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We analyse the stability of a thin film falling under the influence of gravity down a
locally heated plate. Marangoni flow, due to local temperature changes influencing
the surface tension, opposes the gravitationally driven Poiseuille flow and forms a
horizontal band at the upper edge of the heater. The thickness of the band increases
with the surface tension gradient, until an instability forms a rivulet structure periodic
in the transverse direction. We study the dependence of the critical Marangoni number,
a non-dimensional measure of the surface tension gradient at the onset of instability,
on the associated Bond and Biot numbers, non-dimensional measures of the curvature
pressure and heat-conductive properties of the film respectively. We develop a model
based on long-wave theory to calculate base-state solutions and their linear stability.
We obtain dispersion relations, which give us the wavelength and growth rate of the
fastest growing mode. The calculated film profile and wavelength of the most unstable
mode at the instability threshold are in quantitative agreement with the experimental
results. We show via an energy analysis of the most unstable linear eigenmode that the
instability is driven by gravity and an interaction between base-state curvature and
the perturbation thickness. In the case of non-zero Biot number transverse variations
of the temperature profile also contribute to destabilization.

1. Introduction
The importance of thin (< 1 mm) liquid films has led to intensive studies of their

flow characteristics and stability against rupture. For a recent review of the field see
Oron, Davis & Bankoff (1997). The effects of thermocapillarity on gravitationally
driven flow in thin liquid layers on a solid support and their stability has been studied
both theoretically and experimentally and has applications to coating technology and
heat transfer devices (Lin 1974; Sreenivasan & Lin 1978; Kelley, Davis & Goussis
1986; Joo, Davis & Bankoff 1991; Ji & Setterwall 1994; Ito, Masunaga & Baba
1995; Joo, Davis & Bankoff 1996; Zeytounian 1998). Falling film evaporators, used
for the separation of temperature-sensitive fluids, rely on the heat-transfer properties
and stability of falling thin liquid films. To avoid the reduction of their performance
by film breakdown it is of paramount importance to understand when and why
instabilities arise that may break the film.
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Figure 1. Schematic diagram of the problem viewed from the transverse y-direction.
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Figure 2. Two photographs of the falling film viewed from the z-direction, obtained using shadow-
graph techniques. For Ma∗ < Ma∗c the bump forms at the upper edge of the heater (left), whereas
for Ma∗ > Ma∗c the rivulet structure appears (right). The solution consists of 25% ethyl alcohol,
Re = 0.25.

Recent experimental studies have focused on thin films falling down inhomogen-
eously heated plates and have revealed the occurrence of novel instabilities (Kabov,
Marchuk & Chupin 1996; Kabov 1996; Kabov & Chinnov 1997; Kabov 1998; Scheid
et al. 2000). In this paper we study the stability of low-Reynolds-number Poiseuille
flow on a locally heated plate. At the upper edge of the heater the temperature of the
plate increases by ∆T within a distance L (see figure 1). As the temperature of the
fluid surface increases, the surface tension decreases. The concomitant surface tension
gradient produces a Marangoni flow opposed to the gravitationally driven flow. As
first reported in Kabov (1994), the competing flows produce a horizontal band of
increased film thickness at the upper edge of the heater, which may become unstable
and develop rivulets periodic in the direction transverse to the flow. Figure 2 shows
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shadowgraph images of the bump development at the upper edge of the heater and
the subsequent rivulet instability.

We apply long-wave theory (Oron et al. 1997) to derive a nonlinear equation for
the film thickness, h(x), of the steady state flow (§ 2). We then solve for the steady
film profiles and study the dependence of the system on the associated Marangoni
number, a measure of the surface tension gradient, the Bond number, a measure
of the curvature pressure, and the Biot number, which measures the heat transfer
from the film to the ambient. In order to calculate the solutions using continuation
methods we extend our system from a single temperature increase to a periodic array
of temperature increases (§ 3). We apply linear stability theory to the steady solutions
to find dispersion relations giving us the growth rate of the most unstable mode
as a function of the wavenumber in the transverse direction (§ 4). For large periods
of the array we recover the experimental situation of one localized heater (§ 5). In
§ 6 we perform an energy analysis following the method of Spaid & Homsy (1996)
to elucidate the physical nature of the instability and to understand its relation to
the various fingering instabilities of liquid rims that accompany moving contact lines
(Troian et al. 1989; Spaid & Homsy 1996; Bertozzi & Brenner 1997; Kataoka &
Troian 1997; Bertozzi et al. 1998; Kataoka & Troian 1998; Moyle, Chen & Homsy
1999; Eres, Schwartz & Roy 2000). It is worth mentioning that fluid flow over a step
change in the substrate topology can also generate stationary fluid ridges (Kalliadasis,
Bielarz & Homsy 2000); however, these ridges are found to be strongly stable over
a wide range of parameter space (Kalliadasis & Homsy 2001). Another example
of a stationary fluid ridge is found when a viscous fluid is placed in a horizontal
cylinder rotating about its longitudinal axis (Hosoi & Mahadevan 1999). Using the
interpretation of the energy results in the literature, we compare the results to the
work of Spaid & Homsy (1996) and Kataoka & Troian (1997, 1998) on moving
contact line instabilities. We propose a novel interpretation of the energy analysis,
which yields a physical interpretation of the instability mechanism. As one increases
the transverse wavenumber, k, of the perturbation the marginally stable state at k = 0
is destabilized by both gravity and an interaction between the base-state curvature
and the perturbation thickness. An energy analysis of the case of non-zero Biot
number reveals a more complex phenomenon containing the additional effect of
transverse variations of the temperature profile, which produces a thermocapillary
instability. The results are discussed in detail and shown to be in agreement with
existing experimental data (§ 7).

2. Mathematical model
In this section we construct a mathematical model for a thin film flowing down

a locally heated plate at an angle θ with the vertical (figure 1). We begin with the
Navier–Stokes, heat, and continuity equations for incompressible Newtonian fluids:

ut + u · ∇u = −∇P
ρ

+ ν∇2u− g, (2.1)

ρc(Tt + u · ∇T ) = kth∇2T , (2.2)

∇ · u = 0, (2.3)

where ρ, ν, c and kth correspond to the density, kinematic viscosity, specific heat and
thermal conductivity of the fluid, u is the velocity field (u, v, w), P is the pressure,
g is acceleration due to gravity, T is the temperature field. We have applied the
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Non-dimensional Approximate
group Symbol Physical interpretation Definition value

Aspect ratio ε
film thickness of unheated flow

lengthscale of temperature gradient

H

L
10−2

Associated Bo∗
gravity

curvature pressure

ρgL3 cos θ

Hσ0

10
Bond number

Associated Ma∗
surface stress

gravity

σT∆T

HLρg cos θ
10

Marangoni number

Biot number Bi
heat transfer

heat conductivity

αthH

kth
0.1

Grashof number Gr
buoyancy force

viscous force

α∆T

cos θ
10−3

Péclet number Pe
heat advection

heat conduction

ρcgH3 cos θ

kthν
10−1

Reynolds number Re
inertia

viscosity

gH2L cos θ

ν2
1

Table 1. Non-dimensional groups and their approximate values.

Boussinesq approximation (Perez Cordon & Velarde 1975), and subscripts t, x, y and
z denote derivatives from now on; x is the direction of the flow, and z is the direction
perpendicular to the plate. The transverse direction is y (see figure 1). Buoyancy is
neglected since the Grashof number is small (see table 1). We integrate the continuity
equation (2.3) across the film and apply the kinematic boundary condition at the free
surface, w = ht + u · ∇h, to find an evolution equation for the film thickness, h(x, y):

ht + ∇ · Γ = 0, (2.4)

where Γ =
∫ h

0
u dz is the flux. We are interested in structure formation on the timescale

of the convective motion of the flow and use the velocity scale based on a balance of
viscous and gravitational forces. The dimensionless variables (primed) are defined by

x = Lx′, y = Ly′, z = Hz′,

u =
g cos θH2

ν
u′, v =

g cos θH2

ν
v′, w =

g cos θH3

Lν
w′,

P − Pa = ρgL cos θP ′, t =
Lν

g cos θH2
t′, T − T∞ = ∆TT ′,


(2.5)

where H is the height of the film, L is the lengthscale in the streamwise direction over
which the temperature varies, Pa is the ambient pressure, ∆T is the temperature jump
at a heater and T∞ is the ambient temperature and the upstream temperature far
away from the heater. The experimental parameters can be found in table 2. Applying
standard lubrication theory in terms of the parameter ε = H/L yields, after dropping
the primes, the leading-order balance:

0 = uzz − Px + 1, (2.6)

0 = vzz − Py, (2.7)
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Physical parameter Symbol Approximate value

Density ρ 1 g cm−3

Kinematic viscosity ν 10−2 cm2 s−1

Surface tension σ0 70 g s−2

Film height H 10−3 cm

Lengthscale of temperature gradient at the solid L 10−1 cm

Velocity in x-direction U 10−1 cm s−1

Velocity in z-direction W 10−3 cm s−1

Gravity g 103 cm s−2

Sensitivity of surface tension to temperature σT 10−1 g s−2 K−1

Change in temperature ∆T 10 K

Angle of plate from vertical θ 0

Heat transfer coefficient αth 107 g s−3 K−1

Thermal conductivity kth 6× 104 g cm s−3 K−1

Specific heat c 4× 107 cm2 s−2 K−1

Thermal expansion coefficient α 3× 10−4 K−1

Table 2. Experimental parameters.

0 = Pz, (2.8)

0 = Tzz. (2.9)

We note that although the Reynolds number, Re = g cos θH2L/ν2, is approximately
1 (see table 1), the non-dimensional group multiplying the inertial terms in equations
(2.6) and (2.7) is ε2Re. Similarly, the Péclet number in the leading-order balance is
multiplied by a factor of ε and does not appear in equation (2.8). The asymptotic
approximation breaks down when the aspect ratio ε is no longer small as is the
case for the thickest films investigated in the experiment. To solve the above set
of equations we require two boundary conditions for the temperature, four for the
velocity field, and one for the pressure. Since the metal heater is a good conductor of
heat we can assume that the temperature of the fluid at z = 0 can be given by the
temperature of the solid surface, T0(x). The boundary condition on the temperature
at the free surface is given by Newton’s cooling law. Non-dimensionalizing these
boundary conditions on the temperature field yields

T = T0(x) at z = 0, (2.10)

0 = Tz + BiT at z = h(x), (2.11)

where Bi is the Biot number. The temperature field at the interface is found by
integrating equation (2.8) twice and applying the boundary conditions (2.10) and
(2.11):

T (x, z = h) = T i(x) =
T0(x)

1 + Bih
. (2.12)

We shall assume that surface tension varies linearly with temperature, σ(T ) =
σ0−σT (T −T∞), and consider fluids where the surface tension decreases with increas-
ing temperature, σT > 0. The appropriate boundary conditions, given here at leading
order, for the velocity field are the no-slip condition at the solid–fluid interface and
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the tangential and normal stress conditions on the surface:

u = 0 at z = 0, (2.13)

uz = −Ma∗∇T i at z = h(x), (2.14)

where the associated Marangoni number, Ma∗, is positive. Table 1 contains definitions
and characteristic values of all the non-dimensional groups used in this analysis. The
leading-order balance of the normal stress condition at the film surface in non-
dimensional form yields the pressure

P = − 1

Bo∗
∇2h, (2.15)

where Bo∗ is the associated Bond number. Equations (2.6)–(2.8) can be solved using
the boundary conditions (2.10)–(2.15) and the integrated continuity equation (2.4) to
find the evolution equation:

ht + ∇ ·
[
h3

3

(
1

Bo∗
∇∇2h+ ex

)
− h2

2
Ma∗∇T i

]
= 0, (2.16)

where ex denotes the unit vector in the x-direction.
The essential difference between this evolution equation and similar equations in

the literature (Oron & Rosenau 1992; Joo et al. 1991) is that the Marangoni effect
influences the leading-order balance determining the steady flow. In contrast to Joo
et al. (1991) equation (2.16) does not contain the aspect ratio ε as a parameter.

3. Base state
To calculate the base state we assume that the flow is steady (ht = 0) and has no

transverse variation (v = 0), and integrate equation (2.16) once to obtain the following
nonlinear ordinary differential equation for the steady height profile of the film, to be
solved with the far-field boundary condition h→ 1 as x→ ±∞:

1 = − 3
2
Ma∗T i

x h
2 +

(
1

Bo∗
hxxx + 1

)
h3. (3.1)

In order to use continuation techniques for finding solutions of equation (3.1) we
choose a periodic temperature gradient at the plate surface:

T0x(x) = | cos(πxL/l)|sech2

[
2l

πL
sin

(
π
xL

l

)]
, (3.2)

which corresponds to an infinite array of localized temperature increases. We have now
introduced a second lengthscale, l, the period of the array. Unless stated otherwise we
compute our results for l = 20L. In the limit of infinite l we recover the case of a single
temperature increase and the temperature gradient (3.2) reduces to T0x = sech2(2x).
The periodic solutions of (3.1) with (3.2) are followed through parameter space using
the continuation software AUTO (Doedel et al. 1997). We start with the flat-film
solution at Ma∗ = 0 for a fixed Bo∗ and proceed by increasing Ma∗ and Bi to their
desired values. As a check we performed the analysis in this paper for a temperature
profile T0 having the shape of an error function and compared it to the results for
the hyperbolic tangent profile (3.2). Slight changes in the film profile are not very
important: as long as the lengthscale over which the temperature changes remains
unchanged, the film profile and its stability properties remain nearly unchanged.
Consequently, we focus only on the temperature profile given by (3.2). The height of
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Figure 3. Film profiles for the steady solutions plotted parametrically (a) for different Ma∗ with
Bo∗ = 10 and Bi = 0; (b) for different Bi, with Ma∗ = 1.0 and Bo∗ = 10; (c) for different Bo∗, with
Ma∗ = 1.0 and Bi = 0. (d ) Maximum height as a function of Ma∗. For all plots l/L = 20.

the bump increases approximately linearly with Ma∗ (figure 3a, d ). Bi acts to reduce
the effective temperature gradient at the film surface and results in a decrease of the
bump height (see figure 3b). 1/Bo∗ is the non-dimensional curvature pressure and its
increase reduces the curvature and height of the steady solutions (see figure 3c). The
upstream depressions are due to the influence of curvature pressure.

4. Linear stability analysis
To study the linear stability of the base-state solutions we use a perturbation of

the form

h = h0(x) + εh1(x) eiky+βt, (4.1)

where we are able to Fourier transform in the y-direction since the steady solution
is invariant in that direction. Inserting equation (4.1) into (2.16) yields for Bi = 0 a
linear differential equation with non-constant nonlinear coefficients:

0 =

[
β −Ma∗(h0T0x)x +

1

Bo∗
(h2

0h0xxx)x + 2h0h0x +
k4

3Bo∗
h3

0

]
h1

+

[
1

Bo∗
h2

0(h0xxx − k2h0x)−Ma∗h0T0x + h2
0

]
h1x

− 2k2

3Bo∗
h3

0h1xx +
1

Bo∗
h2

0h0xh1xxx +
1

3Bo∗
h3

0h1xxxx. (4.2)

We refer the reader to the Appendix for details of the case Bi 6= 0.
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Figure 4. Dispersion relations showing the growth rate, β, versus the wavenumber, k, for (a)
Ma∗ < 5 and (b) Ma∗ < 10 with Bo∗ = 10, Bi = 0; dispersion relations for (c) Ma∗ < 5 and (d )
Ma∗ < 10 with Bo∗ = 1000, Bi = 0. For all plots l/L = 20.

In order to numerically solve equation (4.2) we discretize it by expressing the
derivatives of h1[i] at a point i as a linear combination of h1[n] where i−2 6 n 6 i+2.
Using periodic boundary conditions this yields the algebraic eigenvalue problem:

βh1 + L(k, h0, h0x, h0xx, h0xxx, h0xxxx, T0x, T0xx) h1 = 0, (4.3)

where L is a linear operator that is determined by the base-state solution, h0, the
wavenumber in the y-direction, k, and the gradient of the temperature field at
the plate, T0x. We solve for the largest eigenvalue (i.e. growth rates), β, and the
corresponding eigenvector, h1. If a density of more than 10 points per unit length is
used for discretization the results are independent of this number.

For Bi = 0 we plot dispersion relations (i.e. β as a function of k) parametrically
as a function of the dimensionless group Ma∗ in figure 4. From these plots it is clear
that while the bump is stable for perturbations purely in the streamwise direction
(k = 0), it is linearly unstable for some spanwise perturbations as β > 0 for a range
of transverse wavenumbers, 0 < k < k0. Increasing Ma∗ amplifies the growth rate of
the most unstable mode, βmax, and increases k0. For small Ma∗ the wavenumber of
the most unstable mode, kmax, increases with Ma∗; however, the opposite tendency
is clear for larger Ma∗ (see figure 4a, c vs. figure 4b, d and also figure 5). The same
tendency is found for all the cases studied: kmax first increases and then decreases
with rising Ma∗. Comparing figures 4(a, b) with 4(c, d ) we see that a decrease in the
effective surface tension results in larger βmax and larger kmax for comparable Ma∗.
Some eigenfunctions for the most unstable mode are shown in figure 6.

For Bi 6= 0 (see figure 7) the base state is unstable for oscillatory perturbations,
corresponding to complex eigenvalues, as well as the real mode discussed above for
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Figure 5. The wavenumber, kmax, and growth rate, βmax, of the most unstable mode for Ma∗ < 10,
Bo∗ = 10, Bi = 0, l/L = 20.
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Figure 8. The growth rate for the most unstable mode, βmax, plotted parametrically for different
domain lengths, l/L, with Bo∗ = 10, Bi = 0. Also shown is the extrapolation for an infinite domain
length. Inset: the equivalent for the wavenumber of the most unstable mode, kmax.

Bi = 0, which has a purely real eigenvalue. The oscillatory modes are similar in
character to the unstable modes of a gravitationally driven flat falling film heated
homogeneously (see the Appendix) and modes with no transverse dependence (k = 0)
have a non-zero growth rate. Oscillatory modes are dominant for a certain range
of k, which depends strongly on the periodicity of the array of heaters. For small
Ma∗ the most unstable mode can be oscillatory as the curve for Ma∗ = 1.5 in
figure 7 illustrates. For larger Ma∗ the rivulet instability, identified by its purely real
eigenvalues, is dominant. The eigenfunctions of the real mode are very similar to
those for Bi = 0 (figure 6). Increasing Bi shifts dominance from the rivulet to the
oscillatory instability. In the case Bi = 0 the oscillatory modes have relevance only for
very small Ma∗. The real part of the growth rates of the oscillatory modes decreases
as we increase the period of the array of heaters. Since we are most interested in the
limiting case of a single heater (∞ period) we restrain our interest in the oscillatory
modes and focus our attention on the localized real mode.

In order to understand the qualitatively different behaviours of the system for
small and large Ma∗ seen in figure 5 we study the shape of the eigenfunctions of
the most unstable modes (see figure 6). As Ma∗ decreases from 10 the eigenfunction
becomes more elongated downstream and is no longer localized in the region of the
steady-state bump. Decreasing Ma∗ further extends the eigenfunction over the entire
period. Physically, we expect the length of the downstream tail of the eigenfunction to
correspond to the distance an instability is convected due to the base-state flow: the
product of the timescale of the instability, 1/β, and the velocity scale of the base state,
U0 = 1, is proportional to a characteristic downstream length of the eigenfunction. In
the inset of figure 6 we see that the length between the maximum and downstream
half-maximum of the eigenfunction, s, varies linearly with 1/β. For smaller β, the
length s becomes larger than the period of the array, implying that the delocalized
eigenfunctions found for small Ma∗ are due to the periodicity of the array.

5. Limit of one localized heater
To study the effect of the period length l and extrapolate the results to a single

localized heater, we plot in figure 8 the maximum growth rate, βmax, and its associated
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Figure 9. The critical Marangoni number, Ma∗c , (a) as a function of the Bond number Bo∗ with
Bi = 0, (b) as a function of the Biot number Bi with Bo∗ = 10.

wavenumber, kmax, as a function of Ma∗ for different l. For localized eigenfunctions
(Ma∗ > 7) the results are independent of l, whereas for non-localized eigenfunctions
(Ma∗ 6 7) βmax and kmax decrease with increasing l.

Upon increasing the size of the domain, we see the localized mode for smaller
Ma∗. This supports the physical picture introduced above, namely that the behaviour
in the region of smaller Ma∗ is influenced by the periodicity of the array and that
such an influence is destabilizing. In the region of localized eigenfunctions, β is a
linear function of Ma∗. If one considers l →∞, the influence of periodicity would
be eliminated and the case of a single localized heater recovered. However, such
a numerical experiment is impossible using our methods. A reasonable assump-
tion is that the linear behaviour found for localized eigenfunctions would continue
since for an infinite period all eigenfunctions are localized. Extending the line of
β(Ma∗), we see that it crosses the x-axis at a point Ma∗c , the critical Marangoni
number for a single heater. The wavenumber of the most unstable mode at Ma∗c
approaches an asymptotic value, which we take as the wavenumber at onset, as
the period length is increased. In this limit for Ma∗ < Ma∗c all bumps are stable
to transverse instabilities, while for Ma∗ > Ma∗c we have a rivulet instability. In the
experiment performed with a single heater (Scheid et al. 2000) the region where
the wavenumber of the maximum unstable mode increases with Ma∗ is not ex-
pected to exist because this is a behaviour characteristic of non-localized eigenfunc-
tions.

Finally, we study the dependence of the critical Marangoni number on the param-
eters of the system, Bo∗ and Bi. Ma∗c decreases both with increasing the associated
Bond number and with increasing the Biot number as shown in figure 9. It is well
known that surface tension, measured in our system by the inverse of the associated
Bond number, 1/Bo∗, is stabilizing and has a greater stabilizing effect on shorter-
wavelength perturbations (see equation (A 2)). This stabilizing effect is seen in the
increase of the wavelength of the most unstable eigenfunction (see figure 4) as well as
in the increase of the critical Marangoni number with decreasing Bo∗ (see figure 9a).
Increasing the Biot number is destabilizing (see figure 9b) since this allows for an
additional thermocapillary instability mechanism.
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Term Expression Physical mechanism

1 ch1x Convective flow in x-direction due to travelling wave reference
velocity, c

2
1

3Bo∗
(h3

0h1xxx)x Capillary flow in x-direction induced by perturbation curvature
in x

3 − 1

3Bo∗
(k2h3

0h1x)x Capillary flow in x-direction induced by perturbation curvature
in y

4 (h2
0h1)x Flow in x-direction due to gravity

5
1

Bo∗
(h2

0h0xxxh1)x Capillary flow in x-direction due to perturbation thickness
variations

6 − 1

3Bo∗
k2h3

0h1xx Capillary flow in y-direction induced by perturbation curvature
in x

7
k4h3

0h1

3Bo∗
Capillary flow in y-direction induced by perturbation curvature
in y

8 −Ma∗(T i
xh0h1)x Thermocapillary flow in x-direction due to perturbation

thickness variations

9 Ma∗
[
h2

0

2

(
T iBih1

1 + Bih0

)
x

]
x

Thermocapillary flow in x-direction due to streamwise
temperature variations

10 −k
2BiMa∗T ih2

0h1

2(1 + Bih0)
Thermocapillary flow in y-direction due to transverse
temperature gradients

Table 3. Terms of the linear operator and their physical interpretation.

6. Instability mechanisms
Following Spaid & Homsy (1996), the growth rate β can be interpreted as an energy

production rate, E∗, and a quadratic form can be used to calculate the contributions
of the individual terms to this production rate. Equation (4.3) is multiplied by h1 and
integrated over one period in order to find the resulting individual contributions, βn:

βn = −〈h1,Lnh1〉
〈h1, h1〉 . (6.1)

where

〈v, w〉 =

∫ l

0

vw dx, (6.2)

and the operators Ln are the individual terms of the linear operator L, which depend
nonlinearly on the base flow solution, h0(x), and are listed with their physical meaning
in table 3. The interpretation in the literature is that terms of the linear operator
corresponding to positive βn are destabilizing, while terms corresponding to negative
βn are stabilizing (Spaid & Homsy 1996; Kataoka & Troian 1997, 1998). Using this
interpretation we compare in table 4 the instability of a liquid ridge in a moving
contact line with our system in the non-localized regime for Ma∗ < Ma∗c and the
localized regime for Ma∗ > Ma∗c as shown in figure 10.

Various βn are non-zero for k = 0 (see figure 10); however, they always balance
to yield a transversely invariant neutrally stable state. Consequently, interpreting the
results as in the literature does not reveal the instability mechanism. The destabiliza-
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Term Spaid & Homsy Kataoka & Troian Kataoka & Troian Bi = 0 Bi 6= 0

1 None None None NA NA
2 Stabilizing Destabilizing Stabilizing Stabilizing Stabilizing
3 Stabilizing Stabilizing Stabilizing Stabilizing Stabilizing
4 Most destabilizing NA Stabilizing Destabilizing Destabilizing
5 Stabilizing Stabilizing Stabilizing Most Destabilizing

destabilizing
6 Destabilizing Destabilizing Destabilizing Destabilizing Destabilizing
7 Stabilizing Stabilizing Stabilizing Stabilizing Stabilizing
8 NA Most destabilizing Most destabilizing Stabilizing Stabilizing
9 NA NA NA NA Destabilizing

10 NA NA NA NA Most
destabilizing

Table 4. The effect of the various terms of the linear operator on the stability of moving contact
lines (Spaid & Homsy 1996, figure 13; Kataoka & Troian 1997, figure 7; Kataoka & Troian 1998,
figure 5) and stationary fluid ridges (Bi = 0, Bi 6= 0) using the interpretation of the energy analysis
in the literature. If a term does not appear in one of the systems discussed NA (not applicable) is
placed in the corresponding box.

E *

(a)

(b)
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0.05

0

–0.05

–0.10

0 0.4 0.8 1.2

b
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4
5
6
7
8

2

0

–2

–4

0 0.4 0.8 1.2

E *

Figure 10. Contributions to the largest eigenvalue of the various terms of the operator plotted as
a function of the wavenumber with Bo∗ = 10, Bi = 0 and l/L = 20 in (a) the non-localized regime
for Ma∗ = 3.0 and (b) the localized regime for Ma∗ = 8.0.
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2
3
4
5
6
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0.01

Figure 11. The contributions to the largest eigenvalue of the various terms of the operator relative to
their contributions to the marginally stable state at k = 0 plotted as a function of the wavenumber
with Bo∗ = 10, Bi = 0 and l/L = 20 in (a) the non-localized regime for Ma∗ = 3.0 and (b) the
localized regime for Ma∗ = 8.0.

tion of the marginally stable state arises as a result of deviations of the values of the
βn from their values at k = 0. Hence the most important instability mechanisms are
those in which the associated βn deviate most from their values at k = 0 as plotted
in figure 11. We see that for Bi = 0 and Ma∗ < Ma∗c term 5, which was previously
interpreted as the most destabilizing is now a stabilizing factor. The non-localized and
localized regimes for Bi = 0 are clearly distinguished by the roles of terms 2 and 5:
term 2 changes from destabilizing to stabilizing, and term 5 changes from stabilizing
to destabilizing as the Marangoni number is increased. At the onset of the instability
gravity (term 4) acts with the capillary flow in the x-direction induced by perturbation
thickness variations (term 5) to destabilize the flow. The maxima of the β4(k) and β5(k)
shift with increasing Ma∗ towards larger and smaller wavenumbers, respectively. The
change in the relative destabilizing influence of the two terms causes the wavenumber
of the fastest growing mode to increase with Ma∗ in the non-localized regime and
decrease with Ma∗ in the localized regime. The Bi = 0 instability is different from
the contact line instabilities because term 5 is crucially involved in the destabilization
process. For the Bi 6= 0 case the main destabilizing mechanisms are thermocapillarity
and gravity, thus making this another qualitatively different type of instability. In
both the Bi = 0 and Bi 6= 0 fluid ridge instabilities analysed in this paper the main
stabilizing influence is the thermocapillary flow in the x-direction.

In table 5 we summarize the effects of the terms as determined relative to their
influence at k = 0. We note that this interpretation resolves some of the discrepancies
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Term Spaid & Homsy Kataoka & Troian Kataoka & Troian Bi = 0 Bi 6= 0

1 None None None NA NA
2 Most Most None∗ Stabilizing1 Destabilizing

destabilizing destabilizing
3 Stabilizing Stabilizing Stabilizing Stabilizing Stabilizing
4 Destabilizing NA Most Destabilizing Destabilizing

destabilizing
5 Stabilizing Stabilizing Stabilizing Most Stabilizing

destabilizing2

6 Destabilizing Destabilizing Destabilizing Destabilizing Destabilizing
7 Stabilizing Stabilizing Stabilizing Stabilizing Stabilizing
8 NA Destabilizing Stabilizing Stabilizing Stabilizing
9 NA NA NA NA Destabilizing

10 NA NA NA NA Most
destabilizing

Table 5. The effect of the various terms of the linear operator on the stability of moving contact
lines (Spaid & Homsy 1996; Kataoka & Troian 1997, 1998) and stationay fluid ridges (Bi = 0,
Bi 6= 0) using the new interpretation of the energy analysis. ∗ The change in value of this term
relative to its value at k = 0 is so small it can not be resolved by looking at the published results.
If a term does not appear in one of the systems discussed NA (not applicable) is placed in the
corresponding box. 1 Destabilizing for Ma∗ < Ma∗c; 2 stabilizing for Ma∗ < Ma∗c .

E *

(a)

k

0.2

0
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0 0.4 0.8 1.2

b
2
3
4
5
6
7
8
9

10

0.1

Figure 12. The contributions to the largest eigenvalue of the various terms of the operator relative
to their contributions to the marginally stable state at k = 0 plotted as a function of the wavenumber
with Ma∗ = 5.0, Bo∗ = 4, Bi = 0.12 and l/L = 20.

between the various physical systems found in table 4. Term 2, which was previously
interpreted as destabilizing in Kataoka & Troian (1997) while being stabilizing in the
other works on moving contact lines, is now interpreted as being destabilizing in all
those systems.

7. Discussion
A comparison of the experimentally measured and theoretically computed shapes

of the bump profiles before instability is shown in figure 13 for Bo∗ = 3.5, Bi = 0.12,
and Ma∗ = 1.09 and 0.31. Since we do not have measurements of the surface tempera-
ture we must infer the experimental Marangoni number. We use the experimentally
measured lengthscale of the bump to determine Bo∗. For the experimentally deter-
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Ma*= 0.31 experiment
Ma*=1.09 experiment
Ma*= 0.31 theory
Ma*=1.09 theory

Figure 13. Comparison of experiment (Re = 0.27 and 25% ethyl achohol) and theory for
Bo∗ = 3.5, Bi = 0.12 and l/L = 20.

Ma∗c kc

Bo∗ Bi Re Experimental Theoretical Experimental Theoretical

3.5 0.12 0.27 1.2± 0.1 5.79 No data 0.90
2.5 0.14 0.39 1.4± 0.1 6.20 0.88 0.83
2.0 0.16 0.75 1.45± 0.15 6.52 1.18 0.80
2.0 0.21 1.5 1.1± 0.1 6.40 1.08 0.87

Table 6. Comparison of the experimental and theoretical critical Marangoni number, Ma∗c , and
the wavenumber at the onset of instability, kc. The theoretical calculation is independent of the
Reynolds number. The Biot and Bond numbers are the same for both experiment and theory.

mined Bo∗ and Bi, we calculate theoretically the maximum height as a function of
Ma∗. We take the experimental Marangoni number to be where this height matches
the experimentally measured maximum height. The theoretical and experimental pro-
files are in excellent agreement: all the main features of the experimental profile, such
as the upstream depression due to curvature pressure, are present in the computed
profile. We note that the thickness of the experimental profile decreases from 1 after
the bump due to cumulative errors in the integration technique used to measure the
bump profile in the experiment.

Considering only the regime of localized eigenfunctions, we compare our model
with the experimental observations for one localized heater (Kabov & Chinnov 1997;
Scheid et al. 2000). The wavenumber at the onset of instability found theoretically is
in quantitative agreement with the experimentally observed values (see table 6). The
average deviation between the two values is 20%. Above the instability threshold, the
model predicts that the wavenumber of the most unstable mode, kmax, decreases with
Ma∗ (see figure 5), which is in qualitative agreement with experimental observations
(Kabov et al. 1996). It is worth noting that for a homogeneously heated falling film
the wavenumber of the most unstable mode scales as Ma∗1/2 (see the Appendix). In
contrast, the most unstable wavenumber past onset for the stationary fluid ridges
studied in this paper decreases with increasing Ma∗. The order of magnitude of the
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critical Ma∗ is also in agreement with experiment; however, the prediction is 5 times
higher than the experimentally obtained value (see table 5).

We have focused on low-Reynolds number flows with a small aspect ratio ε. Our
theory applies to the thinner films used in the experiment; however, the lubrication
limit begins to break down for the thicker experimental films (≈ 100 µm). This
may account for the increasing deviation between the experimental and theoretical
values of the critical Marangoni number with increasing Re (see table 5). Further
experimental and theoretical investigation will be needed to elucidate this issue.

8. Conclusion
The intent of this study has been to develop an understanding of the mechanisms

by which a falling film on a locally heated plate loses stability. After a short discussion
of the experimental results used as a basis for constructing our model we derived an
evolution equation for the film thickness. Its stationary solutions and their stability
were calculated numerically for an array of heaters. By considering the large-period
limit for the array we recovered the single heater case. The results elucidate the influ-
ence of temperature-gradient-induced surface tension gradients, curvature pressure,
gravity and heat conduction on the shape of the steady flow profile and its stability.
Our results are in quantitative (film profile, observed wavelength at the onset of
the instability) and qualitative (critical Marangoni number, dependence of observed
wavenumber on the Marangoni number) accord with existing experimental results
(Kabov 1996; Kabov & Chinnov 1997; Kabov 1998; Scheid et al. 2000). We find
that the interaction of base-state curvature with perturbation thickness, gravity and
thermocapillarity (only in the case Bi 6= 0) all play important roles in destabilizing the
fluid ridge. Consequently, the studied liquid ridge instability is different in character
from instabilities of driven contact lines.

The authors would like to thank P. Colinet, O. A. Kabov, J. C. Legros, K. Neuffer,
A. Ridha, V. M. Starov, M. G. Velarde, R. K. Zeytounian and E. Knobloch for helpful
discussions. This work was funded by the Fulbright comision, the Spanish Ministry of
Education and Culture under grant PB 96-599, the European Union under ICOPAC
grant HPRN-CT-2000-00136, COPERNICUS grant ERB IC15-CT98-0908 and by
the German Academic Exchange Board (DAAD) under grant D/98/14745.

Appendix. Linear stability analysis for Bi 6= 0

Inserting equation (4.1) into (2.16) yields for Bi 6= 0 the linear differential equation

βh1 +
(h3

0h1xxx)x
3Bo∗

− (k2h3
0h1x)x

3Bo∗
+ (h2

0h1)x +
(h2

0h0xxxh1)x
Bo∗

− k2h3
0h1xx

3Bo∗
+
k4h3

0h1

3Bo∗

−Ma∗(T i
xh0h1)x +Ma∗

[
h2

0

2

(
T iBih1

1 + Bih0

)
x

]
x

− BiMa∗k2T ih2
0h1

2(1 + Bih0)
= 0. (A 1)

To better understand the influence of Ma∗, Bo∗ and Bi we consider the simplified
case of the stability of a flat film falling down a homogeneously heated plate (i.e.
h0 = 1, T0 = 1). Note that ∆T and L no longer have the natural experimental scalings
given in table 2 and the related non-dimensional groups would need to be adjusted
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accordingly. Assuming variation in the x-direction takes the form h1 = eiqx we find

β = −iq + |k|2
[

BiMa∗

2(1 + Bi)2
− |k|

2

3Bo∗

]
, (A 2)

where k is the vector (q, k). Equation (A 2) can be solved for the wavenumber of the
most unstable mode:

|k|c =

[
3BiBo∗Ma∗

4(1 + Bi)2

]1/2

. (A 3)

The non-dimensional curvature pressure acts to stabilize large-wavenumber pertur-
bations while the influence of the Biot number is destabilizing. For Bi 6= 0 the film is
always unstable for small wavenumbers. Consider a wavelike perturbation on a film
with Bi 6= 0: the surface now further from the plate will be cooler and the surface
tension will increase locally; the surface closer to the plate is warmed, which results
in a decrease in surface tension. The concomitant flow, driven by the gradients in
surface tension, is away from the valleys and towards the peaks thus further desta-
bilizing the film (Scriven & Sternling 1964; Smith 1966). Gravity, responsible for the
imaginary part of β, causes wave motion. This form of wavelike instability is also
found in numerical solutions of equation (A 1) for the case with a temperature jump
as considered here. For Bi = 0, the real part of the growth rate is always less than or
equal to zero and the homogeneously heated film is stable (see equation (A 2)).
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