditions where the magnetic field competes enough
with microgravity effects to invert the laminar flow and thus suppress the motion for two specific
values of the inclination angle. © 2006 American Institute of Physics. [DOI: 10.1063/1.2353879]

I. INTRODUCTION

The Rayleigh-Bénard problem has become a paradigm
of nonlinear stability studies, since the famous book of
Chandrasekhar." The thermoconvective problem induced by
a lateral gradient of temperature is also a well-studied prob-
lem dating back to the original works of Birikh,? or
Kirdyashkin3 and Davis.* The initial Rayleigh-Bénard prob-
lem linked to a temperature gradient opposed to gravity and
the one, induced by a lateral gradient of tempereuure,z’4 can
be extended to a ferrofluid taking also into account an exter-
nally imposed magnetic field. When such a fluid is submitted
to a gradient of temperature, the momentum balance experi-
ences a profound modification, through the Kelvin force re-
flecting the magnetization of the ferrofluid. From a theoreti-
cal point of view, the stability studies of a temperature
gradient normal to the horizontal boundaries, are giving rise
to new perspectives for those kinds of fluids, as is well
known since the classical works of Finlayson,5 Neuringer
and Rosensweig,6 and Bashtovoi and Berkovski.” Indeed, a
ferrofluid, submitted to a vertical magnetic field parallel or
antiparallel to gravity, can give rise to a nonoscillatory insta-
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bility that appears whether one heats from above or from
below,8 under very precise critical conditions.

We will consider the layer of ferrofluid to be of infinite
lateral extent and to be sandwiched between two rigid plates
and to be submitted to an inclined strong magnetic field so
that the magnetization of the liquid is only temperature de-
pendent (see Fig. 1). This however does not apply to ther-
mocapillarity. Indeed, the present formulation, does not ap-
ply to a free surface c:onﬁguration,9 since the external applied
field H¢ is larger than the critical field giving rise to the static
Cowley-Rosensweig change of shape of a ferrofluid layer
adjacent to an inert gas or another liquid.s_12 For a large
layer of an isothermal ferrofluid, this nonoscillating instabil-
ity appears for any field stronger than the critical magnetic

field H,; defined by
| P8
Kerit = >
o

where p is the density of the ferrofluid, w () the magnetic
permittivity of the ferrofluid (respectively, of the void), g the
gravity and o the surface tension. This instability is due to

21+ g/ —
Hei = —%vwg for
teo [/ pg = 1]
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FIG. 1. Laterally heated layer of ferrofluid submitted to an inclined mag-
netic field H¢.

the balance between the magnetic traction, the Laplace pres-
sure and gravity along a free ferrofluid interface. Let us note
that H,, varies as g'’* so that it will fall down to very low
values in microgravity environment. Thus, a reference free
surface cannot remain flat for a strong magnetic field. Even if
we do not study stability at the present stage, we should keep
in mind this specific property of ferrofluid.

In Sec. II, we present the formalism of our problem and
in Sec. III the adimensionalization, while in Sec. IV we dis-
cuss the inductive assumption. Section V introduces the final
form of the dimensionless balance equations and gives the
temperature and velocity profiles. To obtain these analytical
solutions, we introduced some physically simplifying hy-
pothesis discussed in Sec. VI, using a well defined ferrofluid
EMG 901. Then we discuss in Sec. VII, the profiles in terms
of the intervening dimensionless parameters of the magnetic
field inclination and strength as well as the gravity level,
using as a benchmark the classical Birikh solution.”™ In that
paragraph, we show that our approximation should lead for a
low gravity level and very precise inclinations to a heat con-
ductive motionless case, so that one could observe a reverse
of the flow and of the temperature profiles for an inclined
magnetic field whose inclination varies between those criti-
cal values. We finally compare in Sec. VIII our solution to an
exact analytical solution and discuss the validity range in
term of the parameter e5. We summarize our main results in
the conclusion (see Sec. IX).

Il. FORMULATION OF THE PROBLEM

We want to get an analytic form for the steady state of a
ferrofluid submitted to the lateral heating and to an inclined
magnetic field, to serve as a reference state for a future sta-
bility investigation. As we limit ourselves to a 2D descrip-
tion, we are in fact considering the central region of a very
elongated and thin layer, so that we forget the influence of
the lateral walls, supposed to be very far from the described
region. Still we must suppose that the temperature at the
hottest lateral wall is below the boiling one and that the
temperature along the coldest lateral wall is above the freez-
ing one. These precautions are mandatory to design a set of
parameters which are not only numerically, but also physi-
cally reasonable.

Let a ferrofluid layer of width d between two horizontal
rigid plates, be submitted to an inclined magnetic field and to
a lateral gradient of temperature (see Fig. 1). We combine
thus the initial 2D situation considered for Newtonian
fluids,* to the one taking into account the specific properties
of a ferrofluid.”® We will show that, in the limit of a strong
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magnetic field, the steady reference regime state can be de-
scribed by a set of two-dimensional balance laws. The refer-
ence regime state shows some new possibilities which de-
serve a careful study and should be tested experimentally on
Earth and in microgravity.

A. The ferrofluid magnetization and the Maxwell
equations

To this layer of ferrofluid, we apply an exterior constant
magnetic field, given by

H¢ = H*(cos ¢1,+sin ¢1,) = H 1y, (1)

where 1, is the upward unit normal, 1, is tM)rizontal unit
taken along the lower border and 1;,=H/VH-H (see Fig. 1).
The ferrofluid is sufficiently dilute to be assimilated to a
super paramagnetic gas,10 so that the magnetization is de-
scribed as M=nm/L(&) where the Langevin function £(£) is
defined by L(&)=coth §—é (Ref. 10) with the quantity &
=uomH/kT, n is the number of nanomagnets per unit of
continuum volume, m the magnetic moment of one particle,
H the local value of the applied field, k7" the Brownian en-
ergy of chaotic motion (k being the Boltzmann constant) and
T the temperature.

Since H¢ is time independent, we neglect the Brownian
and the Néel relaxation mechanisms.”'° Therefore, we sup-
pose that the magnetization is collinear with the magnetic
field

For very strong fields, where £>1, the magnetization is
equal to its saturation value and does no more depend on the
magnetic field.”® This situation corresponds to a very large
sample of practical cases, so that we will assume that

mn

I =0(ey) where ;<1 Vx,z. (3)

We will explicitly define €5 below and use the consequences
of that approximation7’10 to obtain the following linearized
form of the magnetization state equation M=M(T),

oM
M =M(Ty,H,) + (E) (T-T,), (4a)

H,

near the reference state given by M(T,,H,). Equation (4a)
introduces the pyromagnetic coefficient K=-(dM/ (7T)HO
which, for large ﬁelds,8 is assumed to be constant and is
given by

K = aM(Ty), (4b)

where a=-p~'dp/dT is the thermal expansion coefficient.
In the ferrofiuid layer,s’7’8’10 there is no electrical current,
so that the Maxwell equations reduce to

M
VXH=0, V-[H+M]=V- {(1 +E>H] =0. (5a)
The second equation (5a) should be further expanded since,

from (4a), the magnetization M depends upon the tempera-
ture 7, and it finally reads
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We will take into account the influence of the right-hand side
of the last equation. As this term is different from zero, we
explicitly link the magnetic inclined field H, to the lateral
gradient of temperature 7. We assume thus that what is
called the inductive assumption applies here.®

B. The basic momentum balance and the return flow
assumption

We describe here the reference steady motion as a con-
sequence of a basic assumption: in the reference state, exists
a horizontal flow, whose velocity can be developed in a
power expansion of €y with its zeroth order term depending
on the z coordinate only. Thus, one has

u=[u(z) +O(ex)11,. (6a)

The problem now is to find explicitly the function u(z). This
simply extends to the present ferrofluid problem, the results
of former scientists®* who studied pure Newtonian fluid lay-
ers submitted to a lateral heating.

As a consequence of the ferrofluid incompressibility and
of the fundamental assumption (6a), there is no net mass flux
across a vertical section of the ferrofluid layer. It means that

d
f u(z)dz=0. (6b)

0

The Boussinesq approximation of the momentum balance
L 1,5,10
equation is then

2

du
=-Vp+ usMVH+ n—

dz 2 Pog[l -a(T- To)]lz,

(6¢)

where pg is the density at the reference temperature 7|, and
n is the kinematic viscosity. We neglect thermomag-
netophoresis. 13-15

Eliminating the pressure from (6¢), one obtains immedi-
ately

0o d*u o (aT oH T aH) (64)
—apog— + -
77d 3 Pos ox Ho ox dz  dz dx
To be coherent with our basic assumption (6a), we must have
oT Ko (aTaH aTaH) G0, (69)
appg— — e
Pos dx ox dz  dz dx .

so that all partial derivatives dT/dx, T/ dz, dH/ dx and dH/dz
should be functions of z or constants.

C. The energy equation

The energy balance equation for the ferrofluid is the one
derived by Finlayson,5 given by
aT oH )
pepu = ,uOKu— =\V-T, (7a)
where ¢, is the heat capacity of the ferrofluid and \ is the
thermal conductivity. As usual for this kind of
problf:ms,5’7’8’10 we will neglect the advective magnetic term
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,u,OKu% so that the energy equation is the usual Fourier
equation
aT
u— = kV°T, (7b)
ox

where k=N/pc, is the heat diffusion coefficient.

D. The boundary conditions

The above set of equations is solved using the following
boundary conditions:

(a) Both the lower and upper borders are rigid nonmag-
netic plates and the ferrofluid is a viscous liquid, ad-
hering to a solid boundary, so that

u(z)=0 atz=0,d. (8a)

(b) The normal component of the magnetic induction B
=uo[H+M] and the tangential component of the mag-
netic field H have to be continuous across the top and
the bottom boundaries:>'*!*1617

H.+M.=H’sin¢, and H,=H°’cos ¢. (8b)

(c) All along both horizontal boundaries of the ferrofluid
layer, whatever the x coordinate, the lateral gradient of
temperature is given by
aT
—=-, where >0, (8c)
ox
so that the temperature along the ferrofluid lateral
boundaries is T,.;— Bx, where T, is the temperature at
x=0. This simple condition was initially used by
Birikh,2 but it could be easily removed. Here, the tem-
perature decreases when the horizontal coordinate x
increases. Physically, 8 is the absolute value of the
variation of temperature per unit length.

lll. DIMENSIONLESS FORMULATION

Let us rewrite the complete problem in a dimensionless
form: the temperature is scaled by SBd and the velocity by
x/d. We are using d as reference length, to scale both spatial
coordinates x and z, so that henceforward, keeping the same
notations we have 0=z=1. The magnetic field H and the
magnetization M are scaled by H® which is the externally
applied magnitude of the magnetic fluid.

The dimensionless form of (4a) is

M=M,— eT—-Tp), ©)

which introduces the quantity e;=KBd/H*. Due to our basic
assumption (3), €, is a very small parameter since it is the
scaling of the variation of the magnetization.

We will keep the same notation for the physically dimen-
sionless quantities and continue our discussion only in terms
of these new variables. Using (8b) and (8c), a solution of
(6d), that fulfills the requirement imposed by Eq. (6¢), will
be

T= Tref -

(x+1(2)), (10a)
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H=apx+h(z), (10b)

where #(z) and h(z) are dimensionless functions of z. From
(8¢c), one has #(0)=0 as well as #(1)=0, which physically
means that the temperature along both horizontal borders
varies only with the horizontal coordinate.

Since H is a linear function of x, we will suppose that
each component is a linear function of x

H.=A(z)x+h(z) and H,=A(2)x+h(z). (11)

It follows from (8b) that we must have A=0 at z=0,1 and
h.(z)=cos ¢p+g(z) with

8(0)=g(1)=0. (12)

To obey (6€), a; must be a constant, which we will show to
be of order €, to avoid having JdH/dz as a function of x.
Accordingly, A,(z) and A(z) are also of O(ey), which insure
small variations of the magnetic field along the x coordinate.
We will develop the dimensionless unknowns, the velocity
u(z), the temperature #(z), the norm of the magnetic field H,
and its components H, and H_, the magnetization M as well
as h(z),h(z),h.(z) in a power expansion of €, up to the first
order in €, so that one has

q(2) = qo(2) + €uq,(2) + 0(62)7 (13)

where ¢(z) represents any of the variables.

IV. THE MAGNETIC FIELD AND THE INDUCTIVE
APPROXIMATION

Now from the Maxwell equation VX H=0, using (11)

_9H,

dA dg OJH,
1= SXT o4+ m=T

+—= .
ox dz dz Iz

(14a)

But, since A; does not depend upon x, Eq. (14a) is only
possible if A is a constant, so that dg(z)/dz=A, and thus,
using (12), g(z) must be of O(e,). Let us write

8(2) = e4g,(2). (14b)

Thus, across the whole layer 0=z=1, A=0 and H, is inde-
pendent of x. This result is a consequence of the approxima-
tion for the velocity, i.e., u=u(z)1,. The only dependence
upon x of the magnitude of the field H is proportional to «;.

A. Consequence of the Maxwell boundary conditions
at z=0,1

The dimensionless expression of the collinearity (2) is

M(T)=M(T)1, or

M,=M/T)=M(T)H, so that using Eq. (8b),  (14c)

HJ[1+M(T)]=sin ¢.

Using the fundamental equation (3), we have along the
boundaries z=0,1,
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H*=H:+H: ~[1-2M(T)sin*> ¢] or
(14d)
H =~ 1-M(T)sin’ ¢.

The last equation leads us to solve H>—H+M(T)sin> ¢=0 in
the variable H. One of the roots in the high field approxima-
tion (3) is H~M(T)sin?> ¢< 1. The only physical solution is

(14e)

where due to (3), m=0(ey). Using in (14e) Egs. (4a) and
(10b) along the boundaries z=0, 1, we obtain for the dimen-
sionless magnetic field H calculated along the boundaries,
two linear functions of the variable x. Identifying the coeffi-
cients, we have

H=~1-M(T)sin® p=1—-msin* ¢,

@, =— € sin® ¢ (14f)
and
h(0) = h(1) = 1 = sin® ${M(Ty) = €[ Tres = Tol} = O(1).
(14g)

Thus we can define m=egm;={M(T,) - €y T.e—Ty]}, so that
my= 0(1)

B. Across the layer 0=z=1

Equation (14f) defines the value of «; across the whole
layer, since we know it to be a constant. Furthermore, from
Egs. (11), (14a), and (14g), the norm of the magnetic field

\/H§+H§=h+ ayx can be rewritten as

dg |?
h(z) + ax = \/[cos d+g()+ [hz(z) + d_zx] . (15a)

Since from (14f) we know «; to be of O(ey), the dependence
on x of the norm of the magnetic field H should be very
weak. Accordingly, the terms on the RHS of the last equation
(15a) multiplying x should also be very small. Thus, we can
expand the RHS in terms of a power series in x, which yields

h(z) + ayx = \[cos ¢+ g(2)]> + [h.(2)]

d
hz(z)—gx
x| 1+ dz (15b)
[cos p+g() ] +[n() |
neglecting the terms in x*. This leads to
h(z) = \[cos ¢+ g(2) P+ h.(z)* and
(15¢)

dg
h.(z) &

a = [ > o
V[cos ¢+ g(2)]" + [1.(2)]
Then, identifying last equation (15¢), to (14f), we obtain

dg,
dz h2) _
V[cos ¢+ g(2) >+ [h.(2)]? -

Hence (dg,/dz)h,(z)=—sin*> ¢+ O(ep).

—sin® ¢. (15d)
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Looking back at the second Maxwell equation (5b) and
using (10a), we obtain the dimensionless version of the in-
duction hypothesis (5b) as

dt
{HX+HZ—}
L= dz]

oH, O0H, Z
e P2

=— € s 15e
x a2 H (15e)

H
that becomes using (10b), (11), and (14a),

oH, _d’g  dh.

4

=—Jx+
dz  d7? dz

=- EH[hx(z) + £<hz(z) + eHdgl(Z)xﬂ /[h + a;x].
dz dz

(15f)

Keeping only terms up to O(ep), we eliminate the x depen-
dency and obtain from the last equation (15f)

dt
cos ¢+ —h.(z)
dha) __ @,
dz Veos? ¢+ h(z2)

(15g)

Introducing (15g) in (15¢) shows us also that % is O(ey).
Let us introduce in the last equation (15g), the power
expansion (13) in €y. One has

dhy dh
200 _ 270z _ 0 and
dz dz
(15h)
dhy. { b diog d)}
— =—| COoS —SIin .
dz dz

The zero order term h(z) and h.(z) are thus constant. From
(8b) and (14g) defining the boundary values of the magnetic
field, one obtains immediately

h(Z) = 1 + Eth(Z)’ hz(z) = Sin ¢+ ethl(Z)’
(15i)

d
281 _ _in d+O0(ep),
dz
using also (15d). Thus looking back at the Maxwell equa-

tions (5b) and (15h), we obtain the dimensionless version of
the induction hypothesis as

dh dr
ﬁz—e,{cos ¢+ — sin qﬁ} +0(&). (15))

dz dz
Now let us calculate from  (15¢), dhl/dz

=(d/dz)\[cos ¢+ eyg,(z)P+h,(z), so that

dgl dhv

dh €y COS d)d— + hzd—“
& & < (15k)

dz h
Using the asymptotic result (151) and (15j), we finally get
dh

. ., dt
— =— €y| 2 sin ¢ cos ¢ + sin d)d—z .

iz (151)
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V. THE VELOCITY AND TEMPERATURE SOLUTIONS

We can summarize all previous results

JdH in? ¢ d dH dh (16)
— =— gy sin and —=—.
ox e Jz dz

Using (16), the dimensionless equivalent of the momentum
balance (6d) reads

d’u Ra,, | dh , dt
d—Z3+Ra—— — + €y sin® p—

=0. (17)
dz dz

The adimensionalization process introduces two positive di-
mensionless numbers Ra and Ra,, which are proportional

to B:

(1) The number Ra=pyagBd*/ 7« is the classical Rayleigh
number.">*"#

(2) Ra,,/ ey, where the numerator is the usual magnetic Ray-
leigh number Ra,,= B*u K>d*/ n« (Refs. 8 and 10) and

the denominator is the quantity e;=KBd/H* < 1.

Thus, using (151) to express % in the RHS of the mo-
mentum balance equation (17), this last one finally becomes

P4 n {1+Ra’" i 2¢] du » H($)=0. (18a)
I a — S1n = a =V. a
dz? Ra dz?

We are introducing herewith the factor

H(p) =1+ Ra,, sin 2¢. (18b)
Ra

Equation (18a) is clearly the momentum balance equation
studied by Birikh? up to a small transformation. Indeed Bir-
ikh studied

du

F+Ra=0.
v4

(18¢)
All that we have to do is to multiply his solution by the
factor H ().

The energy balance equation (7b) becomes equivalent to
the usual Fourier equation.5’8 Indeed, the advective term due
to the horizontal component of the gradient of the magnetic
field gives a contribution proportional to a; X O(ey) and is
thus negligible. We thus have explicitly

d’t
d—Zz—u(Z)=0. (18d)
The solutions for u(z) and #(z) obtained from Egs. (18a) and
(18d) are closed by the dimensionless expressions of the
boundary conditions along the rigid plates

t=u=0, atz=0,1 (18e)
and by the dimensionless form of the return flow assumption
(6b),
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1
f u(z)dz=0.

0

(18f)

We have thus five conditions to solve our problem at zero
order in €. Its solution is unique: the reference velocity u is
given by

Ra

H
2(z-1)(2z-1), (19)

u(z) =- B

whose extrema are +Ra H/ 72\6, at z=1/2+ \r’m. The ve-
locity reaches a maximal value Max(u)=RaH/72\3
~(.008 Ra'H at z,,,=0.788. Using explicitly the velocity
profile (19) in the RHS of the energy equation (18d), we
obtain the temperature profile

Ra

H
2624 =152+ 1022 - 1). (20)

e ==

A. The classical case of Birikh (Refs. 2—4) or
H=1

When H=1, we are considering three possible cases.
Either there is no magnetic field present so that Ra,,=0 or the
magnetic field is present but it is parallel or perpendicular to
the rigid boundaries. In all three cases, the profiles u(z),#(z)
of velocity and temperature will thus be identical to the ones
for a ferrofluid in a lateral temperature gradient when there is
no magnetic field present. The specific properties of the fer-
rofluid will not intervene, in this reference situation. The
solutions are thus the classical solutions upgp, given by

n(2) = = 22z = 1)(22—1),

21
2 (21a)
and the temperature profile fggp
Ra 3 2
tgxp(z) =— ——z(6z" = 152" + 10z" = 1). (21b)

720

One can identify very easily these last expressions (21a) and
(21b) with the original solutions of Birikh,” Kirdyashkin,’
and Davis,” provided an appropriate rescaling.

B. On an apparent contradiction
Using (151) and (20), the magnetic field is given by
h(z) =1 - €[z sin 2¢ + t(z)sin® ¢ + C]. (22)

Since 4(0)=1-¢ym, sin®> ¢ and #(0)=0, see (14g) and (18e),
we have the value of C

C=sin’> ¢pm,. (23)

Unhappily, we cannot satisfy that with the value of C, the
other boundary condition at z=1. We end up with £,(0)
# h,(1). This is not a contradiction with the boundary con-
ditions deduced from (8b) that lead to (14g); we can get
correctly neither h(z) nor A, from the previous derivation.
Up to the first order in €, this is logical since in (17), the
factor Ra,,/ €y requires us to introduce dh,/dz, proportional
to €. This enables us to get rid of the €y dependency in (17)
and get the zero order differential equation (18a). These last
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TABLE 1. Fluid properties for EMG 901 (Ref. 17) and the dimensionless
numbers.

SI or

Symbol Value CGS Quantity

p 1530 kg/m?3 Density

v 6.5X107° m?/s Kinematic viscosity

K 8.2% 1078 m?/s Heat diffusivity

a 6.0x10™* K! Thermal expansion

By 60.0% 1073 Tesla Magnetic induction
at saturation

M, 4.8x10* A/m Saturation magnetization

K 29 A/K Pyromagnetic coefficient

H¢ >4.8%10* A/m Strong external field

d 1-10 mm Variable width

0.1-1.0 K/mm Variable lateral gradient

g 9.81X10™ ms™> Variable gravity level,
6=n=0

Ra 11X 10™"d*B Thermal Rayleigh
number

Ra,, 1.284*3% Magnetic Rayleigh
number

€y 29dB/H¢ Coupling between magnetic
field and temperature

Ra,,/Ra 0.116 X 10"B

equations (18a) and (18d) do not depend on the magnetic
field explicitly and constitutes a linear system of the fifth
order with the four boundary conditions at z=0, z=1, and the
fifth one, (18f) closing the system. In the approximation
scheme developed here, we do not use any of the boundary
conditions linked to the magnetic field.

Beyond the zeroth order term of the expansion in €y, the
dependence in z is much more complicated. The calculations
express that the magnetic field exhibits a very small correc-
tion across the layer which “disturbs” the original ¢,u pro-
files. To solve the real problem, one must introduce a 2D
model for u,t,h. Nevertheless, the error which we are leav-
ing is O(ey).

VI. EXPERIMENTAL VALUES
OF THE DIMENSIONLESS PARAMETERS

Before discussing the theoretical results of the present
model, we will consider its physical relevance. We consider
the physical data that define a well known ferrofluid, EMG
901 (Ref. 17) (see Table I) as well as the validity range of
our problem.

We suppose a layer of infinite lateral extent. In practice,
it means that the layer total length is large enough to have a
middle region far enough from the lateral walls, where their
influence can be neglected.z_4 If L is the distance between
both lateral walls, we must assume d << L. Another limitation
to take into account is that the total drop of temperature,
from one vertical end wall to the other, does not include a
phase change. The total temperature drop from the hot wall
to the cold one defines B, since T}y — To1q = BL. A reasonable
value on 8 for EMG 901 means to know the temperature of
the liquid-gas phase change and of the solid-liquid phase
change. That liquid is an isoparaffin solvent, whose boiling
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point is around 250 °C. EMG 901 belongs to the alkylate
family. Since the freezing point of naphtha is —54 °C, we
assume EMG 901 to be a liquid, at normal temperature.
Measuring d in mm and B in K/mm and assuming
L=15 cm, 8 should be lower than 1 K/mm so that the total
temperature drop should be less than 150 °C. We will thus
consider 0.1=8=1.

We use the data gathered in Table I to estimate the fol-
lowing numbers. One notes that Ra,, varies from 1.28 X 10*
for d=10 and B=1 down to 0.0128 for d=1 and $=0.1 while
Ra varies between its maximum value 11X 10* on Earth at
d=10 and B=1, down to its minimum Ra=1.1 X 107 in mi-
crogravity (n=6) at d=1.0 and B=0.1. The ratio of the pa-
rameters Ra,,/Ra does not depend on the depth d. On Earth,
at B=1, Ra,,/Ra reaches a maximum value 0.116<1. In
microgravity, for $=0.1, the ratio Ra,,/Ra is larger than 1. It
varies from 1.16 at n=2 up to 11600 at n=6. The quantity
Ra,,/Ra thus covers a very large range of physical values and
depends highly on the gravity level. From the explicit defi-
nition of Ra,,/Ra=0.116 X 10”8, one can define a gravity
level n>0 and B,=8.62 X 107", a critical value of the lateral
temperature gradient S such that Ra,,/Ra=1. For lower grav-
ity level (meaning thus larger n) or for larger value of B
> fB,, Ra,,>Ra. For EMG 901, the magnetization at satura-
tion is M, =4.8 X 10* A/m."” Our study is valid only in the
framework of a strong magnetic field (4a), so that we must
consider a magnetic field larger than M, to obey the strong
field assumption. Then, should we take an exterior magnetic
field larger than 4.8 X 10* A/m, our choice of parameters
(see Table I) shows € to be less than 0.001. It is thus logical
to consider that

The last inequality which we used to solve the inclined mag-
netic field problem is now experimentally substantiated.

VIl. THE PROFILES OF VELOCITY AND
TEMPERATURE FOR AN INCLINED MAGNETIC FIELD

In the case of an inclined strong magnetic field, the
velocity and temperature profiles (19) and (20) can be writ-
ten as

u(z) = H(h)upp(2),
(25)
1(z) = H(P)tgpk(2)-

The whole discussion reduces to the physical and mathemati-
cal meaning of the factor H(¢) which varies with the oblig-
uity and combines the gravity level, the saturation magneti-
zation and the temperature gradient. This opens new
possibilities which should be carefully discussed as these
suggest future experiments. This factor dilates the Birikh
shape when sin 2¢ is positive or compresses it when sin 2¢
is negative. For a given inclination ¢, the maximum of the
velocity (25) is [Ra+Ra,, sin 2¢]/72v3. This last function
varies with the inclination angle ¢. It reaches its maximum
value [Ra+Ra,,]/(72V3) at ¢p=m/4, and its minimum value

[Ra—Ra,]/(72\3) at p=3m/4.
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FIG. 2. Temperature and velocity on Earth. d=1 mm, 8=1 Kmm™, Ra
=11, Ra,,=1.28. Curve 1: ¢p=45°. Middle curve: ¢p=0°. Curve 2: ¢=135°.

Equation (25) has a very important consequence. Indeed,
the velocity can be equal to zero and the temperature gives a
pure conductive solution for a critical angle ¢= ¢, when-
ever H(¢q)=1+(Ra,,/Ra)sin 2¢.;=0. We shall now con-
sider two cases depending on the ratio Ra,,/Ra using the
discussion of Sec. VI for realistic conditions since Ra,,/Ra
<1 and Ra,,/Ra>1 corresponds to a microgravity situation.

(i) Case Ra>Ra,,. Then, whatever the value of sin 2¢,
‘H is always positive. H is larger than 1 when ¢ belongs to
the first or the third quadrant, and less than 1, when ¢ be-
longs to the second or the fourth quadrant. Using Table I, we
are showing in Fig. 2, the results for three inclinations, at
Ra,,/Ra=0.116. For d=1, B=1, Ra=11, Ra,,=1.28, the in-
clination can compress or dilate the Birikh profile very
slightly, given by the middle curve (see Fig. 2). This follows
from the comparison of the profiles of u(z) and #(z) obtained
using (21a) and (21b) in the absence of a magnetic field, to
the ones given by (25), for ¢=45°,135° (curves 1 and 2,
respectively).

(ii) Case Ra=Ra,,. Then, when ¢ belongs to the first or
the third quadrant, H is positive and larger than 1. The shape
of the profiles of velocity and temperature do not differ much
from the previous case. But, when Ra=Ra,,, the quantity H
can also be negative or even equal to zero. Indeed, if
sin ¢ cos ¢ is negative, i.e., when ¢ belongs to the second or
the fourth quadrant, the case H=0 cannot be excluded any-
more. It means to solve sin ¢ cos p=—Ra/(2 Ra,,). Let us
call, y the square of either sin ¢» or cos ¢ so that one can
write sin ¢ cos ¢==++/y(1-y). Then, H=0 becomes equiva-
lent to y*—y+Ra’/4 Ra,2n=0. The roots of the last equation
are given by

1 Ra’ .
yizi 1+ I—R_2 Wlthy++y_=1- (26)

m

Thus to be physically meaningful, both roots y, must be real
and positive quantities, less than 1. The following condition
should necessarily be satisfied: Ra,,/Ra=1. That condition
is, by definition independent upon the depth d. Only if it is
fulfilled, will we have H <0, for y_<y<y,. Indeed, for y
>y, or y<y_, H is always positive. But, for all y such that
y_=y=y,, one has
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FIG. 3. Temperature and velocity in low gravity (n=2). d=1 mm, S
=1 Kmm!, Ra=0.11, Ra,,=1.28. Curve 1: ¢=15°. Curve 2: ¢=30°. Curve
3: $p=45°. Curve 4: $=90°. Curve 5: ¢=135°. Curve 6: ¢p=150°. Curve 7:
¢p=165°.

Abs[sin ¢ cos p]=\y(1 —y) >
2Ra

27)
and thus H < 0 since sin ¢ cos ¢ < 0.

The above discussion is quite easy to illustrate, at least theo-
retically. Indeed, for a given ferrofluid like EMG901 (see
Table I) at a given magnetic field and lateral gradient B, the
only freewheeling parameter left in Ra/Ra,, is the gravity
level n. In microgravity n=2 at 8=1 K mm™', the ratio of
Ra,,/Ra=0.116 X 10" is now =11.6, which is larger than
one and we obtain the velocity and temperature profiles
shown in Fig. 3.

A new possibility appears since H =0 for a certain value
of y given by y, or y_, then u(z)=1(z)=0 for all z. The zero
order solution is a conductive one and there is no flow. The
temperature profile reduces to 7=7"'— Bdx across the whole
layer. In other words the solution is motionless and conduc-
tive when 2. =arc sin{-Ra/Ra,,}. Thus 2¢,~-Ra/Ra,
+(1-)[Ra/ Ram]3—43—0[Ra/ Ra,]°. When one obtains a precise
value of y,, this defines a certain angle ¢.,=m/2+ 6, in the
second quadrant. But 1=y, +y_ intervenes also, to calculate
the other solution of (26). Thus the velocity will become zero
also for another angle in the second quadrant, given by
m— 6, using classical trigonometry properties. The same rea-
soning will apply in the fourth quadrant. Physically, at zero
order in €, the lateral pressure gradient induced by the tem-
perature is exactly compensated by the inclined magnetic
field. This solution is a very unexpected one, since it is a
specific consequence of having an inclined external field. In
the case of Fig. 3, for n=2 and d=1 mm, 6,~2.45°. The
following scenario then applies for microgravity conditions:

—_

Max(uggp)

I
o

0 30 60 90

¢

120 150 180

0

30 60 90

¢

120

150 180
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0 30 60 90 120 150 180 0 30 60 90 120 150 180

FIG. 4. The function H(¢), versus ¢ for three different 8 measured in K/
mm (see legend). On Earth (n=0) and in microgravity (n=2).

the maxima of velocity and temperature increase first with
the inclination angle ¢ up to a certain angle and then de-
crease rapidly toward zero at ¢, =~92.45°. The greatest value
of the temperature (respectively of the velocity) is for a z in
the lower (respectively upper) half of the [0,1] interval.
Above that critical angle and up to ¢=177.15°, the convec-
tion sense is inverted as predicted above. The greatest values
of the temperature and the velocity lie now in the other half
of the [0, 1] interval.

When H is negative, we have again a convective solu-
tion. But this time the convective motion is in the opposite
direction of the original classical Birikh one (see Fig. 3,
curves 5-7), the lateral temperature gradient induces a pres-
sure push through gravity which is opposed to another pres-
sure gradient due to the Kelvin force. This last one is suffi-
ciently strong to overcome the gravitational force. The return
flow has changed from direction. From the values of Table I,
it follows that, this cannot be observed on Earth but could be
easily reached for a microgravity environment with n=2, as
illustrated by comparing Figs. 2 and 3.

Figures 4 and 5 are other ways to illustrate the present
argument, by studying directly H(¢) for various lateral tem-
perature gradients B on Earth n=0 and in microgravity
n=2, for EMG 901 (see Table I). For that ferrofluid, the ratio
Max(u)/Max(uggp)=H () is equal to 1+0.116 10”8 sin 2 ¢,
where n is the microgravity level and S is the temperature
gradient measured in K mm~'. Different behaviors can be
observed.

(a) On Earth n=0. The velocity change, introduced by the
strong inclined field, is not very large with respect to
Max(ugpg) [see Figs. 4 and 5 (left)]. The magnetic
field acts always in the same manner. At first the maxi-
mum velocity increases from Max(ugpg) at ¢p=0° with

FIG. 5. In the ordinate, the maximum
of the velocity scaled by Max(ugkp)
versus ¢ for €4=0.0001. Left:
Ra=6875, Ra,,=800. Center: Ra=11,
Ra,=1.28. Right: Ra=0.11, Ra,
=1.28.

120 150 180
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FIG. 6. In the ordinate,
Max(u)/Max(uggp) as a function of
€y, for various inclinations ¢, ¢=30°,
$=60°, ¢P=45°, $=90°. Left: Ra
=6875, Ra,=800. Center: Ra=11,
Ra,=1.28. Right: Ra=0.11, Ra,
=1.28.
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the angle of inclination and reaches a maxima value,
which is slightly above the Birikh maximum
Max(ugpg), at a finite angle of inclination. Beyond that
value, the maximum of the velocity decreases from that
maximal value, becoming equal to Max(ugpg) for an
inclination very near to ¢= /2, then continues down
to its minimal value somewhere around ¢=37/4. Past
that angle, the velocity increases again towards
Max(ugpg) at ¢p=r.

(b) One way to decrease Ra and Ra,, simultaneously, is
achieved by using smaller values of d or 3, since these
quantities appear, with a positive exponent, in the defi-
nitions of Ra and Ra,, (see Table I). However, reducing
d only at a given S keeps the same value of the ratio
Ra,,/Ra. (Compare Fig. 5 left and center.)

(c) Another way to reduce Ra, while keeping the same
value of Ra,, is to vary the gravity level as shown in
Figs. 4 and 5. In the case of EMG 901, we considered
a microgravity case at n=2, which is equivalent to re-
ducing 100 times the gravity level, so that Ra vary now
like 0.114*8 while Ra,=1.284*8> and the ratio
Ra,,/Ra=11.54 varies linearly with the temperature
gradient, whatever the depth d. While the shape of the
curve seems identical, we observe a very physical dif-
ferent behavior than in the previous case since a gradi-
ent of temperature 0.1<<B<1.0 is sufficient to have
Ra,,/Ra>1. One observes that H(¢) can now become
equal to zero for two peculiar values of ¢. The curves
at $=0.5,1.0 in Fig. 4 give a conductive profile at
&>90° and ¢ < 7. Between those values of ¢, H is
negative: the profile of velocity has changed direction
(see Fig. 4).

VIil. VALIDATION RANGE OF THE STRONG FIELD
APPROXIMATION

Figures 4 and 5 contain the same kind of information.
However Fig. 4 illustrates the analytical solution given by
(25), whereas Fig. 5 refers to direct numerical simulations.
These last are obtained from the governing system of equa-
tions (17), (15g), (15k), and (18d) and the boundary condi-
tions (14g), (18e), and (18f) using the continuation software
AUT097 (Ref. 18) and computed in the space of parameters
defined by Table I. Furthermore, in the rest of the paragraph,
the maximum velocity (ir; absolute value), Max(u), is scaled
by Max(uggp)=Ra/(72V3). This last is the maximum veloc-
ity of the Birikh solution [see (21a)].>™*

Hence, when the magnetic field is absent, horizontal or
vertical, the maximum velocity is always equal to
Max(ugkp) [see (21a)], so that the ratio of the relative
maxima will always be equal to 1, i.e., for ¢=0,7/2, . The
three curves of Fig. 6 show those relative maxima, at four
chosen ¢, namely ¢=15°, $=30°, $=45°, and $=90°, as a
function of €y, using the data from Table 1.

As long as € is small enough the ratio of the velocity
maxima is a constant for a given ¢ and is equal to H. Figure
6 shows this to be the case for all €4<<0.01, whatever the
inclination of the magnetic field. This result is interesting
because it confirms that the general solutions, given by (25),
and which are independent from ey, match perfectly the ex-
act numerical solution once the condition €5 <1 is satisfied.
This is not what could be anticipated from the Maxwell
equation (15k). However, the zero order solutions (19), (20),
and (25), which has been obtained from (18a), rests on the
assumption that €5 is a small quantity (see Sec. V). This last
assumption is always true in our case, since the strong field
means that €;,=(KBd)/H’ should decrease with the increase
of the external field. As the ratio of these velocities does not
vary as a function of the precise value €y [see Fig. 6], it
demonstrates a posteriori, that the zero order development of
(18a) is largely sufficient and that there is no need to go over
to the next expansion order. This is true for any inclined
field. Figure 5 shows this to be true for all ¢, between 0, 7r.

IX. CONCLUSION

We have considered here a thin layer of a ferrofluid,
heated laterally and submitted to an inclined magnetic strong
field and looked for its zeroth order term in a power series
expansion in terms of a small parameter, €4 that measures
the strength of the magnetization relatively to the applied
magnetic field H°. Two conclusions can be drawn:

(a) For the vertical magnetic field and for the horizontal
one, the noninductive hypothesis applies even if one
recovers the classical Birikh solution for a Newtonian
fluid layer submitted to lateral heating.

(b)  For any other inclination, we used a development (13)
in a small parameter €y linked to the variation of mag-
netization in the momentum equation (17). It was giv-
ing rise to a solution (25) which is simply the product
of H=1+Ra,,/Rasin 2¢ a term depending on the ther-
mal Rayleigh number Ra, the magnetic Rayleigh
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number Ra,,, and the inclination angle ¢, by the clas-
sical solution obtained by Birikh.

Using the phenomenological data provided for a typical
ferrofluid EMG 901, we estimate the order of magnitude of
these parameters to compare the analytical results with the
numerical solution. In the strong field case, the velocity and
temperature profiles given by (25) are indistinguishable from
the exact numerical solution whatever the magnetic field
strength, its inclination, the depth of the layer or the gravity
level. This leads to the main conclusion. The profiles of ve-
locity and temperature are now obtained from the product of
two quantities. The first one is the corresponding laminar
profiles for an usual Newtonian fluid submitted to a lateral
temperature gradient.z_4 That classical solution is now mul-
tiplied by the factor H, which is, by definition, independent
upon the depth of the layer. When Ra,,/Ra is large enough,
the role of buoyancy and magnetic field is reversed. Buoy-
ancy is a small term, with respect to the magnetic field
strength which is largely dominant. The inclination of the
magnetic field can give rise to a pure conductive solution at
two critical angles ¢p=m/2+6,, and ¢p=m—-6, for which
‘H=0. For any inclination between those two angles, the di-
rection of circulation and the temperature profile are even
reverted (see Figs. 3 and 4), with respect to the classical
solutions (21a) and (21b) valid in the absence of a magnetic
field. These new possibilities will show up under micrograv-
ity conditions.
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