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Nonlinear evolution of nonuniformly heated falling liquid films
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The present theoretical study focuses on the dynamics of a thin liquid film falling down a vertical
plate with anonuniform, sinusoidaltemperature distribution. The results are compared to those
obtained in the case of theuniform temperature distribution. The governing evolution equation for
the film thickness profile based on long-wave theory accounts for two instability mechanisms related
to thermocapillarity. The first mechanism is due to an inhomogeneity of the temperature at the
liquid–gas interface induced by perturbations of the film thickness, when heat transfer to the gas
phase is present, while the second one is due to the nonuniform heating imposed at the plate and
leads to steady-state deformations of the liquid–gas interface. For a moderate nonuniform heating
the traveling waves obtained in the case of a uniform heating are modulated by an envelope. When
the temperature modulation along the plate increases the shape of the liquid–gas interface becomes
‘‘frozen’’ and the oscillatory traveling wave regime is suppressed. The enhancement of the heat
transfer due to permanent deformations and traveling waves is also assessed. The latter is found to
have no significant effect on the heat transfer coefficient, while the former can increase it
significantly. A good agreement between the theoretical model and the experimental data obtained
for a step-wise temperature distribution at the plate is found and the reason for discrepancies is
explained. ©2002 American Institute of Physics.@DOI: 10.1063/1.1515270#
y
ng
uc
n
re
ed
a
in
er
ilit
e
ic

e

is
by
f
de-

ity
lso
urs

to

ive

no
On
en
I. INTRODUCTION

The flow of a liquid film on a tilted solid plate has man
significant engineering applications in material processi
biomedical engineering, food and chemical industries. S
flows are often encountered in evaporators for separatio
multicomponent mixtures where fluids are temperatu
sensitive, and hence a low thermal driving force is requir
In thin-film flows, the most widely observed phenomen
such as formation of surface waves, breaking of a stream
rivulets, and evaporation with termination of the liquid lay
at a contact line, are caused by various interfacial instab
mechanisms. Therefore, the understanding of the nonlin
dynamics of these phenomena will help to improve pred
tions of heat and mass transfer rates.

A horizontal thin layer of liquid on a solid plate can b
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subject to a long-wave thermocapillary instability when it
heated from below. This instability mode first studied
Scriven and Sternling1 is associated with the modification o
the basic temperature at the free surface by the surface
formation. The deformation is opposed mainly by grav
and for disturbances of a sufficiently short wavelength a
by surface tension. Therefore, this instability mode occ
when the thermocapillary force overcomes the force due
hydrostatic pressure1 for

G

3
,

BM

2Pr~11B!2 .

HereG is the Galileo number,B is the Biot number,Pr is
the Prandtl number andM is the Marangoni number~see
Sec. II for definitions!. BecauseG;h3, while B;h andM
;h the layer will be unstable for a sufficiently small film
thicknessh. The reader is referred to the comprehens
book of Colinetet al.2 for more detail on this topic. For this
mode of thermocapillary instability the disturbance has
preferred direction as long as the layer is kept horizontal.
the contrary, when a flow takes place, this isotropy is brok
0 © 2002 American Institute of Physics
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4131Phys. Fluids, Vol. 14, No. 12, December 2002 Nonlinear evolution of falling liquid films
and the instability manifests itself in waves. Furthermo
when the layer is tilted, it can become unstable even with
heat transfer. This isothermal mode of instability, often cal
surface-wave instability, was identified by Yih3 and
Benjamin.4 Except for very small angles of inclination, th
gravity-driven surface waves with a wavelength much lar
than the film thickness cause instability first.5 The distur-
bance originates at the free surface where vorticity is p
duced by the basic flow shear stress.6,7 Owing to the effects
of inertia, the perturbation vorticity tends to be advect
downstream relative to the deflection of the free surface s
to cause instability. This shift is opposed by hydrostatic a
surface tension forces. Since the latter one is negligible
large-wavelength disturbances, in this limit the instabil
manifests itself when the effect of inertia overcomes the
drostatic force expressed by the relation3

R. 5
2 cotb.

HereR is the Reynolds number andb is the angle of incli-
nation from the horizontal. In the limiting case of a vertic
plate (b5p/2) the stabilizing hydrostatic pressure vanish
and the interface is always unstable, i.e., for all film thic
nesses. Experiments performed by Liuet al.8,9 for this situ-
ation are in good agreement with the critical Reynolds nu
ber, growth rates and wave velocities resulting from line
stability analysis.

Since the instabilities in thin films appear in the form
long interfacial waves, nonlinear analyzes using long-wa
evolution equation of the Benney10 type turns out to be use
ful. Oron and Gottlieb11 showed by comparison with direc
numerical simulations of the full hydrodynamic equatio
that the Benney equation~BE! is valid in the parameter do
main adjacent to the linear stability threshold of the syste
Burelbachet al.12 studied long-wave instabilities in a hor
zontal layer in the presence of evaporation, vapor recoil,
van der Waals forces. Jooet al.13 generalized this study to
include the effect of mean flow by tilting the plate in th
absence of van der Waals forces and analyzed the nonli
dynamics by numerically solving the pertinent evoluti
equation. To obtain an extended overview of the dynamic
thin liquid films the reader is referred to the review paper
Oron et al.14

However, when the convective effects become sign
cant, the BE~at any order of the asymptotic expansion! fails
to serve as a good model for spatiotemporal evolution
falling films. The solutions of the BE then significantly d
viate from those of the full hydrodynamic equations and
nally at some distance beyond the stability threshold of
system, its solutions undergo a blow-up in a finite-time11,15,16

despite the regularizing effect of surface tension. Sin
Shkadov,17 the integral boundary-layer~IBL ! model using
the Pohlhausen–von-Ka´rmán averaging method appears
be suitable in describing the dynamics of falling films f
large Reynolds numbers, as such a model typically invol
more than one evolution equation, accounting for the ki
matic variable, the film thickness, as well as for a dynam
one, the local flow rate. Even though the IBL equations
not experience any blowup, they do not properly predict
linear stability threshold, as the BE does. The comprom
Downloaded 16 Jan 2009 to 140.247.54.16. Redistribution subject to AIP
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between these models was recently found by Ruyer-Quil
Manneville18,19 by combining a gradient expansion t
weighted-residual techniques with polynomials as test fu
tions. In this new context, we will address in the prese
study the range of validity of the BE as a mathemati
model for description of the dynamics of falling vertic
films in terms of the relevant parameters.

Tanet al.20 examined the steady thermocapillary flow
thin liquid layers on a nonuniformly heated horizontal so
plate. They showed that a continuous steady profile of
liquid layer can be sustained only if the value of the dynam
Bond number that measures the balance between gravity
thermocapillary forces, is higher than a certain critical val
Moreover, inclusion of the van der Waals forces in the ana
sis, for a very thin film, either leads to spontaneous fi
rupture or prevents the occurrence of any dry spot on
microscopic scale, depending on the attractive or repuls
character of this force, hence on the nature of liquid a
plate. Small perturbations of uniform heating and their eff
on the dynamics of the film were also studied by Van Ho
et al.21 for a horizontal layer (b50). They showed that non
uniformity in heating produces a steady-state deformation
any temperature difference across the layer. This steady-
deformation becomes unstable to the long-wavelength in
bility earlier than in the absence of nonuniformity. Moreov
the nonuniformity of the plate temperature determines
location of the dry spot and the elevated region to form at
minimum and maximum of the steady-state deformation,
spectively. Recently, Oret al.22 found a way to suppress th
long-wavelength disturbances by applying a feedback c
trol to the temperature at the substrate.

In the area of heat transfer enhancement a nonunif
heating of falling liquid films is thought to be a promisin
solution since it induces steady-state deformations of
liquid–gas interface which are beneficial to the heat trans
process.23 It is then essential to understand the influence
nonuniformities in heating, and whether they can either i
prove the heat transfer through the film or hinder it by p
pelling the film to its rupture. To our knowledge, few studi
exist in literature in this field of research. Miladinov
et al.24,25considered the effect of a constant temperature g
dient imposed at the plate for an adiabatic liquid–gas in
face (B50) and high Marangoni number. They studied t
influence of thermocapillarity on the amplitudes and pha
speeds of surface waves resulting from instability and fou
from linear analysis that a weak increase in heating dow
stream produces a decrease in the stability threshold, wh
decrease of the temperature plays a stabilizing role. In
nonlinear regime, they found finite-amplitude waves, t
shape of which depends mostly on the mean flow veloc
while the amplitude is influenced by the thermocapillarity

Recent experimental studies focused on thin films fall
down a locally heated plate revealed the occurrence
steady-state deformations.26,27In this case, the localized tem
perature gradient imposed at the plate and aligned with
flow induces a steady horizontal bump shape of the liqu
gas interface due to the thermocapillary effect. In an attem
to explain the phenomenon Kabovet al.28,29 proposed a
model taking into account variations of surface tension a
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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4132 Phys. Fluids, Vol. 14, No. 12, December 2002 Scheid et al.
FIG. 1. Geometry of the problemū( z̄) indicates the
Nusselt velocity profile of the liquid film,hN is the
mean film thickness,g is the gravity acceleration,b is
the inclination angle of the plate with respect to th

horizontal,T̄` is the temperature of the passive gas a

T̄a is the average temperature of the plate. The funct

T̄w( x̄) represents the nonuniform plate temperature d

tribution aroundT̄a andDT̄w is the characteristic tem-
perature difference applied at the plate along the len
l w . The liquid–gas interface is deformable as zoom

in the inset frame, wherez̄5h̄( x̄,ȳ, t̄ ) is the interface
location. The bars over variables are omitted in t
graph.
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viscosity with temperature. They obtained an excellent qu
titative agreement with the experimental data, especially
the downstream of the bump, where they explained a fi
thinning below the average thickness by an increase of
fluid mobility induced by the temperature decrease of
liquid viscosity.

The present study focuses on the evolution of a t
liquid film falling down a vertical plate in which a periodi
array of heaters is embedded. Using a Benney-type ex
sion we derive in Sec. II an evolution equation for the fi
thickness accounting for the effect of nonuniform heating.
Sec. III, stationary solutions of this evolution equation a
calculated either in a moving reference frame in the cas
uniform heating or in a fixed reference frame in the case
nonuniform heating. The first case allows for traveling wa
solutions, while the second one yields steady-state defor
tions. Two kinds of boundary conditions are considered, c
responding to either a given temperature distribution, o
given heat flux at the plate. We show that only the forme
appropriate to take into account the coupling between
thermocapillary instability and steady-state deformations.
we will see, this coupling causes a variety of nonlinear p
nomena, such as oscillatory regimes or chaotic patterns
describe these dynamic phenomena we solve numerical
Sec. IV the two-dimensional evolution equation using t
Newton–Kantorovich method. The periodic temperature d
tribution at the plate is chosen to be sinusoidal and the
sulting dynamics is compared to the case of a uniform h
ing with the same average temperature. An important re
is that for a sufficiently strong temperature nonuniformity
the plate, the shape of the liquid–gas interface becomes ‘‘
zen,’’ suppressing the oscillatory traveling wave regime.
Sec. V we estimate the enhancement of the heat transfer
to those permanent deformations, as well as due to additi
oscillations. The influence of the magnitude of the avera
temperature is also considered. Section VI presents a
scription of the experimental results and their comparis
with the results obtained from our model. Measurements
Downloaded 16 Jan 2009 to 140.247.54.16. Redistribution subject to AIP
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the bump shape are compared with the calculated statio
solutions and with the results of numerical time integratio
of the full evolution equation. We note that the linear stab
ity analysis of such two-dimensional stationary deformatio
with respect to transverse disturbances was recently
formed by Skotheim, Thiele, and Scheid30 in the limit of low
Reynolds number flows. They found a three-dimensional
stability leading to the formation of a rivulet pattern aligne
with the flow as observed first experimentally by Kabov.23,31

However, this is beyond the scope of the present work. S
tion VII is devoted to summary and concluding remarks.

II. STATEMENT OF THE PROBLEM AND EVOLUTION
EQUATION

We investigate here the two-dimensional dynamics o
thin liquid film falling down a plate tilted by an angleb from
the horizontal, under the gravity accelerationg. This plate is
maintained at the nonuniform temperatureT̄5T̄a1T̄w( x̄),
where T̄a is the average plate temperature andT̄w( x̄) is a
periodic temperature distribution with a zero average.
what follows the variables with and without bars denote
mensional and dimensionless quantities, respectively.

The coordinatesx̄ andz̄ designate the directions paralle
and normal to the flow, respectively. The geometry of t
problem is presented in Fig. 1. The ambient gas phas
assumed to be passive and held at the uniform tempera
T̄` and pressurep̄` . The fluid properties are the densityr,
kinematic viscosityn, thermal diffusivityx, thermal conduc-
tivity k, the heat transfer coefficient from the liquid to th
gasah , the surface tensions` at the gas temperature an
the absolute value of its temperature-derivativeg, assuming
that the surface tension linearly decreases with the temp
ture, s5s`2g(T̄i2T̄`), where T̄i is the interfacial tem-
perature. As in most studies of the Marangoni instability t
fluid viscosity is assumed to be temperature-independ
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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4133Phys. Fluids, Vol. 14, No. 12, December 2002 Nonlinear evolution of falling liquid films
The characteristic temperature differences applied along
plate and across the liquid layer areDT̄w5T̄wmax

2T̄wmin
and

DT̄5T̄a2T̄` , respectively. The dimensionless forms of t
temperature in the film and at the plate are, respectively

T5
T̄f2T̄`

DT̄w

, Tw5
T̄w

DT̄w

,

where T̄f is the temperature of the film. The ratio betwe
the two characteristic temperature differences of the prob
is defined by

d5
DT̄

DT̄w

.

The characteristic lengths in thex̄ and z̄ directions are the
characteristic wave lengthl of interfacial disturbances an
the mean film thicknesshN , respectively. The interfacial dis
tortions are considered to be of ‘‘long scale’’ if the parame

«5
hN

l
!1.

The dimensionless spatial coordinates are introduced by

x5«
x̄

hN
and z5

z̄

hN
.

We introduce also the lengthl w over which the temperatur
differenceDT̄w is applied at the plate. Its dimensionless for
will be Lw5 l w / l . Finally, the liquid–gas interface is as
sumed to be material and described by the functionh̄

5h̄( x̄, t̄ ), wheret̄ is time. The dimensionless forms of the
variables are

h5
h̄

hN
and t5

«n t̄

hN
2 .

The approach used here is based on the well-kno
Benney equation10,14 derived in the context of thin film
theory. This equation describes the nonlinear dynamics
liquid film of thicknessh(x,t) falling down an inclined plate
in the isothermal conditions. In the present study the con
butions of a nonuniform heating of the plate and differen
heating across the film are incorporated into the Ben
equation. The complete derivation of the evolution equat
from the Navier–Stokes, energy and continuity equatio
complemented by the appropriate boundary conditions
given in the Appendix. Nevertheless, we show hereafter
integration of the energy equation along with the appropr
boundary conditions, since it has a primary importance in
following.

The energy equation written at leading order of t
asymptotic expansion for«→0 is

Tzz50, ~1!

and the corresponding thermal boundary conditions read

T5d1Tw at z50, ~2!
Downloaded 16 Jan 2009 to 140.247.54.16. Redistribution subject to AIP
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Tz1BT50 at z5h, ~3!

where the subscriptz stands for the partial derivative with
respect toz andB5ahhN /k is the Biot number. Therefore
Eqs.~1!–~3! yield the temperature distribution in the film

T5~d1Tw!S 12
Bz

11BhD , ~4!

from which one finds the temperature distribution at t
liquid–gas interfacez5h

Ti~x,t !5
d1Tw~x!

11Bh~x,t !
. ~5!

The interfacial thermocapillary stress is thus given in dime
sionless form by

Sx5
Ma

Pr
Ti x

, ~6!

where the subscriptx stands hereafter for the partial deriv
tive with respect tox

Ma5
gDT̄whN

rnx
and Pr5

n

x

are the Marangoni and Prandtl numbers, respectively.
Finally, the evolution equation containing an addition

thermocapillary term is obtained~see the Appendix!

ht1Rh2hx1«S 2

15
R2h6hx2C

h3

3
hx

1S
h3

3
hxxx2Mw

h2

2
Ti xD

x

1O~«2!50, ~7!

where

R5G sinb, C5G cosb,

S5«2
s`hN

rn2 and Mw5
Ma

Pr
,

are the Reynolds, the hydrostatic pressure, the surface
sion and theeffectiveMarangoni numbers, respectively.G
5ghN

3 /n2 is the Galileo number. In the above equation, t
parametersR, C, S, and Mw , as well ash, Ti and their
x-derivatives, are all assumed to be of order one, i.e.,O(1).
Furthermore, the nonuniformity of the heating is assumed
induce deformations that have a length scale comparabl
that of the interfacial disturbances, so thatLw5O(1). Note
that S5R1/3(«2Ka) where Ka5s`/(rg1/3n4/3) is the
Kapitza number. The present study is carried out for the c
of a vertical plate only,b5p/2, therefore,C50 and the hy-
drostatic pressure term in Eq.~7! vanishes.

Substituting the plate temperatureTi given by Eq.~5!
transforms Eq.~7! to the form
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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ht1Rh2hx1«F 2

15
R2h6hx1S

h3

3
hxxx

1BMw

h2

2

~d1Tw!hx

~11Bh!2 2Mw

h2

2

Twx

11Bh
G

x

50. ~8!

One can extend the applicability of Eq.~7! to the case
where instead of the specified plate temperature the heat
Q̄w( x̄) is imposed at the plate. The average heat fluxq0 is
now included in the heat flux function and used as scaling
its dimensionless formQw5Q̄w( x̄)/q0 . The combination
q0hN /k is then used for scaling the temperature. The co
sponding boundary condition at the plate is, therefore,

Tz5Qw , at z50, ~9!

that being combined with Eqs.~1! and~3!, leads to the tem-
perature distribution inside the film

T5
Qw

B
@11B~h2z!#, ~10!

from which the temperature distribution at the liquid–g
interfacez5h is found as

Ti~x!5
Qw~x!

B
. ~11!

Equation~11! shows that the case of the adiabatic liquid–g
interface B50 is singular. Using the explicit form ofTi

given by Eq.~11! transforms Eq.~7! into

ht1Rh2hx1«S 2

15
R2h6hx1S

h3

3
hxxx2Mw

h2

2

Qwx

B
D

x

50,

~12!

whereb5p/2 is again assumed.
In both Eqs.~12! and ~8! the terms of order«2 are

dropped. The two last terms of Eq.~8! show that thermocap
illarity can act in two different ways. The first one is due
perturbations of the interface temperature induced by va
tions of h, when heat transfer to the gas phase takes p
(BÞ0). The second one is due to the nonuniformity of t
heating conditions applied at the plate and, as will be sho
below, can lead the liquid–gas interface to steady-state
formation. This is sometimes referred to as ‘‘permanent
formation’’ in what follows. The main purpose of this wor
is to investigate the effect of coupling between these t
mechanisms, both arising from a nonuniformity of the int
face temperature. However, it is important to note that o
the second of the two above-mentioned mechanisms ex
when the heat flux is imposed at the plate. It is expressed
the last term of Eq.~12!. The reason for this difference i
apparent from the expressions forTi , depending onh in Eq.
~5! and independent ofh in Eq. ~11!. Physically, it means
that the long-wave thermocapillary instability is suppress
when the plate is poorly insulating. This implies bounda
condition Eq.~9!. In this case the temperature gradient acr
the layer is independent ofh, which implies that an increas
of the film thickness is accompanied by an increase of
plate temperature.
Downloaded 16 Jan 2009 to 140.247.54.16. Redistribution subject to AIP
ux

r

-

s

a-
ce

n
e-
-

o
-
y
ts,
by

d

s

e

In experiments the heating is usually controlled by im
posing a constant heat flux at the plate. Marchuk a
Kabov32 calculated the heat flux distribution along a loc
heat source and showed that it cannot be considered as
stant along the plate. This nonuniformity is due to the dep
dence of the heat flux on the characteristics of the flo
which is found to be particularly strong when the Reyno
number is small. Therefore, in reality the present probl
would probably require a mixed boundary condition. Ho
ever, we use below an imposed temperature distribution
the plate and analyze only Eq.~8!.

In the case of a uniform heating the last term of Eq.~8!
vanishes and in front of the remaining thermocapillary te
we recover the classical Marangoni numberM5dMw based
on the temperature drop across the layerDT instead ofDTw .
The resulting evolution equation has been extensively s
ied in the literature.13,33,34

The presence of a nonuniformity in heating will be di
cussed in terms of the parameterd appearing in Eq.~8!.
Figure 2 shows various reference cases for a sinusoidal
uniform temperature distribution at the plate. Note that ev
whend50, Eq.~8! contains both mechanisms of thermoca
illarity. Small perturbations of a uniform heating, i.e., fo
d@1, were already studied by Van Hooket al.21 in the dif-
ferent context for a horizontal layer only~b50!. The differ-
ence between the horizontal and inclined heated layer
profound, since in the latter the mean flow can prevent
inherent tendency of dry spot formation and allow stea
state deformations of much higher amplitude, arising fro
the application of a nonuniform heating. In the following w
will concentrate on the cased51/2 to illustrate the coupling
between the two thermocapillary mechanisms, althou
other values ofd will be also used in the investigation.

III. STATIONARY SOLUTIONS

Along with the numerical study of the spatio-tempor
dynamics of the film, as described by Eq.~8! and presented
in Sec. IV, we investigate stationary states of the system
the case of a uniform heating one can find stationary so
tions in the reference frame moving downstream with
phase speed of traveling waves. In the case of a nonunif
heating, thex-dependent temperature distribution imposed
the plate does not allow to look directly for traveling wave
because it breaks the translational invariance of the probl
Therefore, we need to split the analysis and to look for s
tionary solutions either in a moving reference frame with
uniform heating or in the fixed reference frame with a no
uniform heating.

A. Moving reference frame: Uniform heating

We now search for stationary solutions of Eq.~8! in the
reference frame moving downstream at a certain velocityv.
Introducingh(x,t)5h(j) with j5x2vt and taking the limit
d→` with M5Mwd5O(1) corresponding to the case of
uniform heating, Eq.~8! can be integrated once to yield
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. On the left, a sinusoidal nonuniformity of th

plate temperatureT̄w50.5 sin(2px/Lx)DT̄w, whereLx is
the length of the periodic domain. On the right, th
corresponding temperature distribution applied at t

plate,Tūz505T̄a1T̄w , for different values ofd ~the bar
over the variables is omitted in the graph!. Whend,1/2
~the condition should be rigorouslyd,1/22(Twmax

1Twmin
)/2 for nonsinusoidal temperature distribution!, a

section of the whole domain is cooled where the im

posed temperature is lower thanT̄` , while the remain-
ing part of the domain is heated. Whend51/2, the
minimum of the imposed temperature coincides wi

T̄` and the two characteristic temperature differenc

DT̄ andDT̄w are of the same order of magnitude. Whe
d.1/2, the intensity of the average temperature dom
nates that of the nonuniformity.
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h31«F 2

15
R2h6hj1S

h3

3
hjjj

1BM
h2

2

hj

~11Bh!2G5K, ~13!

whereK is the integration constant. The ordinary different
equation~13! can be recast into the dynamical system

U185U2 ,

U285U3 , ~14!

U385
3

SF 1

«U1
3 S vU12

R

3
U1

31K D
2

2

15
R2U1

3U22
BMU2

2U1~11BU1!2G ,
whereU15h, U25hj , U35hjj and prime denotes deriva
tive with respect toj.

The solutions of the dynamical system~14! are found
using the continuation and bifurcation software for ordina
differential equationsAUTO 97 ~Doedelet al.35!. To perform
the iterative search for periodic solutions for a specified
of parameters$«,S,R,M ,B% we start with the flat film of
thicknessh51 ~Nusselt solution! perturbed by the neutrally
stable mode of the small amplitude of 1023 with the critical
wavenumberkc and the corresponding phase speedvc , as
obtained from the linear stability analysis13

$kc ,vc%5HA2

5
R21

3BM

2~11B!2

S
,RJ . ~15!
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This result is easily recovered from Eq.~13! by performing a
linear stability analysis of the solutionh51. The starting
value of the integration constant is found from Eq.~14! as
K5R/32vc . During the computations the periodicity of th
solutions is enforced and the total volume is kept consta
The parameters$k,v,K% serve as free continuation param
eters into the linearly unstable domaink,kc . Therefore, for
any periodic solutionU5$U1 ,U2 ,U3%, one finds corre-
sponding values ofk, v, andK. Even though the use of th
wavenumberconcept is rigorously correct only for harmon
modes, we prefer to associate this notion with theperiod of
the domain in the case of nonharmonic modes.

As an illustration and in order to identify some referen
cases for the following study, let us turn to Fig. 3, whe
several typical examples of stationary solutions are prese
in the @k,M #-plane. The neutral stability curvekc given by
Eq. ~15! is displayed along with the wavenumber corr
sponding to the maximum growth rate, as given byk
5kc /&, and with the wavenumber at which the second h
monic mode becomes linearly unstable, i.e.,k5kc/2. The
parameter values are fixed toR51.5, S55.69, «50.1, and
B50.1 ~the choice of parameters is explained in Sec. IV B!.
The stationary solutions are presented for the fundame
wavenumberk05p/10 corresponding to the case of a pe
odic domain of the fixed sizeLx520. By increasingM one
can follow the change of the shape of the solution from o
hump forM52.5 @Fig. 3~a!# to two humps forM520 @Fig.
3~d!# going through the development of a secondary hu
for M57.5 @Fig. 3~b!# and the coexistence between the on
and two-humped states forM515 @Fig. 3~c!#. In the latter,
two stationary solutions are found: the one-humped solu
obtained by continuation from a single wave ofk5kc , and
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Wavenumber of disturbancesk
versus Marangoni numberM in the
case of uniform heating forR51.5,
S55.69, «50.1, and B50.1. The
thick solid line represents the cut-of
wavenumberkc , the dot–dashed line
k5kc /& represents the most ampli
fied linear mode and the dotted linek
5kc/2 is the limit below which the
second mode is linearly unstable. Th
inset figures display typical traveling
waves calculated for the fundamenta
wavenumber k05p/10 and various
values of the Marangoni numberM ~a!
2.5, ~b! 7.5, ~c! 15, and~d! 20. The
phase velocitiesv for these solutions
are, respectively, 1.5002, 1.5064
@1.4984; 1.5326# and 1.4972. Note that
two steady solutions coexist atM
515.
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the two-humped solution obtained by continuation from
double wave ofk5kc/2. The phase speedv is seen to in-
crease abovevc5R for a single hump wave and to decrea
below vc for a two-humped wave.

Figure 4 shows the wave amplitudehmax2hmin versusM
for the interfacial waves with one and two humps, labe

FIG. 4. Diagram displaying the wave amplitudehmax2hmin versus the Ma-
rangoni numberM . The parameter values used here are the same as in
3. The solid line labeled ‘‘1’’ corresponds to a one-humped interfacial w
with the fundamental wavenumberk05p/10. The solid line labeled ‘‘2’’
corresponds to a two-humped interfacial wave, i.e.,k05p/5. Three zones
are here delineated: in zone I the thick solid line represents the stable
humped wave; in zone II forM.13.8 two solution branches coexist an
compete, as illustrated by the dashed area; in zone III forM.19.2 the
two-humped type of waves is dominant and depicted by the thick solid l
Downloaded 16 Jan 2009 to 140.247.54.16. Redistribution subject to AIP
d

there as ‘‘1’’ and ‘‘2,’’ respectively. The slight fold of the
curve ‘‘1’’ at M'7.3 indicates the appearance of a second
small amplitude hump, as shown in Fig. 3~b!. The curve ‘‘2’’
emerges atM510.82, where the second modek52k0 loses
its stability. The persistence of the solutions correspondin
the curves ‘‘1’’ and ‘‘2’’ is determined by solving the evolu
tion equation~8!, see Sec. IV. Three different regimes a
identified by the three zones in Fig. 4: in zone I the thi
solid line represents stable one-humped solutions, see F
3~a!, 3~b!; in zone II for M.13.8 the two solution branche
coexist and compete, see Fig. 3~c!, while in zone III for M
.19.2 the two-humped solution is dominant, as presente
Fig. 3~d! and shown here by the thick solid line. The tran
tions I–II and II–III were determined with an accuracy
1021. In Sec. IV we will extend the above discussion a
explain in particular how the two-humped solution compe
with the one-humped solution in zone II and becomes do
nant in zone III.

B. Fixed reference frame: Nonuniform heating

The dynamical system in this case is obtained by tra
forming Eq.~8! into the set of ordinary differential equation

U185U2 ,

U285U3 , ~16!

U385
3

SF 1

«U1
3 S K2

R

3
U1

3D2
2

15
R2U1

3U2

2
BMw~d1Tw!U2

2U1~11BU1!2 1
MwTwx

2U1~11BU1!
G,

ig.
e

e-
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Note that prime denotes here derivative with respect tox.
The stationary solutions of the dynamical system~16! are
calculated using the same method as in Sec. III A, but now
the fixed reference frame. Therefore, they describe ste
state deformations of the liquid–gas interface. Furtherm
we start here the continuation search with a nonperturbed
film, enforcing the boundary conditionsh51, hx→0, hxxx

→0 and Tw50, Twx
→0, and determine the value of th

integration constant asK5R/3.
We first consider a simple periodic array of heaters at

plate modeled by the sinusoidal temperature distribution

Tw5
1

2
sinS nw

2p

Lx
xD , ~17!

where nw is the number of ‘‘temperature waves’’ impose
inside the periodic domainLx . The distance along which th
temperature differenceDTw is imposed at the plate is ex
pressed byLw5Lx/2nw . The obtained solutions will be pre
sented below in Sec. IV and compared to the results of
time-dependent calculations based on Eq.~8!, see, for in-
stance, Fig. 7.

IV. TWO-DIMENSIONAL „2D… COMPUTATIONS

In this section we study the spatiotemporal dynamics
the falling liquid film, as governed by the evolution equati
~8! amended with periodic temperature distribution and p
odic boundary conditions in the domain 0<x<Lx . The
cases of uniform and nonuniform heating will be separat
studied in the framework of Eq.~8! and some of the result
compared with those obtained in Sec. III.

The initial condition used in this investigation in the ca
of a uniform heating is

h5110.05 cosS 2p

Lx
xD , ~18!

while in the case of a nonuniform heating the initial con
tion is chosen as

h51. ~19!

In the former case stationary traveling waves are alw
found in the range investigated, while in the latter, eith
oscillatory modes or pure steady-state deformations of
film interface are observed.

A. Numerical method

The numerical technique used here to solve the evolu
equation~8! is based on the Newton–Kantorovich metho
as described by Oron and Bankoff.36 To describe the numeri
cal method in a more compact form we choose to deal w
Eq. ~7! which is equivalent to Eq.~8! upon substitution of
Eq. ~5!. Equation~7! is rewritten as

ht1F~h!50, ~20!

where

F~h![FR
h3

3
1«S 2

15
R2h6hx1S

h3

3
hxxx2Mw

h2

2
Ti xD G

x

.
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Note the conservative form of Eq.~20! provided that bothTi

and h are periodic in the given domain. Equation~20! is
discretized in time using the implicit backward Euler meth
in the form

h(n11)2h(n)

Dt
52F~h(n11)!, ~21!

where Dt is the time step andh(n) is the solution of the
evolution equation obtained at the timetn5nDt. The right-
hand side of Eq.~21! is linearized by

F~h(n11)!5F~h(n)!1Fh
(n)~h(n11)2h(n)!, ~22!

whereFh
(n) is the Frechet differential operator evaluated

the timetn .
Introducing the difference between the solutions cal

lated for consecutive timesu[h(n11)2h(n), Eqs. ~21! and
~22! are combined into

~ I 1DtFh!u52DtF~h(n)!, ~23!

where the superscript ofFh is hereafter omitted for simplic-
ity,

Fhu5R~h2u!x1«H 2

15
R2~h6ux16h5hxu!x

1
S

3
~h3uxxx13h2uhxxx!x2Mw~huTi x

!x

2BMwFh2

2 S uTi

11BhD
x
G

x
J ,

I is the identity operator andTi5Ti(x,t) given by Eq.~5! in
the case of a specified temperature distribution at the pl
Instead, when considering a heat flux distribution at
plate, the last term ofFhu will be absent. Equation~23!
constitutes a linear ordinary differential equation in terms
the variableu(x,t). Discretization ofF(h) andFh are both
carried out using a central difference scheme and linear
terpolation for half-nodes accurate toO(Dx2), whereDx is
the spatial step.Nx will be the number of grid points in the
spatial domain. Furthermore, the conservative forms are u
in order to conserve the total volume during the compu
tions with a sufficient accuracy. Finally, the sets of simul
neous linear algebraic equations resulting from the discr
zation of Eq.~23! are solved at each step directly foru[uj

( j 51, . . .N) using the generalized Thomas’ algorithm a
plied to the pentadiagonal sets with three corner eleme
that arise due to spatial periodicity. The computations w
typically performed withN5500 to 1000 grid points to as
sure spatial convergence of the solutions.

B. Results

As already mentioned, the results are presented for
fixed parameter values ofR51.5, S55.69, B50.1, and
«50.1. These values are calculated from the material pr
erties of a 25% ethyl–alcohol solution in water given
Table I. Furthermore, we consider a moderate heat tran
coefficient ofah5500 W/m2 K and fix the mean film thick-
ness tohN5100 mm. The chosen value of the small param
eter« ensures thatS5O(1).
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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Before using the BE as a model equation, it is crucia
estimate its range of validity. This can be made in terms
the values of the Reynolds numberR and the Kapitza num-
ber

Ka5
s`

rg1/3n4/3,

which represents a dimensionless measure of surface ten
and depends on the liquid properties only. Just as a refer
in the case of water at 20 °C,Ka'3400. Ruyer-Quil and
Manneville18 showed that a blowup of the BE takes place
R5R! which is R!'4.5 for Ka5252, and that the maxi
mum amplitude of a one-hump interfacial wave does
deviate more than 1% from their model, up toR50.9R!. In
the present paper, we consider a liquid with higher surf
tension corresponding toKa5495. For the parameter se
used in most of our computations presented here, we num
cally observe the blowup of the solution for Eq.~8! at R
5R!'7.5. It is important to note here that for the sam
parameter set the value ofR corresponding to the linear sta
bility threshold of the system isR5R0'1.185. The main
part of our investigation is carried out atR51.5 that consti-
tutes 20% ofR! and exceedingR0 by approximately 25%. It
thus follows that this regime is in the domain adjacent to
linear stability threshold of the system, and a use of the B
justified.11 The thermocapillary effect can be safely added
the isothermal case leading to Eq.~8! being valid for a study
of the heated film dynamics slightly farther from the line
stability threshold.

We also note that the smaller is surface tension, the m
significant is the role of the viscous dissipation on wa
dynamics. This leads to a decrease ofR! with a decrease o
Ka, and thus to shrinkage of the validity range of the B
This was estimated quantitatively by Nguyen a
Balakotaiah38 who evaluated the influence of some visco
terms in the governing equations that are usually disrega
in other models. Following this, our study should not
extended into the domain of small values ofKa, such as
Ka,10.

As mentioned above, Ruyer-Quil and Manneville18,19

suggest that one should avoid approaching the blowup
gime by a factor 0.9 to ensure the validity of the BE and
accuracy of the long-wave model. In view of the fact that t
thermocapillary effects will be added to the BE we choose
keep the value ofR below 0.4R!.

Several attempts to compare between the solutions
the Benney equation and those for the full Navier–Sto
equations are reported in the literature. Ramaswamyet al.34

found an excellent agreement between those forR51,

TABLE I. Fluid properties for a 25% ethyl–alcohol solution in water
20 °C.

r 961.6 kg/m3 density
n 2.54831026 m2/s kinematic viscosity
k 0.4786 W/mK heat conductivity

s` 35.5331023 N/m mean surface tension
g 0.110331023 N/mK surface tension variation withT

Pr 21.8 ¯ Prandtl number
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Ka5300 when the wavenumber of the disturbance cor
sponds to the wavenumber of the most amplified linear m
and its first subharmonics. Salamonet al.37 also reported
very good agreement in the domain close to the linear sta
ity threshold of the film. The reader is referred to the disc
sion in Oron and Gottlieb.11

The computations here are carried out for a sinuso
temperature distribution given by Eq.~17!, focusing prima-
rily on the influence of the imposed temperature gradient
varying Mw andnw . Next, the influence of the average tem
perature on the dynamics is studied by varying the value
the parameterd. The results are compared to those obtain
in the case of a uniform heating by using Eq.~8! in the limit
of d→`, settingM5dMw5O(1) and with Eq.~18! as the
initial condition. We find that no noticeable differences a
observed when other initial conditions, such as a rand
perturbation of the uniform stateh[1, are employed.

1. Influence of the imposed temperature gradient

In this subsection we study the film dynamics along w
a sinusoidal temperature distribution at the plate given
Eq. ~17!. Figure 5 shows the early stage of the evolution
the film thickness in the case of one ‘‘temperature wav
i.e., nw51, imposed inside the periodic domain, withMw

55. The initial condition is given by the flat state, Eq.~19!,
which does not satisfy the evolution equation~8! due to the
prescribed nonzero temperature gradient appearing in the
term. The evolution is presented over one period charac
ized by the timetc5Lx /vc , wherevc is the phase speed o
interfacial waves given by Eq.~15! and predicted by the
linear theory in the case of a uniform heating.13 The flat film
is deformed first by the thermocapillary stress that induce
flow from a hotter point to a colder one. This flow creates
trough in the left half of the domain and a crest in the rig
half of the domain, as shown in Fig. 5~a!. This deformation is
advected by the flow as shown in Fig. 5~b!, and grows
quickly to reach its maximum att'tc/2, as indicated by the
thick long-dashed curve. This quick increase of the am
tude occurs when the phase of the modulated traveling w
matches that of the permanent deformation. Further,
wave disintegrates into two waves and its amplitude sign
cantly reduces until reaching its minimum att'tc , as shown
by the thick dotted curve. One observes that the trave
wave is modulated by a well-defined envelope. The prese
of this envelope is the direct consequence of the perio
temperature profileTwx

imposed at the plate. Figure 5~c!

shows that an oscillatory regime is reached in the long ti
limit. Again a sequence of events of total durationtc is dis-
played and clearly shows the presence of the envelope.

The fixed stationary solution calculated from the d
namical system Eqs.~16! is also displayed in Fig. 5~c!. It
appears to be in the middle of the above-mentioned en
lope, as indicated by the thick dotted curve. Figure 5~d!
shows the corresponding evolution in the case of a unifo
heating forM52.5 ([dMw) giving rise to a traveling wave
This traveling wave was calculated as a stationary solutio
the moving frame of reference from the dynamical syst
Eqs. ~14! and is shown by the thick dotted line. The pha
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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4139Phys. Fluids, Vol. 14, No. 12, December 2002 Nonlinear evolution of falling liquid films
FIG. 5. Film evolution as described by Eq.~8! for Mw55, d50.5, R51.5, S55.69, B50.1, «50.1, andLx520. ~a! The initial condition att50 is a flat
film h51. At t50.5 a depression of the liquid–gas interface emerges where the temperature is higher~HOT! than the average one, as surface tension decre
with temperature, and the elevation of the liquid–gas interface takes place where the temperature is lower~COLD!. The nonuniform componentTw(x) of the
plate temperature is also drawn~dashed line! and scaled on the right vertical axis.~b! Evolution of the liquid–gas interface at the early stage fromt50.5 to
t513.5 shown with increments of 0.5. The deformation is advected by the flow in the direction indicated by the horizontal arrow. Five snapshots a
by thick curves and labeled in the legend in order to allow the reader to follow the evolution of the liquid–gas interface.~c! Oscillatory mode fromt
53486.5~dashed line! to t53500 shown with increments of 0.5. The thick dotted line marked ‘‘1’’ is the corresponding stationary solution calculated
fixed reference frame.~d! Same as~c! but for a uniform plate temperature withM52.5. The stationary wave shown by the thick dotted line marked ‘‘2’’
calculated in the moving reference frame.~e! The evolution of the cases shown in~c! and~d! at the fixed locationx510 ~mid-domain! projected onto the phase
plane marked by ‘‘a’’ and ‘‘b,’’ respectively.~f! The above-mentioned stationary solutions ‘‘1’’ and ‘‘2’’ shown by thick curves and their linear superpos
labeled ‘‘1&2,’’ as shown by the thick long-dashed line. The latter almost coincides with the computed solution fort53498, as indicated by the thin solid line
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space portraits in both cases of uniform and nonunifo
heating, shown in Fig. 5~e!, demonstrate the similarity be
tween the two waves and suggests that for small nonun
mities of the temperature profile, the oscillatory mode can
expressed ashs(x,t)'h0(x)1htr(x2vct) representing a su
perposition of the fixed and traveling stationary waves,h0

and htr , respectively. Figure 5~f! demonstrates an excellen
agreement between the superposition of the two abo
Downloaded 16 Jan 2009 to 140.247.54.16. Redistribution subject to AIP
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mentioned stationary waves and the corresponding comp
solution at the time shown in the graph. This consideration
found to be valid for sufficiently small Marangoni numb
Mw only.

Figure 6~a! presents the modulated wave, i.e., the os
latory regime, obtained forMw515, nw51 and d51/2,
while Fig. 6~b! shows the corresponding case of a uniform
heated plate forM57.5. The apparently thick line region i
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. The film evolution as described by Eq.~8! for Mw515, d50.5, R51.5, S55.69, B50.1, «50.1, andLx520. ~a! Film evolution from t
53486.5~dashed line! to t53500 shown by increments of 0.5. The apparently thick line is the locus of the secondary hump of the traveling wave mo
by the permanent deformation. Snapshots of computed waves are plotted in the inset in order to obtain a better idea of their instantaneous shape.~b! Same as
~a! for the case of a uniform plate temperature withM57.5. The arrow indicates the direction of propagation.~c! Phase plane portraits corresponding to~a!
and~b! at the locationx510. ~d! Same as~a! for the case of two ‘‘temperature waves,’’nw52. In this case the deformation of the interface is steady in ti
~no oscillations!.
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both cases is the locus of the fold between two humps
ready mentioned in the text, Fig. 3~b!. This reflects the fact
that in these conditions the wave preserves its characteris
whatever is the temperature gradient applied at the plate,
6~b!. Nevertheless, the phase space portrait shown in
6~c! now exhibits some differences which reveal the inac
racy of the superposition ofh0 and htr . When nw52, i.e.,
the strength of the imposed temperature gradient is doub
the wave becomes steady~fixed point! instead of a propagat
ing wave ~limit cycle!, as shown in Fig. 6~d!. This result
suggests that a sufficiently strong temperature gradient a
the plate can suppress the oscillatory regime and give ris
a steady-state deformation of the liquid–gas interface.

Figure 7 displays a comparison between the cases
‘‘frozen’’ liquid–gas interface obtained from numerical sol
tion of Eq. ~8! ~solid line! and the stationary solution calcu
lated in the fixed frame of reference using the dynami
system~16! ~dashed line!. The excellent agreement evide
from Fig. 7 provides also a verification of our numeric
since the solutions were calculated by two different num
cal methods.

It is found by comparing graphs in Fig. 7, that the a
plitude of the emerging wave is approximately proportion
to the value of the imposed temperature gradient along
Downloaded 16 Jan 2009 to 140.247.54.16. Redistribution subject to AIP
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plate. Indeed, in the limit of small Biot number (B!1) and
small, order«, deformations of the liquid–gas interface
Eq. ~8!, while neglecting the effect of curvature, and f
steady case (ht50) we find the following approximation for
the film thickness by neglecting the terms of order«2:

h'11«
Mw

2R
Twx

511«
Mw

2R
nw

p

Lx
cosS nw

2p

Lx
xD , ~24!

when using Eq.~17! for the temperature distributionTw .
Nevertheless, even though the value ofMw is about twice
higher in Fig. 7~e! than in Fig. 7~d!, the departure from the
sinusoidal shape is observed through the slight asymmetr
the troughs being a manifestation of nonlinearities.

Figure 8 presents the film evolution forMw540 that
corresponds to the case of a uniform heating withM520
(Mw5dM ) belonging to zone III of Fig. 4. Hence the eme
gence of a two-humped wave is expected, as shown in
8~b!. This two-humped wave persists when the plate te
perature is nonuniform@Fig. 8~a!#. However, the phase ve
locity slightly decreases by 1.3% with respect to the case
a uniform heating, so the presence of the permanent de
mation induces a slowdown of the wave propagation. T
effect is even more pronounced for larger temperature gr
 license or copyright; see http://pof.aip.org/pof/copyright.jsp



d

l

d
ly

4141Phys. Fluids, Vol. 14, No. 12, December 2002 Nonlinear evolution of falling liquid films
FIG. 7. Stationary solutions obtaine
from numerical solution of Eq.~8!
~solid lines! and calculated in the fixed
frame of reference from the dynamica
system~16! ~dashed line!. The param-
eter values ared50.5, R51.5, S
55.69, «50.1 and B50.1. ~a! Mw

55 and nw52; ~b! Mw515 andnw

52; ~c! Mw55 and nw54; ~d! Mw

515 andnw54; ~e! Mw530 andnw

54. The differences between the soli
and dashed curves are observable on
in the case~e!, where the temperature
gradient is the largest.
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ents, for instance a decrease of 5.3% whennw52, see Fig.
8~c!. Finally, the propagation becomes aperiodic whennw

54 @Fig. 8~d!#. These evolutions are summarized in t
phase plane portraits presented in Fig. 8~e!.

The time series of the film thickness recorded in t
middle of the periodic domainx510 are plotted in Figs. 9~a!
and 9~c! and correspond to the cases presented in Fig. 6
Mw515 and Fig. 8 forMw540, respectively. These case
belong to zones I and III in Fig. 4. The time series a
marked by the value of temperature wavesnw and by ‘‘0’’ for
the case of a uniform heating on the right side of each p
Figure 9~b! shows the modulated time series forMw530
corresponding to zone II in Fig. 4, where the liquid–g
interface oscillates between two competing states with dif
ent fundamental frequencies. This modulation is sustai
for a uniform heating and fornw51, while for nw52 the
two-humped wave is dominant. In the case ofnw54 the
wavy dynamics of the liquid–gas interface is even su
pressed giving rise to a steady-state deformation.

2. Influence of the average temperature

We now turn to the investigation of the influence of t
average plate temperature on the film evolution in the p
ence of a specified plate temperature nonuniformity. Fig
10 displays the envelopes of the surface oscillations and
corresponding time series for various values ofd ~recall that
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d is the ratio between the temperature drop across the l
and that along the solid plate!. The nonuniformity of the
plate temperature is fixed in a way thatMw515. In Fig.
10~a! the amplitude of the envelope fornw51 is found to
increase by a factor of 3 whend increases fromd50.16
~dotted line! to d51 ~dashed line! and by a factor of 7 when
d increases fromd50.16 tod52 ~solid line!. Nevertheless,
even for a large average temperature the shape of the ste
state deformation of the liquid–gas interface is determin
by that of the stationary wave calculated in the fixed ref
ence frame, and shown by the thick dot–dashed curve.
corresponding time series of the film thickness recorded
the locationx510 for the oscillatory regime are superpos
in Fig. 10~b! and shifted, one with respect to another, f
clarity.

Figure 10~b! enables us to follow the transition from
one-humped to a two-humped modulated wave with an
crease of the value ofd, as explained in Sec. III A. When th
value of nw is doubled@Fig. 10~c!# we observe that smal
average temperature~d50.16! is sufficient to sustain the
steady-state deformation and the interface does not oscil
as shown in Fig. 10~d!. The same is observed in Figs. 10~e!,
10~f! for nw54, in this case even for a higher average te
perature of the plate~d51!. The evolution of the interface fo
d52 becomes aperiodic due to strong nonlinearities involv
in the dynamics, as described by Eq.~8!.
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FIG. 8. The film evolution as de-
scribed by Eq.~8! for Mw540, d
50.5, R51.5, S55.69, «50.1, and
B50.1. ~a! Film evolution from t
53486.5 ~dashed line! to t53500
shown by increments of 0.5. The thic
dotted line indicates the correspondin
stationary solution calculated in the
fixed reference frame.~b! Same as~a!
for the case of the uniform plate tem
perature withM520. ~c! Same as~a!
for the case of two ‘‘temperature
waves’’nw52. ~d! Same as~a! for the
case of four ‘‘temperature waves’’nw

54. ~e! Phase plane portraits corre
sponding to~a!–~d! at x510.
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V. HEAT TRANSFER

One of the practical interests in this study is to evalu
a possible enhancement of the heat transfer coefficient du
free-surface deformations. The definition of this coefficie
in its dimensionless form is chosen to be based on the t
perature difference between the plate and the interface
that using either Eq.~4! or Eq.~10! for the temperature field
the local heat transfer coefficient is

â~x,t !5

2
]T

]z U
z50

Tuz502Ti
5

1

h~x,t !
, ~25!

and the average heat transfer coefficient computed over
periodic domainLx reads

a5
1

Lx
E

0

Lx 1

h
dx. ~26!

This result, obtained for both thermal boundary conditions
the plate, suggests that the heat transfer is inversely pro
tional to the film thickness. Moreover, it also shows that
free-surface deformation is not a sufficient condition for t
enhancement of the heat transfer. To achieve such an
hancement the deformation must induce a sufficiently la
range of thinning.
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Figure 11 presents the average heat transfer coeffic
given by Eq.~26! for the stationary solutions calculated
the fixed reference frame using the dynamical system~16!,
with the temperature distribution at the plate Eq.~17! for
nw51,2 and 4. The heat transfer coefficienta is found to be
25% higher fornw54 than fornw51 or 2. We also presen
the same result for a pure sinusoidal liquid–gas interf
~dot–dashed line!. It appears that the deviation from th
sinusoidal shape strongly diminishes the influence on va
tion of the heat transfer coefficient with traveling wave a
plitude.

Figure 12 displays the average heat transfer coeffic
plotted against the ratioMw /Lw which represents an appro
priate parameter to examine the effect of the imposed t
perature gradient. In Fig. 12 we also present the results
tained from the numerical solution of Eq.~8!. As shown in
Sec. IV, the numerical solution of Eq.~8! reveals among
others oscillatory regimes in the form of traveling wav
modulated by the permanent deformation. The average
transfer coefficient of these regimes is only slightly enhan
due to the oscillatory nature of the liquid–gas interface. N
ertheless, we can conclude here that the fixed stationary
lution appears to give a good estimate of the heat tran
coefficient even when the oscillatory regime takes place.

In Fig. 13 the average heat transfer coefficient is sho
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 9. Time series of the film thickness atx510 for d50.5, R51.5, S55.69, B50.1, «50.1, Lx520. On the right side of each plot the value ofnw

(50,1,2,4) is displayed. Herenw50 corresponds to the case of the uniform plate temperature. The corresponding Marangoni numbers are~a! Mw515, ~b!
Mw530, and~c! Mw540.
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as a function of the average temperatured. The white sym-
bols correspond to the cases studied in Fig. 10 whenMw

515 and the black ones whenMw530. It appears that the
value ofd does not significantly affect the heat transfer c
efficient, except for very strong temperature gradients
posed at the plate, such as forMw530 andnw54. We can
conclude, therefore, that permanent deformations induce
a nonuniform heating are the main agent of heat tran
enhancement, while the amplitude of traveling waves
pending on the average plate temperature does not pl
significant role, as already noted in Fig. 12.

Finally, we note that in some works, see for instan
Marchuk et al.,32 the heat transfer coefficient is based on
mean-weighted with the local velocity temperature of t
liquid film, rather than on the interface temperatureTi .
However, we found that this alternative definition is prop
tional by a factor of 1.661022 to that calculated using Eq
~25!.

VI. COMPARISON WITH EXPERIMENTS

In this section we attempt to compare stationary so
tions calculated in the fixed reference frame to available
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perimental data.26 We also perform some more time
dependent computations of the corresponding cases in o
to complete the comparison.

Recent experiments performed on falling liquid film
with localized heating26 were focused on the measuremen
of the film thickness profile in the flow direction. It wa
found26,27 that if the temperature gradient is aligned with t
flow at the upper edge of the heater, the thermocapillary fl
directed in the opposite direction deforms the liquid–gas
terface into a horizontal bump, as illustrated in Fig. 14.

Since the exact temperature distribution at the plate
unknown, we use an approximate step function

Tw~x!50.5F tanhS Lx

Lw
~x20.25! D

2tanhS 1

0.75
~x20.625!21D G , ~27!

to model a strong positive temperature gradient at the up
edge of the localized heater, applied along the lengthLw

!Lx , and centered at the first quarter of the domainLx .
Since the periodic boundary conditions are imposed for
merical computations, the conditionTw(0)5Tw(Lx) must be
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 10. The envelopes and time series of the film thickness calculated forMw515: ~a! and ~b! nw51; ~c! and ~d! nw52; ~e! and ~f! nw54. In the left
column the dotted, dashed, and solid curves correspond to the envelopes ford50.16,d51, andd52, respectively. The thick dot-dashed curves depict
corresponding steady-state solutions calculated in the fixed frame of reference. In the right column the corresponding time series recorded atx510 are shifted
one with respect to another for clarity.
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satisfied. Moreover, the experiments showed that the inte
cial temperature decreases slowly downstream due to th
sulating feature of the plate where the localized heate
embedded. This is the reason why Eq.~27! features a smooth
negative temperature gradient along the interval equa
75% of Lx and centered at 5/8 of the latter. Therefore,
negative temperature gradient decreases with increase o
size of the periodic domainLx . One then expects that fo
sufficiently largeLx the temperature profile tends to that
the experimental conditions. Figure 15 displays an exam
of the temperature distribution given by Eq.~27! for Lx

520 andLw51.
Figure 16 presents some profiles of the film thickne

measured in the experiments26 along with the stationary so
lutions calculated using Eqs.~16! for the temperature distri
bution specified by Eq.~27!. The reader is referred to th
work of Skotheimet al.30 for linear stability of such station
ary solutions. The experiments26,29 were carried out for vari-
ous values of the Reynolds numberR, corresponding to dif-
ferent values of the mean film thicknesshN . Consequently,
the values of the Biot number and of the surface tens
number, as well as of«, differ from those used above in thi
work. The specific value of the Marangoni numberMwc

is-
calculated to obtain a bump profile with the same maxim
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FIG. 11. Average heat transfer coefficienta versus the maximal deviation o
the film thickness from the stateh51. The curves are obtained from th
dynamical system Eq.~16! by increasingMw from 0 until reachinguh
21umax51. The solid, dotted and dashed lines are calculated for the sta
ary solutions in the fixed reference frame for the sinusoidal tempera
distribution with nw51,2 and 4, respectively. The parameter values
d50.5,R51.5, S55.69, B50.1, «50.1, andLx520. The dot–dashed line
corresponds to the case of a sinusoidal shape of the liquid–gas inter
The inset is a zoom of the domain of small values ofa. Note that the dotted
curve almost coincides with the solid one.
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film thickness as in the experiments at the instability onse
the bump. Indeed, beyond this threshold the horizontal bu
breaks into longitudinal rivulets.26 The temperature differ-
ence is then checked and is of order 10 K which agrees w
the experimental data27 and validates the choice of the p
rameter«. Figure 16 shows that the calculated shape of
bump fits well the experimentally measured one, at leas
far as its ascending side and the small depression upst
due to the surface tension effect are concerned. The disc
ancy observed downstream can be attributed not only to
accumulating error associated with the integration met

FIG. 12. Average heat transfer coefficient for stationary solutions versus
ratio between the Marangoni numberMw and the distanceLw (5Lx/2nw)
along which the temperature differenceDTw is imposed at the plate. The
parameter values ared50.5, R51.5, S55.69, B50.1, «50.1, and Lx

520. The curves correspond to the stationary solutions calculated in
fixed reference frame, while the symbols correspond to the related os
tory regimes obtained by numerical simulation~see Sec. IV!. The results
shown are fornw51 ~solid line and diamond!, nw52 ~dotted line and black
circle! andnw54 ~dashed line and black square!.

FIG. 13. Average heat transfer coefficient as a function of the paramed
for R51.5, S55.69, B50.1, «50.1, andLx520. The white symbols de-
note the results forMw515, while the black ones correspond toMw530.
The squares correspond tonw51, the diamonds tonw52 and the circles to
nw54.
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used in processing of the experimental data, but also to
absence of temperature-dependence of the viscosity in
theoretical model. The latter effect considered by Kab
et al.29 can indeed explain the decrease of the film thickn
below its initial mean valuehN . In fact, liquid viscosity
decreases when temperature increases, and as the flui
comes more mobile, its velocity increases. Therefore, du
the flow rate conservation the film thickness indeed
creases.

Figure 17 shows the maximal deflection of the liquid
gas interfacehmax21 as a function of the Marangoni numbe
Mw. The amplitude of the deformation decreases with
crease ofR whenMw is fixed. This is the effect of the main
flow that counteracts the thermocapillary flow. Similarly, t
amplitude of the critical temperature difference as descri
by Mwc

could be expected to increase withR. Nevertheless,

this is incorrect, as it can be seen in Fig. 17 for 1.5<R<3.
An explanation is obtained on the basis of the energy bala
considerations made recently by Skotheimet al.30 They
found that the presence of a bump deformation is stabilizi
It follows from here that the higher is the bump, the larg
Mw should be to allow the spanwise thermocapillary mode
develop. Therefore, with an increase ofR the main flow
counteracts the increase of the bump amplitude. Thus
critical value of Mw does not necessarily increase withR.
This can explain why above a certain value of the Reyno
number, namelyR'1, the value ofMwc

varies only slightly

with R.
In order to complete the analysis, we solve numerica

Eq. ~8! to simulate the dynamics of the falling film with th
imposed temperature distribution specified by Eq.~27!. Fig-
ure 18~a! shows the propagation of the interfacial wave in t
positive x-direction being squeezed into a steady envelo
as already observed in Sec. IV. In Fig. 18~b! we show the
time series of the film thickness atx5Lx/4 andx5Lx/2. It
appears that asymmetric temperature distribution does
significantly affect the dynamics of the wavy liquid–gas i
terface with respect to the location in the domain. In fa
Fig. 18~b! reveals an aperiodic behavior of the liquid–g
interface. The results of similar computations forR53 are
presented in Figs. 18~c! and 18~d!. The wave amplitude is
lower than forR51.5 strongly influencing the heat transfe
coefficient, which is approximately 1.15 forR51.5 and 1.45
for R53. In both cases this heat transfer enhancemen
easily explained by invoking the mass conservation that th
the film in a large part of the domain, while a small portio
of the fluid is driven by thermocapillarity into the bump
Indeed, we have seen in Sec. V that film thinning is favora
to heat transfer enhancement.

In both casesR51.5 and 3 the wavy behavior of th
liquid–gas interface observed in the numerical simulatio
as well as in the experiments, can explain in a more app
priate way than previously, the discrepancies between
instantaneous measured film profiles and those calculate
stationary solutions shown in Fig. 16.
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4146 Phys. Fluids, Vol. 14, No. 12, December 2002 Scheid et al.
FIG. 14. The sketch on the left shows the cross sect
of the falling film with the mean film thicknesshN . The
first deformation due to thermocapillarity appears at t
upper edge of the localized heater and represents a h
zontal bump. The front view of this bump is shown o
the right. The image is obtained by optical Schliere
technique, where the positive slope in the downstre
direction is seen as dark, while the negative one
bright. The coordinate system (x,y,z) is also shown.
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VII. SUMMARY AND CONCLUDING REMARKS

The present theoretical investigation focuses on
study of nonlinear dynamics of a thin liquid film fallin
down a vertical plate with a nonuniform heating. Based
the long-wave theory we have derived an evolution equa
which incorporates this heating nonuniformity and studied
Two independent kinds of thermocapillary effects affecti
the film dynamics are identified. The first one is due to p
turbations of the temperature at the liquid–gas interface
duced by perturbations of the film thickness in the prese
of heat transfer to the gas phase, as described by a non
Biot number. The second one is due to the nonuniform h
ing of the plate. While the former is known to lead to inte
facial waves, the latter is found here to be able to indu
steady-state deformations of the gas–liquid interface.
relative importance of these effects is measured by the
rameterd that constitutes the ratio between the characteri
temperature differences across the liquid layer and along
plate. The value ofd is found to play an important role in th
film dynamics. The coupling between these two thermoc
illary mechanisms is studied here when they are compara
i.e., d5O(1).

Using a continuation method we have calculated stati
ary solutions for the pertinent evolution equation and o

FIG. 15. A nonuniform temperature distributionTw(x), as described by Eq
~27!. The length of the domain isLx520 and the length of the positive
temperature gradient isLw51. Note that the plate temperature isT(z50)
5d1Tw(x) with d51/2.
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tained traveling waves and steady-state deformations in
cases of uniform and nonuniform heating, respectively.
one hand, the dependence of the traveling waves on the v
of the Marangoni numberM for a pure uniform heating is
studied and classified in terms of the dynamics of th
waves, namely single, modulated and double waves. On
other hand, numerical solution of the evolution equati
shows that the traveling wave obtained with a uniform he
ing is modulated by an envelope given by the steady-s
deformation resulting from a nonuniform heating. At mode
ate Marangoni numberMw the traveling wave calculated fo
the case of a uniform heating withM5dMw displays the
same dynamics and the final oscillating regime represents
superposition of the fixed and stationary traveling wav
The departure from this state increases with the increas
the temperature gradient applied along the plate, until
shape of the liquid–gas interface eventually becomes ‘‘f
zen,’’ thus suppressing the waves traveling along the stat
ary structures. A detailed study of this transition varying w
the system parametersd and the dimensionless temperatu
gradient along the plateMw /Lw is the subject of future work.

We have also assessed the enhancement of the
transfer due to the emergence of sustained deformations
traveling waves. The latter have no significant effect on
heat transfer coefficient, while the former can increase it s
nificantly. This holds for a sinusoidal temperature distrib
tion, but becomes even more pronounced for a step-func
temperature profile of the plate. In fact, the latter induce
localized bump that draws the liquid underneath its cre
The remaining portion of the film becomes thus thinner ca
ing by this an increase of the local heat transfer coeffici
which is proportional to the inverse of the film thicknes
The evidence of quantitative improvement of the heat tra
fer is demonstrated here.

We have presented an analysis of a representative
perimental situation using our theoretical model. The av
able measurements of two-dimensional film profiles are co
pared with the calculated periodic stationary solutions. T
agreement is conclusive and allows us to proceed in the
ture with the three-dimensional analysis. Nevertheless, s
discrepancies remain in the downstream side of the fi
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 16. Comparison between the profiles of the film thickness measured in the experiments~thick lines!, and calculated from Eqs.~16! ~thin lines!. Each
graph corresponds to a fixed value of the Reynolds numberR. In the cases ofR50.39,0.75,1.5,3 the parameter sets are, respectively,S51.49, B50.07,
«50.064,Mwc

58.5, Lw54; S52.8, B50.08, «50.079,Mwc
515.2, Lw55; S55.69, B50.1, «50.1, Mwc

516, Lw55; andS511.4, B50.13, «50.126,
Mwc

514, Lw56. In all casesd50.5. Mwc
is the critical Marangoni number calculated to obtain a bump profile with the same maximal film thickness

the experiments at the instability onset of the bump.
e
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profiles and can be attributed either to the accumulating
ror, inherent to the integrating method used in the proces
of the experimental data, to the absence of the tempera
dependence of liquid viscosity in the theoretical model,
finally, to the wavy behavior of the liquid–gas interface o
served in both the experiments and the theory.

In conclusion, our results can be very useful and o
practical interest in the case of strong inhomogeneity of
plate heating. Moreover, in this study we see a good star
point for future extensions into three-dimensional stud
showing a great wealth of emerging dissipative structure
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FIG. 17. Maximal departure of the liquid–gas interface from its mean
mensionless value ofh51 as a function of the Marangoni numberMw for
various values of the Reynolds numberR. Circles represent the experimen
tal results corresponding to the instability onset of the bump. The value
the Marangoni number at these points are the critical values denotedMwc

,
as given in Fig. 16.
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FIG. 18. The film dynamics as described by Eq.~8! with S55.69, B50.1, Mw515.4, d50.5, Lw55, andLx540. For R51.5 ~a! the evolution of the
liquid–gas interface fromt510485 ~dashed curve! shown by increments of 0.5;~b! the time series of the film thickness atx510 ~the upper set! and x
520 ~the lower set!. For R53 ~c! same as~a!; ~d! same as~b!. The dotted lines indicate the locations where the time series are recorded.
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APPENDIX: DERIVATION OF THE NONLINEAR
EVOLUTION EQUATION

In this appendix a two-dimensional evolution equati
describing the three-dimensional film dynamics will be d
rived. We start with the governing equations of the inco
pressible flow, which are, respectively, the Navier–Stok
the energy balance and the continuity equations

vt1~v•¹!v52
¹p

r
1n¹2v1F, ~A1!

Tt1v•¹T5x¹2T, ~A2!

¹•v50, ~A3!

wherev5$u,v,w%, T and p are, respectively, the fields o
velocity, temperature and pressure in the fluid,¹
5$]x ,]y ,]z% is the gradient operator andF5$g sinb,0,
2g cosb% is the body force. For the sake of simplicity th
bars over the dimensional variables are here omitted.
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At the free surfacez5h(x,y,t), the boundary conditions
constitute the balance of the stresses, the Newton’s coo
law and the kinematic condition,2 respectively,

2~p2p`!n12mP% •n52sKn1¹ss, ~A4!

2k¹T•n5ah~T2T`!, ~A5!

w5ht1v•¹sh, ~A6!

wherep` andT` are the given pressure and temperature
the ambient air far from the liquid–gas interface,P% is the
shear stress tensor in the liquid phase,n5$2hx ,
2hy,1%/A11hx

21hy
2 is the unit normal vector,¹s is the sur-

face gradient operator, andK52 1
2¹•n is the mean interfa-

cial curvature.
At the platez50 the boundary conditions are no-slip

no-penetration and a specified non-uniform temperature
tribution, respectively,

v50, ~A7!

T5Ta1Tw~x!, ~A8!

whereTa is the average temperature andTw(x) is a periodic
temperature distribution in the flow direction with a ze
average.

The dimensionless set of Eqs.~A1!–~A8! normalized us-
ing the scaling introduced in Sec. II with
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y5«
ȳ

hN
, u5

nū

hN
, v5

n v̄
hN

, w5«
nw̄

hN
, p5

rn2p̄

hN
2 ,

reads

NSX[«ut1«uux1«vuy1«wuz1«px

2R2«2uxx2«2uyy2uzz50,

NSY[«v t1«uvx1«vvy1«wvz1«py

2«2vxx2«2vyy2vzz50,

NSZ[«2wt1«2uwx1«2vwy1«2wwz1pz

1C2«3wxx2«3wyy2«wzz50,

EN[«Tt1«uTx1«vTy1«wTz

2
1

Pr
~«2Txx1«2Tyy1Tzz!50,

CO[ux1vy1wz50,

at z5h

HT[
1

N
~«2hxTx1«2hyTy2Tz!2BT50,

CIN[«ht1«uhx1«vhy2«w50,

DYN[p2
2

N
~«3hx

2ux1«3hy
2vy2«ux2«vy2«hxuz

2«3hxwx2«3hywy2«hyvz1«3hxhyuy

1«3hxhyvx!1
S

«2

1

N3 ~12«2MwCaT!~«2hxx

1«4hxxhy
21«2hyy1«4hyyhx

2

22«4hxyhxhy!50, ~A9!

DY1[
1

N
~4«2hxux12«2hxvy2uz2«2wx1«2hx

2uz

1«4hx
2wx1«2hyuy1«2hyvx1«2hxhyvz

1«4hxhywy!2«Mw~Tx1hxTz!50,

DY2[
1

N
~4«2hyvy12«2hyux!2

A11«2hy
2

A11«2hx
2

3~vz1«2wy2«2hx
2vz2«4hx

2wy2«2hxuy

2«2hxvx2«2hxhyuz2«4hxhywx!

2«Mw~Ty1hyTz!50,

at z50

NS[u5v5w50,

FT[T2d2Tw~x!50,

where N5A11«2hx
21«2hy

2 is the dimensionless metrics
Ca5rn2/s`hN is the capillary number andS5«2Ca21.

By expanding the variables in power series of«, with
«!1
Downloaded 16 Jan 2009 to 140.247.54.16. Redistribution subject to AIP
r[S u
v
w
p
T

D 5r 01«r 11«2r 21¯ , ~A10!

and substituting them into Eqs.~A9!, one obtains at each
order a simplified set of equations. Further, the nonlin
system of Eqs.~A9! can be reduced to a single nonline
evolution equation for the film thicknessh. Here is the se-
quence of operations which leads to this evolution equat

~i! We proceed with the asymptotic analysis by substit
ing Eqs.~A10! into the system of Eqs.~A9!. Each of
these equations is expanded in series with respec
«. At leading order for«→0 a zeroth approximation o
the governing system of equations is obtained as

NSX0[R1u0zz
50,

NSY0[v0zz
50,

NSZ0[C1p0z
50, ~A11!

EN0[T0zz
50,

CO0[u0x
1v0y

1w0z
50,

at z5h

HT0[T0z
1BT050,

CIN0[ht1u0hx1v0hy2w050,

DYN0[p01S~hxx1hyy!50,

DY10[u0z
50,

DY20[v0z
50,

at z50

NS0[u05v05w050,

FT0[T02d2Tw~x!50.

~ii ! Found by successive integrations the solution of E
~A11! at leading order is

u05R
z

2
~2h2z!,

v050,

w052R
z2

2
hx , ~A12!

p05C~h2z!2S~hxx1hyy!,

T05d1Tw~x!2BzTi ,
where

Ti5
d1Tw~x!

11Bh
,

is the interfacial temperature given by Eq.~5!.

~iii ! Substitutingu0 and w0 into the kinematic boundary
condition CIN0 yields the leading order form of the
evolution equation

ht52Rh2hx , ~A13!

which describes the propagation of the liquid–gas
terface down the plate. As follows from the linea
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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theory,13 Eq. ~15!, Rh2 is the phase speed of the in
terfacial wave which corresponds to twice the inte
face velocity of the film.

~iv! At first order of the asymptotic expansion in« we
obtain

NSX1[u0t
1u0u0x

1v0u0y
1w0u0z

1p0x
2u1zz

50,

NSY1[v0t
1u0v0x

1v0v0y
1w0v0z

1p0y
2v1zz

50,

NSZ1[p1z
2w0zz

50,

EN1[T0t
1u0T0x

1v0T0y
1w0T0z

2
1

Pr
T1zz

50,

CO1[u1x
1v1y

1w1z
50,

at z5h

HT1[T1z
1BT150,

CIN1[u1hx1v1hy2w150,

DYN1[p112~u0x
1v0y

1hxu0z
1hyv0z

!50, ~A14!

DY11[u1z
1Mw~T0x

1hxT0z
!50,

DY21[v1z
1Mw~T0y

1hyT0z
!50,

at z50

NS1[u15v15w150,

FT1[T150.
~v! Found by successive integrations the solution of t

system is

u15
1
24z@R2hxh~z324h3!14R~z223h2!ht224MwTi x

112~z22h!~Chx2S~hxxx1hxyy!!#,

v15 1
2 z@22MwTi y

1~z22h!~Chy

2S~hyyy1hxxy!!#,

w15 1
120z2@60C~hx

21hy
2!160Mw~Ti xx

1Ti yy
!

120~z23h!~S~hyyyy12hxxyy!2C~hxx1hyy!!

160Rhhthx1R2hx
2~40h32z3!

25Rhxt~z226h2!2R2hhxx~z3210h3!

260Shy~hyyy1hxxy!260Shxhxyy

260Shxxx~h1hx!120Szhxxxx#, ~A15!

p152Rhx~z1h!,

T15
1

120Prz~20Ti t
~z~Bz23!1~3Bz26!h23Bh2!

1R~3Bz425z3120h~z222h2!

15Bhz2~4h23z!215Bh4Ti x

120BTi~ht~3z26h!1Rhhx~z223h2!!!.
~vi! In Eqs. ~A15! the time-derivativesht , hxt , and Ti t

appear and are approximated at this order by us
Eq. ~A13!.

~vii ! We can now substituteu1 , v1 , andw1 into the kine-
matic boundary conditionCIN1 to obtain the first-
order in « correction for the evolution equation Eq
~A13!.
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Finally, the resulting evolution equation reads

ht1Rh2hx1«
2

15
R2~h6hx!x

1«¹•FS
h3

3
¹¹2h2C

h3

3
¹h2Mw

h2

2
¹Ti G1O~«2!50.

~A16!

We note thatT1 was not used to derive evolution equ
tion Eq. ~A16! up to O(«). This is different from the case
studied by Miladinovaet al.,24,25 whereMw5O(1/«).
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