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Summary. Secondary three-dimensional instabilities of nearly sinusoidal waves on vertically falling and 
nonuniformly heated films are studied by using a long-wave evolution equation. Two-dimensional waves 
are unstable with respect to transverse modulations with sufficiently long spanwise wavelength. Two 
distinct three-dimensional modes of instability are examined: a synchronous mode which does not alter 
the wave number of the basic two-dimensional waves and a subharmonic mode with one-half of the 
streamwise wave number. According to a Floquet analysis, the subharmonic instability is most likely to 
be dominant for streamwise wavenumbers close to the neutral curve. The three-dimensional instability 
mechanism depends on tilm heating. The secondary growth rate increases (decreases) with increasing 
(decreasing) film heating downstream, but the contribution of thermocapillarity to synchronous and sub- 
harmonic instabilities is different. 

1 Introduction 

Fluid motion and heat transport in thin free surface liquid films are of  fundamental  interest in 

basic industrial equipment, as steam condensers, wetted wall columns, liquid film evaporators 

and other processes involving interfacial heat and mass transfer. In particular, the wavy free 

surface can enhance interfacial transfer. While the hydrodynamic behavior of  thin wavy fall- 

ing films has been studied extensively [1] [7], only few studies [8]-[13] have shown that the 
presence of  wall heating may have an important  effect on the wave nature of  falling films. 

Uniform as well as nonuniform heating of  thin layers may cause considerable temperature dif- 
ferences at the interface, and thus thermocapillary force will draw liquid from the warmer 

region to the cooler one. This process will distort the original waveform. 

Thin films moving over heated walls turn out to be unstable against long-wavelength infi- 
nitesimal perturbations, the same as in isothermal layers. Long-wavelength instability of  thin 
liquid films flowing down an inclined nonuniformly heated plate was examined in earlier pub- 

lications [11], [12]. The physical mechanism responsible for the stabilizing (destabilizing) effect 
of  thermocapillarity in the case of  a linear decrease (increase) in plate temperature down- 
stream is explained. A nonlinear theory [13] shows the occurrence of  finite-amplitude perma- 

nent waves that are monochromat ic  or broad-banded depending on the initial disturbance 
wave number at given Reynolds and Marangoni  numbers. Several sudies [3]-[5] have demon- 

strated that two-dimensional interfacial waves on isothermal falling films are unstable with 
respect to both two- and three-dimensional disturbances and that the two-dimensional perma- 
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nent wave can become aperiodic by allowing transverse variations. Experimental observations 
[6], [7] confirm these theoretical predictions. 

In the present study, we extend the two-dimensional study reported in [11] by considering 
a three-dimensional (3D) approach. The paper is organized as follows. In Sect. 2, we present 
the physical model of the non-isothermal film flow and we study the primary linear instability 
for the flat-film surface. The weakly nonlinear equilibration of primary instability into two- 
dimensional (2D) finite amplitude travelling waves is discussed. In Sect. 3, a linear three- 
dimensional analysis on secondary instability of two-dimensional periodic waves is developed. 
Two different transverse instabilities susceptible to deform the travelling waves are studied: 
a synchronous mode which does not alter the wave number of the basic 2D waves and a sub- 
harmonic mode with one-half of the streamwise wave number. In a concluding section, we 
summarize the results and discuss the 3D instability mechanism depending on the film thick- 
ness, wall heating and wave number of the primary 2D waves. 

2 Physical model and primary instability 

The three-dimensional film falling down a vertical nonuniformly heated plate is depicted in 
Fig. 1. The thin liquid layer is assumed to be Newtonian with density 6, kinematic viscosity ~, 
and thermal diffusivity ) / and  is bounded to the right by a motionless gas at ambient tem- 
perature Tg and pressure pg. The free surface of the layer is considered as adiabatic. A con- 
stant temperature gradient A is imposed along the plate, and the plate temperature is 

Tw = Ty + Ax.  
The flow rate is controlled mainly by changing the average thickness do of the unperturbed 

film, which is used to define the Reynolds number/~ = 9doa/L 2, where g is the gravitational 
acceleration. The surface tension c~ induces shear stresses as it depends on the temperature T 

and is given by 

= - - T g ) ,  ( 1 )  

where c% is the mean surface tension at temperature Tg and ~ = -dcr /dT  is a positive constant 
for most common liquids. The mean surface tension is scaled by So = o-odo/~ '2. 

We assume that the liquid film is very thin, so the ratio e = d o l l  is a small parameter, 
where L ~ 27c/k is the characteristic streamwise length and k is the streamwise disturbance 
wave number. Here the x- and y-coordinates are scaled with L, z with do, time t with Ldo/~/, 
and u and v are the velocity components in z- and y-directions, respectively, scaled with ~'/do. 

The temperature difference T - T g  is scaled with the temperature difference (T~.(L)-  Tg) 
- -  AL.  The buoyancy effects are negligibly small for thin layers, and the intensity of heating 
affects the flow through thermocapillarity which is controlled by the Marangoni number, 
M a  = ~ALdo/pX = ("/Ado2/#X) e -1 ~ O(e-1). The Marangoni number is negative (positive) 
in the case of a linear decrease (increase) in plate temperature. 

The wall heating influences the dynamics of liquid falling films through the shear-stress 
boundary conditions on the free surface, which at first-order approximation in e are reduced to 

e M a  e M a  
uz -- p (Tx + hxTz),  vz -- p (Ty + byte) ,  (2) 

where the subscripts denote differentiation with respect to the indicated variable and P = Y/X 

is the Prandtl number. 
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Fig. 1. Scheme of the film flow 

We assume that the heat flux is moderate, and the induced gravity-driven flow is relatively 
slow, so that the flow regime is close to that predicted by the lubrication theory. For such 
kind of flows the long-wave approximation developed first by Benney [ 14] reduces the Navier- 
Stokes equations and boundary conditions to a single evolution equation for the local film 
thickness h = h(x ,y , t ) .  The gravity, viscous, capillary and thermocapillary forces are 
assumed to be of the same order, thus R, P, S = ~2So/3 and e M a  ~ O(1). When the plate is 
heated nonuniformly, the long-wave evolution equation can be written as 

+ (Rh- M )hh  Rh%(Rh-  
A ~  

(3) 

where V is the surface gradient operator (0x, 0y) and M n  = e M a / P  is the rescaled Marangoni 
number. If one wishes to obtain a measure of the mean surface tension independently of the 
mean film thickness, one may replace S by the Kapitza number K a  = R-l/aS. The second 
term in (3) describes the wave propagation, and the third and fourth terms represent the 
effects of nonlinear interaction of gravity and thermocapillarity. The local phase speed 
increases with the local film thickness and is influenced by thermocapillarity. Compared to 
the two-dimensional equivalent of (3) (see [11]), the fourth and the last capillary terms are dif- 
ferent. 

The basic state for the primary instability is a flat film, h = 1, with the velocity component 
in the x-direction given by U(z) = Rz2/2 - M n z  and zero velocities in y- and z-directions. 
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Fig. 2. Critical Reynolds number versus Mn 
for P = 1 (dashed line) and P = 10 (solid line): 
1 - ~o = 0 and 2 - g) = 9r/4 

When the basic temperature is a linear function of  the streamwise coordinate, Eq. (3) admits a 
normal-mode solution, h ( x , y , t )  = 1 + ~50e (ik . . . .  0t). Here a0 << 1, x = (x ,y ) ,  k = (kcos~,  

/csin~) is the wave number vector in the (x,y)-plane and cOo = cow + ico~ is the complex fre- 

quency. The tinearized phase speed of  the perturbation is found to be co = coi/k = R - M n ,  

and the linear growth rate is given by 

: ( }  R -  (4) 

In Fig. 2, the critical Reynolds number as a function of  the Marangoni  number  is plotted 

for a two-dimensional wave (qo = 0) and an oblique wave (~ = re/4). The neutral curves for 

P = 1 are represented by the dashed lines and for P = 10 by solid lines. The stable region 

exists for negative values of  M n  due to the thermocapillary effect. This region disappears for 

M n  = 0, and there exists again a stable region for sufficiently intense heating. So~ the primary 
instability is unconditional in the case of  a weak linear increase in plate temperature. The 

value of  the critical Reynolds number depends strongly upon P. It is seen that the influence of  
the Prandtl number on the three-dimensional threshold amplitude is related to the sign of  the 

temperature gradient. Namely, when M n  is negative, Rc increases with P while for M n  > 0 it 
is independent of  P.  

A linear analysis o f  isothermal as well as uniformly heated layers predicts that the trans- 

verse variation is stabilizing in the primary instability but this is different in the secondary 
instability owing to the nonlinear interaction with the fundamental mode. Figure 2 confirms 

the validity of  this conclusion for linear primary instability of  nonuniformly heated layers 
when the initial instability is two-dimensional. 

When the capillary force at the interface is taken into account, there exists a cut-off wave- 
number, kc, and the maximum growth rate occurs at kM ---- kc/x/2. The cut-off wave number 
as a function of  the Reynolds number for different values of  the Marangoni number  is plotted 
in Fig. 3. In the present work we choose physically reasonable values of  the non-dimensional 
parameters. The Reynolds number is varied up to 5, the Marangoni  number is estimated for a 
mean thickness do ~ 10 .4 m, and IAI ,,~ 1 K/cm, P = 10 and K a  = 4.2 as in some experiments 
o f  Kabov et al. [15], and Scheid et al. [ 16] on films of  10 % aequeous solutions of  ethyl alcohol. 
The value k~ increases with R and decreases with Ka.  As the Marangoni  number increases to 
nonnegative values, the intersection between the upper neutral curve k = kc and the lower 
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Fig. 4. Steady finite-amplitude wave hi of (5) 
at R = 5, P = 10 and k - 0.8kc. The curve for 
M n  = 0 is represented by a continuous line; 
for M n  r 0 - by dashed lines: 1 - M n  = 0.02, 
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neutral  curve k = 0 approaches the origin. Note  that  thermocapi l lar i ty  can either increase or  

decrease the band of  stable wave numbers depending on the sign of  M n .  

Nonl inear  effects become impor tan t  when the disturbance ampli tude is small but  finite. A 

weakly nonlinear  analysis of  non-uniformly heated films shows that  the evolution of  two- 

dimensional  waves depends strongly on the initial dis turbance wave number  [11]. Moreover,  

there exists a value of  ks  such that  when ks  < k < k~ the flow is supercritically stable, and non- 

linear equil ibrat ion occurs after the initial instability. F o r  0 < k < k~, nonlineari ty promotes  

the instabil i ty and the saturat ion does not  occur. In the supercritical region, the free surface 

configuration,  steady in the reference frame 2 = z - c t ,  can be expressed as 

hl(~)  = 1 + 2[A1 cos ( k x )  + A 2  cos (2k2 + 0)], (5) 

where the values o f  Aj  (3' = 1, 2), c and 0 are listed in [11]. The wave ampl i tude  increases with 

decreasing k and vanishes at  k~, namely it bifurcates supercriticatly from ko and the lower 

bound of  this supercritical instabil i ty is ks = k r  However,  as k gets closer to ks, higher har-  

monics become impor tan t  and the equil ibrated state cannot  be represented by (5). The trun- 

cated series (5) describes well the free surface shape if  kM < k <[ kc. 
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Typical forms of the steady finite-amplitude waves for various Marangoni  numbers,  when 
the other parameters  are fixed, are plotted in Fig. 4 for k = 0.Skc. In Fig. 3, the points 
(5, 0.8h~) are situated below the neutral curves and above the points (5, hM). The curves for 
Mn # 0 are represented by the dashed lines and for Mn = 0 by a solid line. Note,  that the 
wave amplitude always grows as Mn increases, while the wave speed decreases weakly with 
Mn. 

3 Secondary three-dimensional instability 

Finite-amplitude 2D waves are generally unstable to 3D secondary instabilities. Patterns aris- 
ing f rom two distinct 3D instabilities have been identified experimentally in [7]: synchronous 
transverse modulat ion and herringbone (or checkerboard) patterns. For  the synchronous 3D 
pattern, the periodicity in the streamwise direction is the same as that of  the pr imary 2D 
waves. The herringbone patterns are observed when the transverse phase of  the modulat ions 
differs by 7r for successive wave fronts, and the streamwise period is doubled. The latter pat- 
terns are caused by a 3D subharmonic instability. 

We will analyze the stability of  2D permanent  waves to infinitesimal three-dimensional dis- 
turbances by using the Floquet theory of  differential equations with periodic coefficients (e.g., 
[17]). The basic state hi for this secondary instability is given by (5). Equation (3) written in a 
frame moving with nonlinear speed c admits a normal  mode solution with respect to y and t, 
and 3D disturbances can be written in the form 

h2( , y, t) = H(2) e % C  (6) 

where F = If,. + iFi and the spanwise wavenumber  1 is assumed as real. The temporal  growth 
rate of  3D disturbances is given by F,., while F{ is a frequency shift with respect to the basic 
2D wave frequency. When h = hi + 5h2, 6 << 1, is substituted into the evolution equation and 
the resulting equation is linearized in 6, an eigenvalue problem for H(2) and F is obtained 
with 

'" " Bs) H = O, B~H"' + B2H + B3H + B4H' + (F + (7) 

where a prime denotes differentiation with respect to 2 with coefficients Bj (j : 1 , . . . ,  5) 
which are given in the Appendix. The coefficients in (7) are periodic in 2, and the streamwise 
structure of  the disturbances is given by 

H = e  iO~ ~ ane ikn~, (8) 
~%=--oO 

where r is the Floquet exponent. Two cases for the Floquet exponent are distinguished: 
(a) r = 0, corresponding to synchronous solutions; (b) Ir = k/2, associated with subharmo- 
nic modes, i.e., 

Z ~kn~ 
H : a~e -T- , (9.1) 

n=even 

H : a~e ~-  . (9.2) 
n=odd 

For  synchronous modes, the series is truncated at Inl < 4, which includes a-4, a 2, a0, a2 and 
a 4 ,  and for subharmonic modes at [n I < 3, which includes a 3, a - l ,  al and a3. We substitute 
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(9) in (7) to obtain an eigenvalue matrix problem and calculate the eigenvalues I ~ for every 

value of  the spanwise wave number I. We look for complex eigenvalues with the physical para- 
meters fixed, and assign a value to the spanwise wave number. The eigenvalues are found 

using the routine D E V C C G  from IMSL Library, and a performance index is computed to 
check the accuracy [18]. The performance of  the eigensystem analysis routine is defined as 

excellent if the performance index is smaller than 1, and this is what is obtained in all of  the 

cases we have considered. Stability results are presented for e = 0.1, P = 10 and K a  = 4.2. 

3.1 S y n c h r o n o u s  i n s tab i l i t y  

In this subsection, we focus on synchronous solutions with wavelength 27r/k. The eigenvalue 
with the largest real part  is found to have I~i = 0, i.e. the fastest growing mode is purely real. 

This implies that one could have looked only for real eigenvalues. Typical curves for the linear 

growth rate are shown in Fig. 5 where I~ is plotted as a function of  I. For  1 = 0 the eigenvalue 
is also zero. As l increases, lP~. increases and remains positive, reaches a maximum P,,M at 

1 ~ lM, then decreases with increasing I and becomes zero at I = lc. Thus, the two-dimensional 

waves are unstable for values of  l between 0 and Ic, the upper boundary of  the unstable wave 

numbers. In Fig. 5, we have considered four different cases of  nonuniform heating with R = 5 

and k = 0.8kc. As a reference, the disturbance growth rate of  the isothermal film ( M n  = 0) is 

also plotted. It is seen that I'rM, lM and lc increase with Mn.  This means that the spanwise syn- 

chronous perturbations will grow (decay) when the temperature gradient along the plate is 

positive (negative). The basic state waveforms presented in Fig. 4 for different values of  M n  

show that the wave amplitude decreases as the parameter M n  becomes negative. So, the dis- 

turbance loses its energy when the thermocapillary force due to the upstream temperature 
gradient is larger than the driving forces of  the surface wave instability. 

In Fig. 6, the Marangoni number is fixed to M n  = - 0 . 0 2  (Fig. 6a) and M n  = 0.02 

(Fig. 6b), and the streamwise wave number is varied. The important  points o f  the curves are 

the maximum secondary growth rate l~rM, the corresponding value of  the most  amplified 

spanwise wave number lM and the cut-off spanwise wave number lc. The values of  I~TM and 

lM specify the expected observable secondary growth and the corresponding spanwise wave 
number. In the case M n  = -0 .02  and k = k~, the growth rate is substantially increased, the 

values of  Ic and 1M are also larger. Near 1 = 0, the secondary growth rate of  2D waves with 
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Fig. 5. Synchronous growth rate as a function 
of the spanwise wave number for R = 5 and dif- 
ferent values of the Marangoni number: 1 - 
Mr~ = 0.025, 2 - M n  = 0.05, 1 r - M n  = -0.025. 
21 - M n  = -0.05; the curve for M n  = 0 is repre- 
sented by a dashed line. 
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Fig. 6. Synchronous growth rate as a function of the spanwise wave number for R = 5 and different values 
of the streamwise wave number: 1 - k: = 0.99k~, 2 - ~ 0.9k~, 3 - k = 0.8k~, 4 - k = k_~. a Mn = -0.02; 
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streamwise wave number close to kc is higher than that of  respectively large amplitude waves. 

Comparison of  the results for M n  < 0 and M n  > 0 shows that the behavior of  the secondary 

synchronous instability is not  similar in both cases. In the case of  a linear increase in plate 
temperature (Fig. 6b), near k = hc the maximum secondary growth rate as well as lm decrease 

as k is decreased, and reach minima (at k = 0.97kc), after which they increase. Joo and Davis 

[9] who studied the 3D instability of  uniformly heated falling films suggested that the cut-off 

spanwise wavenumber should increase with decreasing /~, the other parameters being fixed. 

Our instability analysis of  nonuniformly heated films predicts that lc oscillates slightly with k. 

In order to examine the effect of  thermocapillarity on the secondary synchronous instabil- 

ity, we plot F~.~ in Fig. 7a, and l~ and lM in Fig. 7b versus the Marangoni  number at 

k = 0.8he. The curves are calculated for R = 3 (dashed lines) and R = 5 (solid lines). 

The rate of  increase of  P,.M with Mn is very small for M n  < 0. Owing to the destabilizing 

thermocapillarity effect, for M n  > 0 the three-dimensional modes grow more rapidly than for 

M n  < 0. Liu et al. [7] examined 3D secondary instabilities of  isothermal falling films for mod- 
erate R. They found experimentally that synchronous transverse modulations occur mainly 

along the troughs of  the primary 2D waves. When M n  > 0 the thermocapillary force will 
draw the liquid from hot depressed regions to cooler elevated regions and the troughs will 

become warmer and shallower. This means that thermocapillarity will enhance significantly 

the synchronous mode of  instability. In Fig. 7a, P~M increases approximately ten times as M n  

varies from 0 to 0.05. If  the film heating decreases downstream, the temperature at the trough 
ahead of  the moving wave front will be cooler than that at the peak. Hence, the thermocapil- 

lary force tends to flatten the free surface and to diminish the synchronous transverse modula- 
tions. As the mean layer thickness measured by R decreases, the driving force of  the surface 
wave instability weakens and P~M decreases at given Mn. 

All values of  1 below the curves l~ are unstable, while values above the curves are stable 
(Fig. 7b). It is seen that the band of  stable spanwise wave numbers decreases with Mn. For  
larger/~ (R -- 5), the increase of  l~ and tM with M n  is almost linear. For  smaller R (R = 3), 
the increase becomes strongly nonlinear, showing that the effect of  thermocapillarity is more 

pronounced for very thin layers. For  negative values of  the Marangoni  number the rate of  
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Fig. 7. The maximum growth rate of the synchronous 3D instability, the corresponding value of the most 
amplified spanwise wave number and the cut-off spanwise wave number as a function of the Marangoni 
number. Curves for R = 5 are represented by solid lines and these for R = 3 by dashed lines, a F~.M; 

b 1 - lc, 2 - lM, S - stable region, U - unstable region 

increase of  l~ and 1M with Din at R = 3 is small, but as Mn  becomes positive, the rate of  
increase becomes large. Calculated values of  l~ and lM are approximately independent on R 

when M n  > 0.01. Moreover, the most amplified spanwise wave number found at R = 3 is 

larger than that at R = 5. Our results at Mn  = 0 agree qualitatively with measurements of  

Liu et al. [7] showing that lM increases with increasing R. Recent experiments on films falling 

down a vertical, locally heated wall [15], however, suggest that the distance between crests in 
the spanwise direction increases weakly with the Reynolds number (i.e., lM should decrease). 

3.2 Subharmonic instability 

The subharmonic eigenvalues F may become complex at low 1 but these complex transverse 

modes are always stable. So, the secondary modes travel synchronous with the modulated 2D 
waves. Synchronization provides an optimum chance for the transfer of  energy into the three- 

dimensional disturbance. The variation of  the growth rate for the subharmonic instability as a 

function of  the spanwise wave number is shown in Fig. 8. There is a band of  stable transverse 
wave numbers near zero. For  M n  < 0 instability is restricted to a narrow band near l = 0.2 

(curves 1 ~ and 2I), and this band broadens when the Marangoni  number is increased. The 

range of  maximum growth shifts toward larger values of  l, and F~ increases with increasing 
Mn, The instability is sharply cut off at both a lower wave number lcL and a higher wave 

number lcH. 
The important  role of  the streamwise wave number of  the primary 2D wave is clearly 

shown in Fig. 9 where P~ is plotted versus l for different values of  k. For  values of  k close to 
the neutral curve kc (R, Mn) the growth rate is sufficiently large. So, for k close to kc, the 

two-dimensional travelling wave has a small amplitude, and the effect of  3D subharmonic 
instability is more pronounced. The growth characteristics for M n  < 0 (Fig. 9a) and Mn  > 0 
(Fig. 9b) vary with k in the same manner. In accordance with the results o f  Chang et al. [5] for 
isothermal films, our analysis predicts that the most  amplified spanwise wave number 
decreases with increasing streamwise wave number; in contrast to that, Liu et al. [7] did not 
find a relation between k and 1. The comparison of  subharmonic and synchronous (see Fig. 6) 
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Fig. 9. Subharmonic growth rate as a function of the spanwise wave number for R = 5 and different values 
of the streamwise wave number: 1 - k = 0.9kc, 2 - k = 0.85kc, 3 - k = 0.Skc, 4 - k = 0.75k~. a M n  = -0.02; 
b M n  = 0.02 

g rowth  rates demons t ra tes  tha t  for  near ly  s inusoidal  waves  wi th  small  ampl i tudes  the subhar-  

mon ic  3D instabil i ty is dominan t .  This  conclus ion  is in ag reement  wi th  theore t ica l  predic t ions  

presented  in [5] and exper imenta l  observa t ions  in [7]. 

In  Fig. 10, FrM, lcL, IM and IcH are p lo t ted  versus M n  for  the same values o f  the o ther  

pa ramete rs  as in Fig. 7. The  m a x i m u m  growth  rate  (Fig. 10a) increases a lmos t  l inearly as M n  

is increased, wi th  the F~M being larger  at large values  o f  the Reyno lds  number .  The  rates o f  

increase o f  F~M with  M n  for M n  < 0 and for  M n  > 0 are similar.  So, the con t r ibu t ion  of  

thermocapi l l a r i ty  to the secondary  g rowth  rate  o f  the subha rmon ic  modes  is qui te  different  

f rom that  o f  the synchronous  modes .  The  effect o f  the rmocap i l l a r i ty  on the secondary  3D sub- 

h a r m o n i c  instabil i ty is also seen in Fig. 10b. The  g rowth  rate  is negat ive  outs ide  the region 

bounded  by the lcL- and  l~H-curves. There  is a shift o f  this region to larger  values o f  I when 

the Reyno lds  n u m b e r  is increased and the instabil i ty emana tes  f r o m  lower  M a r a n g o n i  n u m b e r  

limit. 
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Fig. 10. The maximum growth rate of the synchronous 3D instability, the corresponding value of the 
most amplified spanwise wave number and the cut-off spanwise wave number as a function of the Maran- 
goni number. Curves for R - 5 are represented by solid lines and these for R = 3 by dashed lines, a F~M; 
b 1 - IcL, 2 - lM,  3 - Ic~, S - stable region, U - unstable region 

4 Conclusions 

The flow of a thin film falling down a vertical nonuniformly heated plate is investigated. The 

secondary transitions of the interfacial waves are studied via a long-wave evolution equation 
of Benney's type, with particular attention paid to the effect of thermocapillarity on the 
growth of secondary modes. The linear stability of finite-amplitude two-dimensional waves is 

analyzed using the Floquet theory. Two distinct instabilities are discussed in relation to the 
generation of 3D patterns observed in many experiments. 

The small-amplitude waves are more susceptible to generate subharmonic 3D disturbances 

with long wavelength. When the streamwise wave number is close to the neutral curve, the 
maximum growth rate of the secondary subharmonic instability is comparable with that of 
the primary instability. According to Floquet's analysis, synchronous instability is likely to 
occur at lower wavenumbers, since its growth rate becomes comparable with the subharmonic 
growth rate for k < kM. However, when the streamwise wave number is very small, the pri- 
mary wave profiles are far from sinusoidal [13], and weakly nonlinear theories cannot be 

used. Extensive numerical calculations of the strongly nonlinear Eq. (3) are required to obtain 
the range of parameters over which the synchronous instability will occur. 

The variation of the subharmonic growth rate with the Marangoni number is quite differ- 
ent from that of the synchronous growth rate. The influence of thermocapillarity on the 3D 
synchronous instability is related to the sign of the temperature gradient. When the film heat- 
ing decreases downstream, the thermocapillary effect weakens and the fastest growing syn- 
chronous mode increases with the Reynolds number. In the case of a linear increase in the 
plate temperature, the 3D synchronous instability depends strongly on the Marangoni num- 
ber and the effect of a small variation in the mean film thickness is less pronounced. 

In experimental studies [15], [16], [19], [20], a constant flux was imposed on a rectangle 
area of the wall, with the horizontal sides of the rectangle quite longer than the vertical ones, 
to ensure conditions for forming two-dimensional flows. Indeed, at small flow rates and heat 
fluxes, almost two-dimensional structures are observed in the middle region of the heated 
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area. In particular, a stationary bump of  the free surface appears closely to the upper side of 

the rectangle. The reason for such strong surface deformation is attributed to the thermocapil- 

lary force acting in the opposite direction to gravity. Direct measurement of  the surface tem- 

perature confirms this suggestion because the temperature first increases significantly reaching 
a maximum and then decreases monotonically in the downstream direction. Above some 

moderate values of  the heat flux (depending on the Reynolds number), regular three-dimen- 

sional patterns are also observed. There exist several vertical "horse-shoe"-like structures the 

number of  which depends on the magnitude of  the heat flux through the wall, especially the 
number of  these structures decreases with increasing the heat flux. So far, there is not  a proper 

theoretical model that describes these features of  the film flow on a locally heated wall. It is 
worth noting that the distribution of  the free surface temperature can be represented locally 

by a linear function of  the longitudinal coordinate, especially when the temperature decays 

monotonically. Our theoretical predictions show that for 3D instabilities the expected obser- 

vable spanwise wave number decreases when the plate temperature decays monotonically. 

New experiments with longer test sections are required to check the validity of  our theory. 

Appendix 

Coefficients of Eq. (7) 

B1 = C•hl 3 , 

B2 = e3Sh12hl ' , 

t33=chl 2 [~-  hl 3 + ~  Mnhl 2 P -  - - -  Mn2hl- 212S 2 

B4=(Rhl -Mn)  hl-c+ch,2hl'(~-~-h13+2-~ R M n ( p - 8 ) h l  2 4PMn2hl-3!2S), 

- - -  h13 + 12 RMn - 2PMn2hl) B5 = (2Rhl Mn) hl, + ch12hl,, (4~ 2 25 (p  _ 8 ) h12 

+ chl (hl')2 [ (4R2h13 + 2@ RMn (p  - 8 )  h12 - 6PMn2hl ) + 3S(hl h~')'] 

+ch1312(-5RMnPh12+PMn2hl+S12). 
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